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Abstract. This contribution presents a multi-scale homogenization method to model
fibre structured materials. On the macroscopic level textiles are characterized by a large
area-to-thickness ratio, such that a discretization with shell elements is numerically effi-
cient. The material behavior is strongly influenced by the heterogeneous micro structure.
To capture the contact on the micro level, the RVE is explicitly modelled by means of a
volumetric micro sample and a shell specific homogenization scheme is applied to trans-
fer the microscopic response to the macro level. Theoretical aspects are discussed and a
numerical example for contact behavior of a periodic knitted structure is given.

1 INTRODUCTION

The consideration of material behavior at different length scales is essential to un-
derstand the behavior of heterogeneous materials and define adequate constitutive laws.
Using suitable homogenization techniques permits to develop reliable scale transitions be-
tween the connected levels [1]. The challenge is to transfer the information across length
scales. Within homogenization based approaches the macroscopic constitutive behav-
ior of the inhomogeneous material is modelled by means of an appropriate micro scale
representative volume element (RVE). For each macro scale material point a fine scale
boundary value problem is solved to determine the local material behavior on the large
scale. For nonlinear material behavior the FE2 method is often applied which involves the
simultaneous solution of the macro and the micro scale problems within a nested solution
scheme [2, 4]. However, it is also possible to systematically create data for macroscopic
stress-strain states by applying a range of deformations to the RVE and evaluating the
homogenized stress response [5].

The macroscopic material behavior of textiles is usually nonlinear and depends strongly
on the heterogeneities on the micro level, i.e. on the structural assembly of the fibres. The
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macroscopic nonlinear material characteristic results mainly from the contact interaction
between the fibres.

The macroscopic technical textile can be considered as a shell structure, which is nu-
merically efficient [7, 6]. To capture the microscopic behavior a volumetric RVE is defined
[8, 9] that explicitly models the fibres and the contact interaction between them.

In this paper a homogenization procedure is introduced that combines a macroscopic
shell with a microscopic volumetric RVE. Therefore a homogenization scheme is derived,
which connects the macro scale to the micro scale problem. For the representation of the
micro level a suitable micro sample is defined and the macroscopic behavior is derived by
homogenization of the micro structural response. Finally a numerical example is given to
test the derived homogenization scheme and characterize the resulting hysteretic behavior
due to the contact.

2 THE REPRESENTATIVE VOLUME ELEMENT

Homogenization schemes are usually based on the assumption that the considered
length scales are well separated, i.e. the microscopic length scale lm is much smaller than
the macroscopic one lm ≪ l. This assumption is violated when the micro structural size
is no longer negligible with respect to the macro structural size. This situation occurs
when shells are considered. Here, the separation of length scales is only given in plane
direction. Microscopic and macroscopic thickness are the same. To take this into account
a shell specific homogenization scheme is introduced that uses the quasi second order
assumptions for a shell continuum.

In this context the principle of separation of length scales becomes relaxed for the
thickness direction, where macroscopic and microscopic length are considered the same

Hm = H . (1)

The considered textile consists of a periodic assembly of fibres, as shown in figure 1. The
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Figure 1: Determination of an unit cell

minimal sample that can be used as a representative volume element is the unit cell.
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The unit cell is spanned by a periodicity frame. The periodicity frame is characterized
by two independent vectors v1 and v2 having the property that the mechanical charac-
teristics are invariant along any translation m1v1 +m2v2, where m1 and m2 are integer
numbers. The RVE of the textile consists of different parts, a material volume part B0

and a material free part G0 such that V0 = B0 ∪ G0 is the RVE volume. Normal to the
thickness direction the mid-surface M0 is defined.

3 MACROSCOPIC SHELL KINEMATICS

A body B is a collection of material points P with X denoting the position of P in
the material configuration B0 at time t0 in the three dimensional Euclidean vector space
E
3. The nonlinear deformation map to the current configuration Bt is defined by

ϕ(X, t) = x , (2)

where x indicates the position of the material point P at the time tt.
The geometry and deformation of a shell is described by curvilinear convective coordi-

nates θi as given in figure 3. The position is typically specified via the shell middle surface
M0 where θ

3 = 0. In the further course Latin indices range from 1 to 3 and Greek indices
range from 1 to 2. The position and deformation map of a finite deformation shell are
specified as

X(θi) = ̂

X(θα) + θ3D(θα) and ϕ(θi) = ϕ̂(θα) + θ3d(θα) . (3)

The vectors ̂

X and ϕ̂ provide a parametric representation of the middle surface of the
shell in the reference and the current state. The parameter θ3 = [−1

2
, 1
2
] determines the

position of a point normal to the middle surface in the undeformed state. Furthermore,
||D|| = H0 and ||d|| = Ht are the absolute values of the shell thickness. The thickness
stretch is denoted by λ3 =

Ht

H0

, which means that the displacement in thickness direction
is approximated linearly. A result of this approximation is the distortion freedom of the
shell cross section. The displacement can be calculated by the difference of the spatial
and material position

u(θi) = ϕ̂(θα)−̂

X(θα) + θ3[d−D] . (4)

All kinematic values can be calculated, if the shell geometry in the material and the
spatial configuration are known. The covariant basis vectors on the middle surface of the
shell can then be developed from the partial derivative of the material vector ̂X and the
spatial vector ϕ̂ with respect to the curvilinear coordinates

Aα =
∂̂X

∂θα
= ̂

X ,α , A3 = X ,3 = D , aα =
∂ϕ̂

∂θα
= ϕ̂,α , a3 = d . (5)

For the macro to micro scale transition the shell formulation has to be extended to a three
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Figure 2: Shell kinematics

dimensional formulation. From equation (3) covariant basis vectors for the description of
the shell body can be derived as

Gi =
∂X

∂θi
and gi =

∂x

∂θi
, (6)

and specified by introducing equations (3) and (5) as

Gα =
∂X

∂θα
=

∂̂X

∂θα
+ θ3

∂D

∂θα
= Aα + θ3A3,α , G3 =

∂X

∂θ3
= A3 ,

gα =
∂ϕ

∂θα
=

∂ϕ̂

∂θα
+ θ3

∂d

∂θα
= aα + θ3a3,α , g3 =

∂ϕ

∂θ3
= a3 .

(7)

The contravariant basis vectors result from the relations

G
i ·Gj = δij and g

i · gj = δij , (8)

with the Kronecker delta δij . The covariant vectors are tangents to the coordinate lines
and the contravariant vectors are normal to the coordinate surfaces. The deformation
gradient F is defined to be the spatial derivative of ϕ

F =
∂ϕ

∂X
=

∂ϕ

∂θi
⊗

∂θi

∂X
= gi ⊗G

i , (9)

and with equation (7) results in

F = [aα + θ3a3,α]⊗G
α + a3 ⊗G

3 . (10)

The variation of F reads

δF = [δaα + θ3δa3,α]⊗G
α + δa3 ⊗G

3 . (11)
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Finally, the internal power of a shell can be specified in work conjugate quantities i.e. the
Piola-Kirchhoff stress P and the variation of the deformation gradient F as

U INT =

∫

B0

P : δF dV =

∫∫∫ √
G P : δF dθ3dθ2dθ1

=

∫∫∫ √
G [δaα · P ·Gα + θ3δd,α · P ·Gα + δd · P ·G3]dθ3dθ2dθ1

=

∫∫
δaα ·

∫ √
GP ·Gα︸ ︷︷ ︸

t
α

0

dθ3dθ2dθ1 +

∫∫
δd,α ·

∫
θ3

√
GP ·Gα︸ ︷︷ ︸

t
α

0

dθ3
m

αdθ2dθ1

+

∫∫
δd ·

∫ √
GP ·G3︸ ︷︷ ︸

t
3

0

dθ3
n

3dθ
2dθ1 =

∫∫
[δaα · nα + δd,α ·mα + δd · n3]dθ2dθ1 ,

(12)

where a volume element dV of the reference volume B0 is defined as dV =
√
Gdθ1dθ2dθ3

with
√
G = [G1×G2]·G3.The volume integral is separated into the integral over the middle

surface M0 and a through thickness integration. Then the variation of the deformation
gradient (11) is introduced and the multiplication of P with the contravariant basis vectors
yields tractions ti0, which are subsequently transformed to stress resultants ni and m

α by
a pre-integration in thickness direction. In the particular case of resulting moments the
tractions are multiplied with the lever arm θ3. These stress resultants exist with respect
to the middle surface.

4 HOMOGENIZATION FOR SHELLS

A basic concept of scale transition is the equality of the averaged macroscopic and the
microscopic internal power density. For the homogenization scheme a power averaging
theorem is introduced, which is a special format of the known Hill-Mandel condition. The
macroscopic internal power density has to be equal to the microscopic internal power
density averaged over the middle surface M0 of the RVE

℘INT =
1

A0,m

∫

B0,m

℘INT
m dV , (13)

where A0,m is the measure of the middle surface in the parameter space of θ1, θ2. A
characteristic of the shell specific homogenization scheme is that the microscopic repre-
sentative volume element is related to a straight line normal to the middle surface through
the thickness of the shell as depicted in figure 1. This is a result from the shell assump-
tion and the pre-integration over the thickness of the RVE to transfer all quantities to
the middle surface. The Hill-Mandel condition can be recast in a formulation with work
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conjugated quantities like the deformation gradient and the Piola-Kirchhoff stress

δaα · nα + δd,α ·mα + δd · n3 =
1

A0,m

∫

B0,m

Pm : δFmdV . (14)

The macroscopic deformation gradient is assumed to be equal to the microscopic averaged
deformation gradient

F =
1

V0,m

∫

B0,m

FmdV =
1

A0,m

∫∫ √
G

[
1

H0

∫
Fmdθ

3

]
dθ2dθ1

=
1

A0,m

∫∫ √
G

H0

[
a
m
α ⊗

∫
G

α
mdθ

3 + d
m
,α ⊗

∫
θ3Gα

mdθ
3 + d

m ⊗

∫
G

3
mdθ

3

]
dθ2dθ1 ,

(15)

The macroscopic and the microscopic covariant basis vectors in the reference state are
assumed to be equal, Gi = G

i
m, as the initial, internal curvature of the RVE is negligible.

The position of a microscopic material point in the spatial configuration ϕm on the micro
scale is given by

ϕm = F ·Xm +w , (16)

where Xm is the position of the microscopic material point in the material configuration
and w is the microscopic fluctuation field. By applying the gradient with respect to the
current position ∇X the microscopic deformation gradient Fm is given by

Fm = F +∇Xw . (17)

The fluctuation field w is expressed in a shell specific formulation according to (3) as

w = ŵ(θαm) + θ3dw(θαm) , (18)

with the part in shell plane direction ŵ(θα) and the fluctuation of the director d
w(θα).

The gradient of the fluctuation results as

∇Xw = [ŵ,α + θ3dw
,α]⊗G

α + d
w ⊗G

3 . (19)

The covariant basis vectors in the spatial configuration on the middle surface are defined
as

a
w
α =

∂ŵ

∂θα
= ŵ,α , a

w
3 = d

w . (20)

These can be extended to a three dimensional formulation

g
w
α =

∂w

∂θα
= ŵ,α + θ3dw

,α , g
w
3 = d

w . (21)
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By introducing the microscopic kinematic relations into the Hill-Mandel condition (14),
it can be written as

δaα · nα + δd,α ·mα + δd · n3

.
=

1

A0,m

[∫∫
δaα · nα

mdθ
2dθ1 +

∫∫
δd,α ·mα

mdθ
2dθ1 +

∫∫
δd · n3

mdθ
2dθ1

]

+
1

A0,m

∫∫
[δŵ,α · nα

m + δdw
,α ·mα

m + δdw · n3
m]dθ

2dθ1

(22)

and the following macroscopic quantities (or stress resultants) can be identified

n
α =

1

A0,m

∫∫
n

α
mdθ

2dθ1 with n
α
m =

∫ √
G Pm ·Gαdθ3 =

∫
t
α
0,mdθ

3 ,

m
α =

1

A0,m

∫∫
m

α
mdθ

2dθ1 with m
α
m =

∫ √
G θ3Pm ·Gαdθ3 =

∫
θ3tα0,mdθ

3 ,

n
3 =

1

A0,m

∫∫
n

3
mdθ

2dθ1 with n
3
m =

∫ √
G Pm ·G3dθ3 =

∫
t
3
0,mdθ

3 .

(23)

Due to introduction of periodic boundary conditions with periodic fluctuations w+ = w
−

and antiperiodic tractions t
+ = −t

− on opposite sides of the mid-surface edge curves
∂M+

0 and ∂M−
0 of it follows that the part of the internal power related to the fluctuations

averaged over the RVE disappears as shown in detail in [3].

5 COMPUTATIONAL EXAMPLES

In the second example a prismatic cutout of a knitted textile structure with the dimen-
sions 6.8× 8.0× 4.2 mm is determined as the representative micro sample. To represent
the fibres ideal cylindrical monofilaments are assumed with a fibre diameter of 1.25 mm
as depicted in figure 3. The microscopic mesh is composed of about 7100 elements with

G1

G2

G3

Figure 3: The discretized knitted representative volume element

quadratic interpolation. For this RVE a cyclic loading deformation is considered and the
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macroscopic homogenized stresses are analyzed.For the sake of simplicity, the constitu-
tive behavior of the fibres is modelled linear elastic, defined by the following constitutive
equation

σ =
E

1 + ν

[

ν

1− 2ν
tr(ε)I + ε

]

, (24)

where σ denotes the Cauchy stress, ε the linearized strain, tr(ε) the trace of the strain
tensor, E the Young’s modulus and ν the Poisson’s ratio. The material parameters used
are characteristically for the elastic behavior of polymers, e.g., polyamide with E = 2000
N/mm2 and ν = 0.33.

The boundary of the material volume part of the RVE ∂B0 can be split in three non-
overlapping parts ∂B0,N , ∂B0,D and ∂B0,C with ∂B0,N ∪ ∂B0,D ∪ ∂B0,C = ∂B0 and ∂B0,N ∩
∂B0,D∩∂B0,C = ∅. The body is submitted to a Neumann condition on ∂B0,N , to a Dirichlet
condition on B0,D and an unilateral contact condition with Coulomb law of friction

|tt| = µ tn with tn ≥ 0 , (25)

between the fibre bodies on ∂B0,C , where tt are the tangential tractions and tn are the
tractions normal to the contact surface. The normal contact condition is exactly enforced
by the Lagrange multiplier method in contrast to the tangential contact, which is treated
by a Penalty method. For the relation of the normal and the tangential tractions a friction
coefficient is introduced and no distinction is made between the static and the slip friction
coefficient µ0 = µ. The Neumann boundary is composed by the top and bottom faces
of the micro shell element, where zero traction conditions are applied. This condition is
relevant for shells that are not loaded in the out of plane direction and leaves the thickness
strain undetermined, which is accordingly a result from the micro calculation. The other
two pairs of boundary surfaces are the Dirichlet boundary, where the former introduced
periodic boundary conditions are applied that transfer the macroscopic deformation to
the micro level. Through the periodicity conditions the freedom of distortion of the shell
cross sections is relaxed. The considered knitted textile is now loaded in G1 direction

Figure 4: Plot of the von Mises stress on the current state of the cyclic loaded knitted RVE for 0, 25, 50, 75
and 100% of the cycle time.

by a tensile loading. The entry of the macroscopic deformation gradient is increased
to a maximum value of ϕ1

1 = 1.3. Thereafter the loading is relaxed to the reference

8
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state value. the other deformation modes and curvatures are set to zero. The stretch in
thickness direction stays undetermined, consequently the plane stress assumption holds.
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Figure 6: Plot of the normal force n
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over the cyclic deformation for different friction coefficients.

Therewith a parameter study of the friction coefficient µ is performed. In figure 4 plots
of the von Mises stress on the current state of the cyclic loaded knitted RVE for for different
states of the cycle time are depicted. In figure 5 the hysteretic behavior of a single loading
cycle is depicted by capturing the stress-resultant n1

1 in G1 direction over the normalized
deformation. Although the fibre material is modelled linear elastically, the structure
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shows a nonlinear progressive constitutive behavior. During the cycle irreversible slip
occurs which is indicated by the hysteretic behavior. The overall stiffness of the structure
increases with the increase of the friction coefficient.

In figure 6 the normal stress resultant in G2 direction is depicted, which results from
the restricted transversal contraction. A hysteretic behavior can be observed as well. The
stiffness in G2 direction increases with decreasing friction coefficient, which results from
the structural assembly of the fibres.

6 CONCLUSIONS

In this work a multi-scale homogenization approach for technical textiles has been
introduced. The scale transition between a macroscopic shell and a microscopic three
dimensional heterogeneous structure is developed. On the micro scale contact interaction
between fibres is taken into account that causes nonlinear constitutive behavior. Main
focus was put on the development of the work conjugate quantities like shell specific
deformations and stress resultants. A special format of the Hill-Mandel condition was
developed that allows to derive appropriate boundary conditions for the RVE. An analysis
of the homogenized stress resultants friction coefficients was shown.
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