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Abstract. The combination of plastic and creep analysis formulation are developed in this 
paper. The boundary element method and the finite element method are applied in plates in 
order to do the numerical analysis. This new approach is developed to combine the constitutive 
equation for time hardening creep and the constitutive equation for plasticity, which is based 
on the von Mises criterion and the Prandtl-Reuss flow. The implementation of creep strain in 
the formulation is achieved through domain integrals. The creep phenomenon takes place in the 
domain which is discretized into quadratic quadrilateral continuous and discontinuous cells. 
The creep analysis is applied to metals with a power law creep for the secondary creep stage.   
Results obtained for three models studied are compared to those published in the literature. The 
obtained results are in good agreement and evinced that the Boundary Element Method could 
be a suitable tool to deal with combined nonlinear problems. 

 

1 INTRODUCTION 
For many years the Finite Element Method (FEM) has been used as the main tool to solve 

problems in engineering [1]. The domain of the body is divided into several small subdomains, 
of quite simple shape, called finite elements. Any continuous parameter such as pressure or 
displacement can be approximated to the actual behavior of the solution with trial functions, 
usually polynomials. These functions are uniquely defined in terms of the approximated values 
of the solution at some nodal points, inside or on the boundary of each element. A weighted 
residual technique is the most popular tool to assess this approximation, leading to a symmetric 
system of equations which involves the unknown values of the approximated solution at nodal 
points. Without doubt, this method is computationally efficient and during many years has 
reached such popularity that a very wide range of linear and non-linear engineering problems 
have been solved with this powerful numerical method [2]. 
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In many branches of science and engineering, the Boundary Element Method (BEM) has 
become a powerful tool for the solution of boundary value problems. The integral formulation 
is the foundation of the method and has been used to solve linear and nonlinear problems in 
finite and infinite regions. One of the first successful applications of the BEM to nonlinear 
problems in solid mechanics was focused to elasto-plastic flow for work- hardening materials, 
for both anisotropic and compressible behavior, by Swedlow and Cruse [3]. This was followed 
by the numerical implementation of the boundary-integral technique for planar problems of 
elasticity and elasto-plasticity by Riccardella [4]. Kumar and Mukherjee [5] who presented the 
boundary integral equation analysis of time-dependent inelastic deformation of arbitrarily 
shaped three-dimensional metallic bodies subjected to arbitrary mechanical and thermal loading 
histories. Examples of creep of thick-walled spheres, long thick-walled cylinders and rotating 
discs were also discussed. Another formulation for plasticity based on initial stress is due to 
Banerjee and Mustoe [6]. Mukherjee [7] showed an indepth treatment of problems in nonlinear 
solid mechanics together with several interesting fracture mechanics applications using the 
Boundary Element Method. Also formulations for three-dimensional, two dimensional, axi-
symmetric elastoplasticity as well as viscoplasticity and bending of plates, were covered. Telles 
[8] showed an extensive research on the elastoplasticy, viscoplasticity and creep of structural 
components and civil engineering structures using BEM. His work represented a wide range of 
benchmark problems, where important comparisons between BEM and FEM were done. Time-
dependent solution was obtained by the Euler step procedure highlighting for the selection of 
the time step length. Brebbia et al. [9] also included elastoplasticy, viscoplasticity and wave 
propagation problems using BEM formulations. 

 
On the other hand, nonlinear problems of creep bending of plates by means of the FEM were 

solved [10], where an initial strain approach was adapted to solve the resulting nonlinear 
simultaneous equations, the algorithm developed lead to a time incremental set of equations. 
FEM formulations for plasticity, viscoplasticity, and creep of solids under multiaxial loading 
conditions applied to mechanical components are due to [11, 12]. The solution of 
axisymmetrical thin shells considering the elasto-plastic and creep behavior using FEM is due 
to Xu [13], where the geometric non-linear analysis was also discussed. While elastic-plastic 
creep buckling analysis of circular cylindrical shells subjected to axial compression was 
developed by Hagihara et al. [14]. Three-dimensional elasto-plastic and creep analysis of slabs 
was carried out by [15], where the effects of narrow faces of slabs were emphasized. Finite 
element algorithm for elasto-plastic creep applied to continuum damage that allows large time 
increments is due to Chulya and Walker [16]. Sato et al. [17] studied the stress relaxation in an 
inclusion bearing material at high temperatures using FEM, here the dependence of the steady-
state creep rate on inclusion aspect ratio and volume fraction has been also highlighted. Several 
lead-free solder alloys represented by constitutive plasticity-creep models were incorporated to 
FEM analyses by [18], including the thermal deformation occurred during the process. 
Additionally, bolt joint behavior of cast aluminum alloy by coupling creep and plasticity in 
finite element analysis was done by Chang and Wang [19]. Recently, plastic and creep models 
are been focusing to damage analyses using FEM, some of the most important technical 
contributions are applied to pipes subjected to super-heat and high-pressure conditions [20-22]. 
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Moreover, BEM formulations have been extended to play an important role in the field of 
science and engineering, the elastoplastic boundary value problem in terms of rates was used 
to solve a linear complementary problem endowed with a symmetric matrix, in contrast to the 
traditional boundary element formulation [23]. Non linear fracture mechanics considering an 
improve scheme of the boundary element formulation was developed by Leitao [24]. 
Furthermore, works of Atluri contributed enormously to the comprehension on boundary 
element formulation mainly on the non linear problems [e.g. 25,26]. An important review for 
the application of boundary element method applied to non linear solid mechanics was done by 
Kane [27]. A broad range of time-dependent material non-linearity problems including creep 
and plasticity are due to Chandenduang [28] and Aliabadi [29]. Some researches on creep 
continuum damage problems with plastic effects and crack propagation damage problems using 
BEM are by [30,31]. Creeping analysis with variable temperature in plates applying the 
boundary element method was recently presented by Pineda et al. [32], here BEM showed good 
agreement between BEM results and experimental ones. 

2 COMBINED PLASTICITY AND CREEP 
For the combined plasticity and creep analysis, the creep strain will be included to the total 
strain modeled above for plasticity only. Now the total strain rate consists of the elastic, plastic 
and creep strain rates as follow: 

cpe    , 
 

(1) 

where   is the total strain rate and e , p  and c  are the elastic, plastic and creep strain 
rate, respectively. The constitutive equation for time hardening creep analysis can be presented 
as follows: 
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where B, m and n are the material constants which dependent on the temperature. eq is the 

equivalent stress, ijS is the deviatory stress and t is the time. 
The constitutive equation for plasticity based on von Mises yield criterion and Prandtl-Reuss 
flow rule is 
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where H´ is the plastic hardening modulus and   is the shear modulus. 
It is assumed that the plasticity and creep analysis are separable since elasto-plasticity is a time-
independent process and creep is a time-dependent process. Therefore to combine the plastic 
and creep analysis superposition is used.  
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3 DISPLACEMENT BOUNDARY INTEGRAL FORMULATION 
The Somigliana’s equation rate can be obtained by neglecting the body forces, substituting the 
Dirac delta function property and the fundamental fields (displacements, tractions and stresses) 
into the equilibrium equations and traction definition to give 

  
ddutdtuu a

ijijjijjiji  
.   (4) 

The above equation computes the displacement in any internal point of the domain   once 
that we know the values of the boundary displacements and tractions as well as the anelastic 

deformation  
a
ij . For linear elastic problems

0a
ij , but in this work this deformation will 

be considered. 
 
The equation (4) is for any internal point within the domain   . In order to obtain a solution 
for the points on the boundary it is necessary to apply the definition of the limit to Somigliana’s 
equation when xx  like in elasticity, see Aliabadi [29]. Here x   is any point on the 
boundary   and x  represent any point in the domain    This leads to the following 
boundary Integral representation of the boundary displacements when the initial strain 
approach for the solution of elastoplastic problems is used 

  
ddtudutuc a

jkijkjijjijjij  
. (5) 

On the left hand side of the equation (5), the integral  
   stands for the Cauchy principal 

value integral. In this equation ijc is called the jump term which depends on the geometry 

4 NUMERICAL IMPLEMENTATION 
The numerical expression for the displacement boundary equation (5) can be written as follows:  
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The terms T, U and   in this equation are sub matrices containing the fundamental solution. 
Nel is the number of integration elements,   and   are the shape functions for the boundary 
and the domain respectively. It is possible to represent in matrices every term of the equation 
(36) like: 

n
N

n
udTH

el

 
 











1


 

804



E. Pineda León, J. Zapata Lopez and A. Kryvko. 

 5

                                      

n
N

n
tdUG

el

 
 











1


                           
        (7) 

 
 













el

n

N

n

adW
1

   

These matrices are used to represent a system of equations conformed as follows: 
aWtGuH                                                 (8) 

The matrices H and G are the generalized displacement and tractions elastic contribution and 
the matrix W is the inelastic strain influence over the discretized domain. 
After applying boundary conditions we rearrange the system and collecting all the unknowns 
in the left-hand side of the equation (8) the following expression is obtained: 

aWFYA                                     (9) 

Where the matrix A corresponds to the system of matrices derived from G and H, Y represents 
the vector of the unknowns. F  is the known values vector on the boundary. By taking the A
matrix to the right-hand side of the equation (9) and considering the initial strain approach, this 
can be rearranged to give 

 )(11 aaWAFAY              (10) 

The solution of the equation (10) represents the displacements on the boundary. The same 
procedure, above described, is applied for the internal stress equation.  
 

5 BENCHMARK PROBLEMS FOR COMBINED PLASTICITY AND CREEP 

7.1 Square Plate 
This example corresponds to a square plate (Figure 1), subjected to a uniaxial tensile stress of 
300 MPa in x-direction the square plate has the dimension of 100 mm. It is assumed linear 
hardening in this case. An initial time step of 10−3 is used together with an automatic time step 
control with maximum and minimum creep strain tolerances of 10−4 and 10−5 respectively. This 
test is secondary creep and plane stress problem which is performed for the total time of 1 hour 
for a full load approach. The material properties are as follows: E= 207000 MPa, 3.0 , 

applied stress 300a MPa, yield stress 250y MPa, hardening coefficient 
8267.4223H MPa, while creep parameters are B=3.124x10-14 MPa/h, m=1 (for 

secondary creep) and n=5. 
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Figure 1. Square Plate with internal 9 node cells. 

 
Figure 2. Comparison for creep strain in x direction, with different methods. 

 
The results for creep strains in x direction is shown in Figure 2. The creep strains are calculated 
in the first node of the plate. These results are compared to Chandenduang [28], which includes 
the analytical solutions and the corresponding finite element solutions. The results are in good 
agreement with both the analytical solutions and the finite element solutions. The error 
compared to the finite element solution and analytical solutions is less than 2%. It is found that 
the finite element solutions are very close to the analytical solutions. 
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7.2 Plate with a Circular Hole  
A tensile stress of 12 N/mm2 in the y-direction is applied in a plate with a circular hole. Because 
of the symmetry half of the plate is modeled to do the analysis (Figure 3). The material 

properties are E= 7000 kg/mm2, 2.0 , yield stress 3.24y  kg/mm2, hardening 
coefficient 2.224H  kg/mm2, while creep parameters are B=3.125x10-10 MPa/h, m=1 
(for secondary creep) and n=5. An initial time step of 10−3 is used together with an automatic 
time step control with maximum and minimum creep strain tolerances of 10−3 and 10−4 
respectively. This test is secondary creep and plane stress problem which is performed for the 
total time of 1 hour for a full load approach. 
 
The results for the stress distribution in y-direction are presented in Figure 4. Here x/r is the 
ratio of the distance along the root in the x-direction to the hole radius. These results agree well 
with the finite element solutions from [28]. 
 

 
Figure 3. Plate with a circular hole for tensile stress. 
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Figure 4. Results for stress distribution in y direction of the circular plate. 
 

8. CONCLUSION 
This work presented a formulation to performance a combined plastic and creep analyses in 2 
D plates using the Boundary Elements Method. This new approach is develop to combine the 
constitutive equation for time hardening creep and the constitutive equation for plasticity, which 
is based on the von Mises criterion and the Prandtl-Reuss flow. It has been shown that plasticity 
and creep analysis can be combined and, then, it is possible to state the total strain rate as a 
function of the elastic, plastic and creep strain rates. Results obtained by this approach were 
verified against those published by Chandenduang [28] and finite element results. For the case 
of a square plate and a plate with a circular hole, results match very well. On the other hand, 
for the case of a plate with a semi-circular notch, results show slight differences having an error 
nearly to 3 %. 
 
These results evince the possibility of the BEM´s methods to deal properly with non-linear 
problems, including those that represent combined effects of two rheological behaviors. 
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