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Abstract. In this paper, a direct method-based prediction of load-bearing capacity of non-
periodic WC-Co composites is presented. The main goal is to generalize the methodology of 
limit analysis on periodic heterogeneous media to materials with random microstructures. For 
such materials, the admissible macroscopic loading domains demonstrate remarkable scatter 
among RVE models of identical size and constituents but different morphologies. Limit 
analysis is performed on samples of a group of RVE models converted automatically from 
scanning electron microscopy (SEM) images. The corresponding admissible loading domains 
are numerically determined and statistically interpreted. The obtained results for plastic limit 
loads by direct method are compared with those from conventional incremental analysis.    
  
 
 
1 INTRODUCTION 
In recent decades, the increasing use of particulate reinforced metal-matrix composites 
(PRMMC) in industry enhances the need of capable computational methods for predicting the 
global behavior of materials. In this study in particular global yield strength and ultimate 
strength reflecting the load-bearing capability of the material as important technical properties 
are investigated.   How to determine these parameters with taking into account for the 
characteristics of material's microstructure is a critical issue for material research.  

In PRMMCs  granular shaped brittle grains are imbedded in a ductile metal-matrix [1]. The 
resulting geometrical complexity of the material makes modeling of representative volume 
elements (RVE) rather difficult. Most existing modeling techniques are restricted to 2D and 
can be coarsely divided into two groups: the first group consists of methods aiming to develop 
idealized microstructures representing major features of the original composite, while the 
second group of methods directly duplicate the real microstructure [2]. Due to the extensive 
efforts for models generation, 3D models are studied  only recently and cost exceptional effort 
[3]. Besides the complex microstructure, the random nature of the material further increases 
the difficulty of modeling. The absence of periodicity excludes to embody the infinite domain 
of the material by an individual RVE of finite-size. A solution to this problem is to use 
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statistically equivalent RVEs (SERVE) [4]. According to this, the real material behavior 
should be reflected by a series of statistically equivalent RVE-samples instead of a unique one. 
However, because most existing modeling techniques require considerable manual 
intervention for the mesh generation, the idea of SERVE has only limited application in the 
scope of PRMMC materials. Meanwhile, modeling of the real microstructure is much more 
demanding than the idealized case. Therefore, to author's knowledge, until now the concept of 
SERVE is confined to idealized microstructure rather than the real one. 

The intrinsic randomness of PRMMC materials  also restricts material properties to be 
studied:  the accurate prediction of the nonlinear behavior of the composite generally demands 
larger RVE-size [5]. As consequence and despite their importance, yield strength and ultimate 
strength of the PRMMC are less frequently investigated than elastic properties. The 
determination of the global yield condition depends on how the macroscopic plasticity is 
interpreted, and the contribution in this regards can be traced to Suquet's work [6] who 
proposed  an energetic approach  and introduced a definition of the global plastic strain. 
Basing on this work, the yield strength of several PRMMCs are studied, e.g. 2124 Al-SiC [7] 
and WC-Co [8]. 

To obtain the macroscopic ultimate strength of a composite numerically, a two-step 
approach consisting of limit analysis and homogenization technique can be performed [9]. 
First, the loading corresponding to the plastic limit is calculated, and then secondly, the 
obtained result is linked to the overall material behavior through the homogenization 
technique. The limit analysis within the first step can be carried out either by an incremental 
method (IM) or a direct method (DM). In contrast  to the conventional IM, DM determines  
the critical loads without taking into account the specific loading history and demands less 
computational effort [10]. DM are based either on statical theorems [11] or kinematic 
theorems [12], and results deliver in principle  lower and upper bounds of the plastic limit, 
respectively. Applying DM to evaluate the load bearing capacity of composite materials and 
to investigate its dependence on the microstructure has been introduced in [13-16] applying 
the statical approach and in [17-19] applying the kinematical one. However, these studies 
focus more on the methodology aspect, and the composites taken into consideration are 
periodic with regular microstructure.  
In the present study, we use the DM analogously to the one proposed in [16] and apply it to a 
typical random PRMMC, WC-Co, to predict its macroscopic ultimate strength as well as the 
yield strength. These material parameters are calculated also by the IM for comparison. The 
failure scenario assumed in this study is restricted to the instantaneous collapse of the matrix 
phase, other mechanisms such as debonding between phases or brittle fracture are neglected. 
Aware of the randomness of the material, the analysis employs a series of 2D SERVE-models 
generated from real scanning electron microscope (SEM) images. One focus of the study is to 
analyze the statistical distribution of a set of global material parameters 
 
2 STATISTICAL STRENGTH PREDICTION THROUGH LIMIT ANALYSIS AND 

HOMOGENIZATION 

2.1 Macroscopic yield strength of an elastic-plastic composite 
The homogenization theory links physical fields in two well-separated scales, say the 
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micro scale y in which structural details of RVE are distinguishable and the macro scale x in 
which RVE is recognized as a macroscopic point. For a heterogeneous composite, once 
submitted to an external loading, its microscopic stress field 𝝈𝝈 in y and the macroscopic 
counterpart to it in x satisfy the relationship: 

 1 ( )y dv
Ω

=
Ω ∫σ σ .  (1) 

Herein 𝛺𝛺  denotes the RVE domain. Angle brackets represent a macroscopic quantity 
calculated from the volume average. Analogously, the strain in two scales is related as: 

 1 ( )y dv
Ω

=
Ω ∫ε ε .  (2) 

When all components of the composite stay in the elastic regime, the relationship between 〈𝝈𝝈〉 
and 〈𝜺𝜺〉 can be obtained via the effective elasticity tensor 𝑪𝑪�: 

 :=σ C ε .  (3) 

If anisotropy is negligible, 𝑪𝑪�  can be characterized by two parameters: the effective Young's 
modulus 𝐸𝐸� and effective Poisson's ratio 𝜐̅𝜐. 
One major characteristic of WC-Co composites is that the irregular microstructure causes 
severe stress localization. This means the onset of the local plasticity can take place even 
when 〈𝝈𝝈〉 is fairly low. To describe the contribution of the local plastic deformation in the 
global scale, Suquet [6] proves that 〈𝜺𝜺𝑷𝑷〉 is not a reasonable measure, because it is not the 
work conjugate pair to 〈𝝈𝝈〉. In contrary, the global plasticity should be measured by the 
effective plastic strain 𝜺𝜺�𝑷𝑷 defined as: 

 p 1 :−= −ε ε C σ .  (4) 

According to this definition, the global yield criterion of the material can be defined similarly 
as that for a metallic material: 

 ( )arg  ( ) 0.2%Y P
eq eq

= =σ ε σ .  (5) 

Here 𝜺𝜺�𝑒𝑒𝑒𝑒𝑃𝑃   and 〈𝝈𝝈〉𝑒𝑒𝑒𝑒 indicate the equivalent plastic stain and the equivalent macroscopic stress, 
respectively, which are defined as: 

 2 ( ) ' : ( ) '
3

P P P
eq =ε ε ε ,  (6) 

 3 ' : '
2eq

=σ σ σ , (7) 

Here, the apostrophe indicates the deviatoric part of the tensors. It is worthy to note that, 
although macroscopically WC-Co are elastically and plastically isotropic, this is not true for  
specific RVEs. Therefore, the average of the global strength in two orthogonal directions 
should be taken as the material strength.   
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2.2 Limit analysis based on the incremental and the direct method 
The aim of limit analysis is to identify the macroscopic admissible load domain  defined as: 

 }{ : ( ( ) ( )) 0,Yf y y yσ ≤ ∀ ∈Ω= σ σ , ,  (8) 

where 𝑓𝑓 stands for the yield function, 𝜎𝜎𝑌𝑌 denotes the local yield strength. In this paper we use  
the von Mises yield function without hardening: 

 3( ( ) ( )) '( ) : '( ) ( )
2

Y Yf y y y y y= −σ ,σ σ σ σ .  (9) 

Since hardening is neglectedr, 𝜎𝜎𝑌𝑌 is time-independent for every material point. 
Limit analysis can be carried out by IM or DM; in current study both approaches are 

investigated. To determine numerically the macroscopic ultimate strength 〈𝜎𝜎〉𝑈𝑈 through IM, a 
macroscopic stress 〈𝝈𝝈〉  is applied incrementally to a RVE model. For each increment, the 
finite element (FE) program calculates the change of global strain and updates 〈𝜺𝜺〉 accordingly. 
Once the applied loading has reached a critical level, the program terminates due to the non-
convergence and the eventual stress is recognized as the limit one which corresponds to a 
point lying on the boundary of  𝓛𝓛 [20]. 

The DM applied in this study is based on the static shakedown theorem by Melan [21]. 
Considering a RVE having elastic-plastic deformation, the total stress field can be 
decomposed into two parts: 𝝈𝝈𝐸𝐸 representing the fictitious elastic stress when the same loading 
is applied on the purely elastic reference RVE and 𝝆𝝆 represents residual stress field which 
remains after removal of external loadings:  

 ( , ) ( , ) ( , )y t y t y t= +Eσ σ ρ .  (10) 

The residual stress field is a self-equilibrium field, thus it satisfies: 
 ( , ,     )y t y=∇ ∈Ω⋅ ∀0ρ , (11) 

 ,   ,  ( ) Ty t y⋅ = ∈∂Ω∀0ρ n .   (12) 

Here, 𝜕𝜕Ω𝑇𝑇 denotes the boundary of a RVE with prescribed stresses and n  the outer normal. 
According to the applied theorem, a set of NL monotonic loads {𝑷𝑷𝒊𝒊}  does not exceed the 

load bearing capacity of the material by means of plastic limit if, and only if, a positive load 
factor 𝛼𝛼 > 1 and a time-independent residual stress field 𝝆𝝆 can be found, whose superposition 
with 𝝈𝝈𝐸𝐸 entailed from {𝑷𝑷𝒊𝒊}  complies with the yield condition at any given point  y. In the 
light of this statement, the load set leading to the plastic limit can be characterized by a 
maximal loading factor 𝛼𝛼 where: 

 max.  LMα α=   (13) 

 
1

. .   ( ( ) ( ) ( )), 0,     
NL

Y
i

i
ys t f y y yPα

=

 
≤ ∀ 


+ ∈Ω


∑Eσ ρ σ .  

By comparing (13) to (8), one can notice that DM is capable of determine the same domain 𝓛𝓛 
if  referring {𝑷𝑷𝒊𝒊}  to 〈𝝈𝝈〉. Meanwhile, due to the linearity of the elastic stress: 
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 ( )
1 1

( ) ( )
NL NL

i i
y y

= =

  = 
 
∑ ∑E E

i iσ P σ  P ,  (14) 

𝝈𝝈𝐸𝐸 can be acquired also through the summation defined in (14).  
The numerical solution of 𝛼𝛼𝐿𝐿𝐿𝐿 involves a descretization of the original problem (13) in the 

context of FE method and solving a nonlinear programming problem. For the 2D-plane strain 
case, the discretization of (13)  yields: 

 ( ) max  L
OR

M
I ρ

αα =   (15) 

 { } (2 ) 3[ ] 0,   where [ ] NK LC NGSR − ×= ∈C ρ C ,  

 , ) 0, [1 ]( ,Y
iσ Nf i GSα + ≤ ∈i

E
i ρσ .   

Here NK represents the total number of nodes, NGS the total number of Gaussian points, LC 
the number of constrained degree of freedom, [C]  the equilibrium matrix with dimension 
(2NK-LC)´3NGS.  

To improve the computational efficiency, (15) is mathematically reformulated according to 
[22] into a more capable form where convex quadratic inequality constraints are replaced by 
the Euclidean ball constraints: 

 ( ) max  LM
Reform αα =   (16) 

 (

1

2 ) 3 (2 ) 3 2,   where [ ] ,[ ] ,0 , ,NK LC NK LC
NG

r r r r
r

NG NG NKRu x R R Ru x w Rwα − × − ×

=

+ ∈ ∈ ∈ ∈ ∈− =∑ B A BA ,   

 ,   for1  1..r r Gu N S=≤ .   

To handle the large-scaled non-linear programming problem (16), the optimization solver 
IPOPT [23] based on the interior-point method  [24] is applied.  
Similar as the yield strength, the ultimate strengths of the RVEs in different directions are in 

general not uniform. To reduce the global anisotropy's impact on the objectivity of the 
prediction, a more sophisticated method rather than calculating the average was applied. This 
method has been successfully utilized to predict the limit strength of a fiber-reinforced 
composite [16]. A major benefit of this method is that not only the strength in two orthogonal 
directions, but also the stress multi-axiality is considered. The ultimate strength is calculated 
for several combinations of two in-plane normal stresses, i.e. 〈𝝈𝝈〉11 and 〈𝝈𝝈〉22. Afterwards, the 
acquired results are projected to the π-plane and 〈𝜎𝜎〉𝑌𝑌  is obtained by fitting the projected 
domains to the von Mises criterion by means of the least square method. 

2.3 Statistical evaluation of the global material strength  
The WC-Co composite is a typical random material. To interpret the impact of randomness, a 
statistical study is carried out. For this, we employed few simple statistical measures 
including mean value μ; standard deviation SD and the coefficient of variation Cμ: 

 SDCµ µ
= .  (17) 
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Since Cμ excluded the influence of the absolute magnitude of an investigated object, it is an 
appropriate measure to compare the degree of disparity between different objects.  

To perform the statistical analysis, we used 30μm-by-30μm finite element RVE models. All 
these models are based on real WC-Co microstructures gained from a scanning electron 
microscope (SEM) observation using a backscattering detector [25]. All samples belong to a 
WC-30Co hard metal, meaning that the cobalt content constitutes the 30% weight and average 
carbide grain size is dWC = 2.35μm. During the sample preparation, metallographic specimens 
were ground, polished and etched with Murakami solution in order to differentiate between 
neighboring WC-grains. As seen in Figure 1, the dark grey areas are Co, while the bright 
areas are the WC grains with their characteristic prismatic shape.  To convert a SEM image to 
its corresponding FE model, we employed an automatic technique developed in [26]. This 
technique is capable of generating a triangular element based adaptive finite element mesh. It 
adopts a denser mesh close to phase interfaces and a coarser mesh elsewhere. The resulting 
mesh generated from this technique appears similarly to Figure 1.  

 

 
Figure 1:  SEM image and finite element RVE model of the WC-Co  

 
3 NUMERICAL EXAMPLES 

3.1 Details of the Finite element model    
Our numerical study is based on a model group consisting of 10 RVE samples generated from 
the automatic technique explained above and encoded consecutively from 1 to 10.  Each of 
these samples has a unique microstructure and for all of them we use  first order triangular 
plane strain elements, because this element type is proven to capture the global behavior of 
the WC-Co composite better than e.g. the plane stress element [8]. Within each model, 
elements covering the non-critical regions were assigned a global size of 0.8μm whereas the 
ones lying on the phase boundaries were assigned with an edge length of 0.2μm. For this 
configuration, the number of elements varies between 6000-9000. The material properties for 
both phases are described in Table 1. We restricted our investigation to the case of 
geometrical linearity.   

The commercial FE solver ABAQUS is used for both IM and DM. To apply the global 
loading, we introduce for each edge a reference point and link it to the nodes lying on the 
edge. This way, a concentrated force corresponding to 〈𝝈𝝈〉  can be applied on the reference 
point. Since by this procedure the DoF of nodes are all equal to the coupled reference point,  
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all edges remain straight during the  deformation process.    
Table 1: material properties  

 𝐸𝐸 [GPa] 𝜐𝜐 [−] 𝜎𝜎𝑌𝑌 [MPa] 
WC 700 0.24 2000 
Co 210 0.30 279 

 
As mentioned, DM determines directly the ultimate strength in two steps: first, the purely 

elastic reference RVE is loaded alternately with arbitrarily chosen global stress 〈𝝈𝝈〉11  and 
〈𝝈𝝈〉22 and the according microscopic stress fields  𝝈𝝈11𝐸𝐸  and 𝝈𝝈22𝐸𝐸  are calculated. After that, as 
shown in Figure 2, the resulting stress fields are scaled by 𝑝𝑝1 = cos𝛼𝛼  and 𝑝𝑝2 = sin𝛼𝛼 
respectively and then superposed to represent the stress field under multi-axial global load 
〈𝝈𝝈〉E. In this manner, by iterating the value of  𝛼𝛼 inside interval [0,π], a series of load vectors 
representing different load combinations can be obtained. For each load vector, the associated 
mathematical programming problem  (16) is solved. The obtained macroscopic domains for 
all these predefined load vectors are fitted to a global von-Mises criterion to calculate 〈𝜎𝜎〉𝑈𝑈 . 

 

 
Figure 2:  Superposition of the elastic stress 

 
 Besides DM, we also applied the conventional IM to determine 〈𝜎𝜎〉𝑌𝑌 and 〈𝜎𝜎〉𝑈𝑈 on the same 

group of RVE models. In these calculations, 〈𝝈𝝈〉11 and 〈𝝈𝝈〉22 are set uniformly to 2000 MPa, 
which is the strength of the reinforcement phase. To calculate 〈𝜎𝜎〉𝑌𝑌, two given loadings are 
prescribed individually and a python based script is developed to evaluate in each increment 
the 𝜀𝜀𝑒̅𝑒𝑒𝑒𝑃𝑃  defined in (4). Once this value attains 0.2%, the associated 〈𝝈𝝈〉 is identified as the 
yield strength. For the determination of 〈𝜎𝜎〉𝑈𝑈, a similar process as in DM is followed. During 
the implementation, 〈𝝈𝝈〉11  and 〈𝝈𝝈〉22  are combined by a predefined angle 𝛼𝛼  and applied to 
each RVE jointly. In this case, 〈𝜎𝜎〉𝑈𝑈 refers to the load magnitude where the calculation stops 
to converge.  

3.2 Results of numerical studies and statistical analysis 
The plastic limit domain calculated by DM is demonstrated in Figure 3. On the left side, the 
domain for each RVE is shown and on the right the two extreme cases and the average of all 
RVE-models. As expected, the individual plastic limit domains are scattered. It can be noted 
from the figure that anisotropy for all models is small, with values 〈𝝈𝝈〉11𝑈𝑈  and 〈𝝈𝝈〉22𝑈𝑈  rather 
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close to each other. For values of 𝛼𝛼  near 45°, the strength becomes quite large, because 
𝛼𝛼 = 45° corresponds to the case〈𝝈𝝈〉11 = 〈𝝈𝝈〉22; for all existing models this condition indicates 
a globally hydrostatic stress. Since the hydrostatic part does not contribute to the von-Mises 
yield condition, material at this point can sustain high global stress. When the load domain 
shown in Figure 3(R) is projected to the π-plane, it becomes an imperfect semi-circle as 
depicted in Figure 4. By fitting this curve to the von-Mises yield criterion, which constitutes a 
perfect ball in this space, a direction-independent 〈𝜎𝜎〉𝑈𝑈can be obtained.  
 

 
Figure 3:  Domain of the plastic limit obtained by DM for: (L) each RVE model (R) Average and two extreme 

cases 
 

 
Figure 4: Projection of plastic limit domain in the π-plane 

 

 
Figure 5:  Comparison between plastic limit domains for selected RVEs  

 
  For a concise presentation of the results, we do not show the plastic limit domains for 

each RVE obtained by IM since they are almost same to those obtained by DM. Instead, we 
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selected two RVE-models arbitrarily and compared their plastic limit domains calculated by 
the two approaches (Figure 5). It can be observed that in general strength calculated by IM is 
slightly lower than that by DM. We suppose that this is caused by the minimum incremental 
step size in ABAQUS. Smaller step length would postpone the point of non-convergence.  

 

 
Figure 6:  Histogram and fitted normal distribution of normalised  𝐸𝐸�  and 〈𝜎𝜎〉𝑌𝑌 

 
Table 2: Statistics of several critical global material properties  

 μ SD  Cμ 
𝐸𝐸� [GPa] 396.7 33.5 0.084 
𝜐̅𝜐 [-] 0.264 0.004 0.018 

〈𝜎𝜎〉𝑌𝑌[MPa] 636.9 144.7 0.227 
〈𝜎𝜎〉𝑈𝑈[MPa] 1054.3 137.9 0.131 

 
Limit analysis has revealed that the global strength obtained by RVE-models of same size 

and constituents may vary significantly due to the different morphology. A similar disparity 
can be observed also from the histograms in Figure 6. In this figure, both given parameters, 
𝐸𝐸� and 〈𝜎𝜎〉Y, are scaled to their average value to enable a transverse comparison. By comparing 
these normalized parameters, it is obvious that the scatters for different global parameters are 
as well significant. To quantify the disparity of a distribution more precisely, we perform 
statistical analysis and characterize the distribution by the three previously introduced 
parameters μ, SD and Cμ. The results are shown in Table 2. One can see that the Cμ of global 
elastic properties described by 𝐸𝐸� and  𝜐̅𝜐 , are lower than those related to plasticity, 
〈𝜎𝜎〉𝑌𝑌and 〈𝜎𝜎〉𝑈𝑈 . Because all models are same in size and constituents, the magnitude of Cμ 
actually reflects the impact of morphology and the significance of the local material behavior. 
We conclude that the morphology critically influences the global yield point. As a 
consequence, in order to accurately predict〈𝜎𝜎〉𝑌𝑌, either larger RVE size or more RVE samples 
have to be employed.  
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4 DISCUSSION AND CONCLUSION 
It is shown in this paper how to incorporate limit analysis and homogenization theory to 
predict the global strength of the PRMMC material. The study focuses on the implementation 
of limit analysis through the direct method in extension to studies devoted to periodic 
composites. We overcame in this study the obstacle to determine RVE for such material. In 
additional, the RVEs investigated here contain normally 6000 to 9000 elements which lead to 
large scale optimization problems. By using interior-point method and reforming the original 
problem to the form proposed in [22], the problems are solved efficiently. Based on the 
statistical investigation of 10 RVE models converted from SEM images, several major 
conclusions can be summarized as follows: 
i. The plastic limit predicted by the direct method is almost identical to that calculated by the 

conventional incremental method. It convinced that, the direct method can successfully 
handle a problem of current scale and level of complexity.  

ii. On the one hand, by means of all selected global measures including global elasticity and 
strength, all RVEs illustrate negligible anisotropy. But on the other hand, the disparity 
among them is still remarkable. This phenomenon reveals that isotropy should be taken as 
a necessary but insufficient criterion in validating the representativeness of an individual 
RVE.  

iii. Among all picked global material features, the distribution of global yield strength has the 
largest scatter. This phenomenon indicates that this material feature has the strongest 
dependence on the micro-structural morphology, i.e., it is very sensitive to the local 
behavior of the composite.  

At last, the authors would like to emphasize that the failure scenario assumed in this paper is 
restrictive; some material behaviors such as damage and plastic hardening are not accounted 
for, since they result more complicated mathematical programming problem. Nevertheless, 
these effects would be studied in our future works. 
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