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Abstract. Due to strong thermo-mechanical coupling in shape memory alloys (SMAs), heat 
generation/absorption during forward/reverse phase transformation can cause temperature 
variations in the material; influencing its mechanical behaviour. It is usually assumed that this 
coupling is only affected by the loading rate. But, recently studies have shown that the size of the 
structure and the boundary conditions are also important. Therefore, only the definition of quasi-
static or slow loading rate can not guarantee an isothermal process and so further considerations 
need to be made.  

Based on the powerful model, proposed by Lagoudas et al. [1] and later improved for computer 
programming using the return mapping algorithm by Qidwai and Lagoudas [2], this contribution 
presents a three-dimensional thermo-mechanically coupled extension which describes two 
important typical phenomena of material model of SMAs: superelasticity and superplasticity 
(shape memory effect). An algorithm is then proposed to implement the coupled model into a 
finite element code. Performed simulations with different boundary conditions demonstrate that 
the both loading rate and the size dependency can be captured within the proposed framework. 
The results are in good agreement with available data in the literature. 

A finite element method for thermo-mechanical coupling analysis of shape memory alloys 	
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1 INTRODUCTION 
Shape memory alloys (SMAs) are the type of smart materials that have been used in a variety 

of applications from damping devices in civil engineering to micro-actuators in MEMS 
technology. An interesting characteristics of these materials is that they can undergo large 
deformations and recover from it through temperature changes (shape memory effect or super-
plasticity) or stress changes (pseudo-elasticity or super-elasticity). In typical temperature regimes, 
SMAs show two phases with different properties; One is the high temperature phase called 
austenite (A) and the other is the low temperature phase called martensite (M). The phase 
transformation between these two phases forms the basis of the unique behavior of SMAs.

It is well known that phase transformation in SMAs is exothermal during the forward 
transformation (A to M) and endothermal during the reverse transformation (M to A). This means 
that the temperature of SMA can increase/decrease during the forward/reverse transformation. In 
most available studies it has been assumed that this complicated thermo-mechanically coupled 
behavior is only affected by the strain rate or in general, the loading rate. But recently, it has been 
observed experimentally and analytically that the size of the SMA device and the boundary 
conditions (hence the environment that the device is placed in) are also important [3,4].  

Based on the powerful model, proposed by Lagoudas et al. (1996) [1], this contribution 
presents a three-dimensional thermo-mechanically coupled extension, using a staggered 
algorithm in which the original problem is decoupled into two problems. In each step, first the 
mechanical problem is solved isothermally and then the temperature variations due to phase 
transformation are taken into account by solving the heat equation and this iterative procedure 
continues until the problem converges.  

2 CONSTITUTIVE MODEL
In this section, the constitutive model of [2] is discussed briefly. The explicit form of the 

Gibbs free energy is given by: 
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where the material parameters 0,c s S, and 0u are the fourth-order effective compliance 
tensor, the second-order effective thermal expansion tensor, the density, the effective specific
heat, the effective specific entropy at the reference state, and the effective specific internal energy 
at the reference state, respectively. The state variables 0, , ,t T T  are the Cauchy stress, the 
transformation strain, the martensitic volume fraction, the temperature and the reference 
temperature, respectively. The function ( )f   in (1) stands for the transformation hardening due 
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to phase interaction. The effective material properties of the SMA phase is determined using the 
rule of mixtures: 
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where superscripts A and M denote the austenitic and martensitic phases, respectively and
is the difference of a specific property between the two phases. The elastic behavior of each phase 
is assumed to be isotropic and linear. Note that the martensitic volume fraction is an internal 
state variable and needs to be determined at each time increment. After substitution of the Gibbs 
free energy (1) into the first and second laws of thermodynamics, the constitutive relation for the 
total strain is given by: 
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The flow rule of the incremental constitutive model or the relation between the evolution of 
transformation strain tensor and evolution of martensitic volume fraction can be defined as: 
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where H is the material parameter associated with the maximum uniaxial transformation 
strain. ' is the deviatoric stress tensor and t R  is the transformation strain at the reversal point. 
The constitutive relations are numerically solved by an implicit scheme based on the classical 
return mapping plasticity and the Newton-Raphson method. Detail of the implementation can be 
found in [2]. 
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3 THERMOMECHANICAL COUPLING 
In this section the discrete form of heat equation of SMAs is discussed. The fully coupled form 

of the heat equation of SMAs is given by [5]: 
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where  is the thermodynamic force, 
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The first term of the left-hand side of (6) expresses how the temperature changes due to a 
change in the stress, while the second term of the left-hand side is related to the heat capacity. 
The third term of the left-hand side expresses how the temperature of SMA changes due to a 
variation of the martensitic volume fraction. The term on the right-hand side of (6) is related to 
the heat transfer process by the heat flux q .

Using the Fourier’s law of heat conduction, q k T   , and assuming that the thermal 
conductivity, the effective specific heat and the thermal expansion coefficient of the two phases 
are identical (which is true for most of SMAs), the heat equation yields:
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The boundary conditions need to be imposed. In general boundary conditions are of 

convection type,
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where h is the convection coefficient, n is the outgoing perpendicular vector and extT  is the 
external temperature. Temperature distributions at 0t   is given as the initial condition extT T .

After conventional finite element discretization, the heat equation (8) can be compacted to an 
ordinary differential equation, 
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Where the superscript n is the index of the increment, t is the time of each increment, K is

the heat conduction matrix, hK is the heat convection matrix, K is the matrix of latent heat due 
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to stress changes, K is the matrix of latent heat due to martensite volume fraction changes, M is
the heat capacity matrix and F  is an imaginary load vector, 
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where ,i jN N are the finite element shape functions. Ultimately, the temperature at the 
increment 1n is given as: 
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where imK and imF  are imaginary stiffness matrix and force vector, respectively. 

4 NUMERICAL RESULTS 
In the first simulation, the model is assessed by simulating different rates of loading-unloading 

in a pseudo-elasticity experimental problem, previously reported by [6]. Unfortunately, in [6] 
some of the required material parameters of the present model were not reported. Instead, several 
uniaxial tension tests are available with clear results of the stress and strain values at the start and 
completion of transformation, which can be used for calibrating the model [2]. The adopted 
material properties are listed in Table 1. The tests are carried out on a thin strip with 30 mm
length, 2.6 mm width and 0.5 mm thickness, which is fixed at both ends and is elongated till a 
given strain of 0.08  under the displacement control condition. The ambient and initial 
temperatures are equal to 23C . The original experiments were conducted in air, but we provide 
the results of simulations in air and water to discuss the substantial effect of convective boundary 
conditions on the material response. Therefore, a common value of 250 /( )W m K  for the average 
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convection coefficient in air and 2800 /( )W m K in water is chosen [7]. The conduction 
coefficient of 18 /( )W m K  is adopted for Ni 50 Ti 50 [5].  

Table 1: SMA Material Properties

ME 916.5 10 Pa A M  622 10 1 / K

AE 916.5 10 Pa A Mc c  353.2 10 /( )J m K

A M  0.3 0s 6 3 10.375 10 / ( )J m K 

sM 30 C  maxH 0.05

fM 31 C k 18 /( )W m K

sA 4C Airh 250 / ( )W m K

fA 5C Waterh 2800 / ( )W m K

The stress-strain curves at different strain rates of 11.1 10 , 21.1 10 , 31.1 10 and 41.1 10
are presented in Figures 1.a-d, for both the experimental data and numerical simulations. Clearly, 
the performed simulations in air are in excellent agreement with the experimental data, with only 
a difference at the onset of forward phase transformation. This region represents the nucleation 
phenomenon that shows itself in the global response as a stress peak. This phenomenon is a 
consequence of unstable phase transformation and strain softening at local level. Often an SMA 
element is cyclically trained to shake out this initial unstable behavior [8]. In this study, however 
simulations are confined to the stable behavior. At the low strain rate of 41.1 10 , there is an 
excellent agreement with the experimental data. By the of the increase the strain rate to 31.1 10
and further 21.1 10 , the curves tend to deviate from each other during the reverse 
transformation. In addition to the nucleation phenomenon, the high heat exchange between the 
specimen and the grips can force the temperature of the material to decrease faster during the 
unloading, causing higher slopes of the reverse phase transformation plateau. But at the near 
adiabatic condition strain rate of 11.1 10 , the specimen would not have enough time to dissipate 
the latent heat to the environment. Consequently, at this strain rate, slopes of the reverse 
transformation plateau in the experiment and numerical simulation become nearly identical.  

Since at intermediate strain rates such as 3 11.1 10 s  , the amount of heat exchange with the 
environment due to convection is comparable to the amount of latent heat generation/ absorption 
due to the forward/reverse transformation, a slightly nonlinear behavior can be observed in the 
transformation region of stress-strain curves at this strain rate. With increasing or decreasing the 
strain rate, the heat generation/absorption or heat exchange will become dominant. Either way, 
the transformation region of the stress-strain would become nearly linear. Therefore, the material 
behavior of SMAs at different strain rates can be characterized by a competition between the heat 
exchange and internal heat generation or absorption during the phase change [9]. 
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Figure 1: Comparison of the experimental and numerical simulation for the strain rate of (a) 4 11.1 10 s  , (b)  
3 11.1 10 s  , (c) 2 11.1 10 s   and (d) 1 11.1 10 s  .

The effect of convective boundary conditions is also studied in Figures 1.a-d. For this purpose, 
simulations are performed in water which has a higher value of convection coefficient which 
means higher heat exchange with the environment. As shown in Figures 1.a-d, by increasing the 
convection coefficient, the slope of the stress-strain curve decreases and therefore a near-
isothermal material response of SMAs in highly convective environment such as water is 
expected.

Now, all simulations are performed in air. During the forward transformation, the temperature 
of the material increases monotonically with an increasing strain rate, resulting in higher stress 
levels as can be seen in Figure 2. During the reverse transformation, however, increasing the 
strain rate does not necessarily lead to lower stress levels (see lower stress plateaus in Figure 2). 
As it can be seen in Figure 3, the stress level of reverse transformation is decreased with 
increasing the strain rate to approximately the strain rate of 2 11.1 10 s  . However, further 
increase in the strain rate causes the reverse transformation stress level to increase. The reason 
can be attributed to the fact that at these strain rates, the released latent heat does not have enough 
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time to transfer to the environment completely. So, at the start of the reverse transformation, the 
temperature of the material becomes much higher than the ambient temperature, leading to higher 
stress levels. Consequently, the temperature of the material may become higher or lower than or 
even equal to the ambient temperature after the unloading depending on the value of strain rate.

Figure 2: Numerical stress-strain curves for different strain rates 

As mentioned earlier, the size of an SMA device plays an important role on its response. The 
reason can be attributed to the fact that the heat transfer in regions near the boundary is different 
from that in the centerline, which can cause a temperature non-uniformity in the cross section. 
Because of strong thermo-mechanical coupling this non-uniformity causes non-uniform stress 
distribution and therefore non-uniform phase transformation in the cross section. This effect can 
be ignored for devices with small dimensions such as thin wires. But it is quite important for 
larger devices such as the SMA plates used to control buckling or post-buckling in the structural 
control field. For this purpose, numerical simulations are performed at a constant nearly low 
strain rate of 31.1 10 on three thin strips with different length/width ratios of 100, 10 and 2
which are fixed at both ends and are elongated till a given strain of 0.095  under the displacement 
control condition. Problems are solved using a plane-stress finite element model. Temperature is 
fixed at right and left side of the structure and is equal to 23C . Material properties are the same 
as previous example. 
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Figure 3: Numerical temperature variations-load steps for different strain rates 

The global stress- strain responses for different length/width ratios are presented in Figure 4. 
During forward transformation, the material response changes from nearly isothermal to nearly 
adiabatic condition by the change of length/width ratio. This phenomenon can be explained by 
the non-uniformity of temperature which causes the temperature to be much higher, at inner 
regions compared to outer regions near the boundary. As the size of the device increases, the 
temperature of the inner regions increases. Therefore, the overall material response experiences 
higher stress levels. To explain the non-monotonic stress level changes during the reverse 
transformation, a similar discussion such as the one made on Figure 2, can be applied.  

Figure 4: Global stress-strain responses of three SMA devices 
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5 CONCLUSION 
In this contribution, a finite element framework for coupled thermo-mechanical problems in 
SMAs is presented. The present formulation is capable of simulating 3D thermo-mechanically 
coupled response of SMAs in various ambient and boundary conditions. Several numerical 
simulations are performed to understand the underlying concept of thermo-mechanical coupling 
in SMAs and some are compared with available experimental data to evaluate the accuracy of the 
model. It has been observed that the slow strain rate can not guarantee an isothermal process and 
some other variables need to be considered to be ensured of material response with an acceptable 
accuracy.   
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