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Abstract. The problem of the equal-rate mechanochemical wear of an elastic-perfectly
plastic thick-walled spherical shell under internal and external pressure is solved analyt-
ically. The proposed solution allows to assess the time of the initial yielding at the bore
of the shell and the time of fully plastic yielding. The obtained formulas are to be used
for design purposes and as a benchmark solution for numerical analysis.

1 INTRODUCTION

Spherical members are often used in metal structures including the automobile bodies,
aircraft fuselages, ship hulls, pipes etc. Most of these structures are exploited by being
subjected to both mechanical loads and operating environments. This often causes the
process of so-called mechanochemical wear, which is more intensive than the simple super-
position of damages induced by mechanical stresses and electrochemical corrosion taken
separately. There is a great necessity for an accurate prediction of material loss and ra-
tional estimating of the lifetime of structure members under mechanochemical corrosion
conditions. Corrosion can be concentrated locally, or it can extend across a wide area
more or less uniformly corroding the surface. This paper is concerned with equal-rate
mechanochemical corrosion often observed in practice. The theoretical studies in this
area have been conducted by numerous authors. Comprehensive reviews of models and
calculations for structures taking into account uniform corrosive wear have been done e.g.,
in [1]. Among the first works in the field are articles by V.M. Dolinskii concerned with
mechanochemical corrosion of thin-walled structural members [2]. In [3] the lifetime of
loaded spherical shells was assessed under the assumption of the exponential dependence
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of the rate of corrosion on the average normal stress. Some researchers have simulated the
corrosive wear of structure elements using the linear relation between the corrosion rate
and the equivalent stress [1, 2, 4, 5, 6, ...]. This dependance is often observed in experi-
ments [1, 2, 7]. All the related coefficients depend on properties of the “material–medium”
system. The mechanochemical effect of the strain sign [8] can be taken into consideration
by using different observable constants in the relationships for corrosion rates. In the
majority of cases, the problems of mechanochemical corrosion have been studied by nu-
merical methods. There are only few works where analytical solutions have been found.
Most of them are devoted to thin-walled structure members [2, 4]. In such articles [5, 6, 9]
the closed-form solutions for the problems of the equal-rate mechanochemical corrosion of
linearly elastic and elastic-plastic thick-walled cylindrical tubes have been obtained. The
purpose of this work is to present an analytical solution for the problem of the general
mechanochemical corrosion of an ideal elastic-plastic thick-walled spherical shell under
pressure using the linear relation between the corrosion rate and the stress intensity. We
begin in Section 2 by formulating the problem. In Section 3, we derive the closed-form
solutions for the pure elastic stage. In Section 4, we analyze the behavior of corroded
vessel during the partially plastic stage. The time of plastic-zone propagation through
the shell is determined there. Proposed analytical solution is useful for design purposes
and as a benchmark solution for numerical analysis.

2 PROBLEM SPECIFICATION

Consider a concentric thick-walled spherical shell, with inner radius r and outer radius
R changing with time t and loaded with internal pressure pr and external pressure pR of
corrosive environments. The inner and outer radii at the initial time t = 0 are denoted by
r0 and R0, respectively. Since t = 0, the solid is subjected to uniform mechanochemical
wear. The corrosion rates at the internal and external boundaries are described corre-
spondingly by the expressions [1, 2, 7]:

vr =
dr

dt
= ar +mrσi(r), (1)

vR = − dR

dt
= aR +mRσi(R). (2)

Here, ar, aR,mr,mR are observable quantities;

σi(ρ) =
1√
2

√
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2 (3)

is the stress intensity; σ1, σ2, and σ3 are principal stresses; r ≤ ρ ≤ R.
The sphere’s material is modeled as a linear elastic, perfectly plastic material with the

yield stress σy. The condition of yielding for an ideally plastic substance is expressed by
the von Mises-Hencky energy criterion
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σi = σy. (4)

It is necessary to trace the stress intensity with time t and to assess the lifetime of the
vessel without an allowance for buckling.

3 SOLUTION FOR THE PURE ELASTIC STAGE

Let the shell under pressure be at first elastic, i.e., the stress intensity σi throughout
the body is below the yield stress for t ∈ [0, te[, (te > 0). With reference to the spherical
coordinates ρ, θ, φ (with the origin at the center of the sphere), the stress-components
at this stage are expressed by G. Lame’s solution for a pressurized thick-walled spherical
shell [10]. From the spherical symmetry, it follows that, at any point the radial and both
tangential directions are principal axes of stresses: σ1 = σ2 = σθθ = σφφ and σ3 = σρρ.
Therefore, Eq. (3) can be written in the form

σi(ρ) = |σθθ(ρ)− σρρ(ρ)|. (5)

Substituting the Lame solution into Eq. (5), the stress intensity at the inner and outer
surfaces at any t ∈ [0, te[ can be found as

σi(r) =
3∆p

2

η3

η3 − 1
, (6)

σi(R) =
3∆p

2

1

η3 − 1
, (7)

where ∆p = |pr − pR| and

η =
R

r
. (8)

It is evident that the stress intensity is at maximum at the inner surface:

σi(r) = max
r≤ρ≤R

σi(ρ).

Hence, yielding begins at the bore of the sphere, so we must follow the σi(r) to determine
the time te of the end of the pure elastic stage. Let σi(r) be denoted by σi,r.

From Eq. (6), using the denotation σi,r = σi(r), the ratio η is expressed as

η = 3

√
σi,r

σi,r − 3∆p/2
. (9)

Eqs. (6)–(9) are valid until the time te at which the metal at the bore of the sphere
becomes plastic.

The initial conditions to be satisfied at t = 0 are

σ0
i,r = σi(r)

��
t=0

=
3∆p

2

η30
η30 − 1

, η0 =
R0

r0
. (10)

3

731



Yulia G. Pronina

3.1 Case of homogeneous stress

If {r = 0, pR = p} or {r ̸= 0, pr = pR = p }, the stress state in the sphere is homoge-
neous

σρρ ≡ σθθ ≡ σφφ ≡ −p, σi = 0

at any time and irrespective of corrosion. In these cases, the stress intensity σi equals
zero and never reaches the yield point up to complete dissolution. The vessel thickness
h = R− r at any time is then

h = h0 − t (ar + aR),

where h0 = R0 − r0 is the initial thickness of the shell.
After that, the sphere’s lifetime can be determined as the time to complete dissolution:

td =
h0

ar + aR
.

3.2 Case of nonhomogeneous stress

Now consider rather complicated situations when pr ̸= pR. If the corrosion rates
dr

dt
,

dR

dt
depend respectively on the stresses σi(r) and σi(R), and one of them, in its turn,

depends on both the variable sphere radii r and R, it is impossible to obtain simple
explicit functions r(t) and R(t), and thus the expressions for σi(ρ). Let us eliminate the
variables r, R, η, and σi(R) from the system of equations (1), (2), and (6)–(8) and attempt
to derive a relationship between the maximum stress intensity σi,r and the time t.

Eliminating σi(r) and σi(R) from Eqs. (1) and (2), by means of the relationships given
in Eqs. (6) and (7), yields

r =
mRr0 +mrR0 + (mRar −mraR + 3mrmR ∆p/2) t

η mr +mR

. (11)

Differentiating Eq. (6) with respect to t and following transformation by the use of
Eqs. (1), (2) and (8), (9), (11) gives the ordinary differential equation for changing σi,r

in the form

dσi,r

dt
= 2

3
√
(σi,r)2(σi,r − 3∆p/2)2

∆p

(
mr

3
√
σi,r +mR

3

√
σi,r − 3∆p/2

)
×

×
[aR +mR(σi,r − 3∆p/2)] 3

√
σi,r − 3∆p/2 + [ar +mrσi,r] 3

√
σi,r

mRr0 +mrR0 + (mRar −mraR + 3mrmR ∆p/2) t
. (12)

The solution of this equation can be obtained by separating variables and integrating.
The integral of Eq. (12), satisfying the condition (10) is
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t = (mRr0 +mrR0)
exp [(mRar −mraR + 3mrmR ∆p/2) J(σi,r)]− 1

mRar −mraR + 3mrmR ∆p/2
, (13)

where

J(σi,r) =
∆p

2

σi,r∫

σ0
i,r

1

3
√

σ2(σ − 3∆p/2)2
(
mr

3
√
σ +mR

3
√

σ − 3∆p/2
) ×

× dσ

[aR +mR(σ − 3∆p/2)] 3
√

σ − 3∆p/2 + [ar +mrσ] 3
√
σ
.

The above integral can be taken analytically, but its expression is rather cumbersome so
it is not to be represented here. It can be computed numerically with an arbitrarily small
error. For one-sided corrosion, the analytical solution can be simplified.

The solutions of the basic differential equation give us the t-to-σi,r corresponding. Using
Eq. (9), we can then calculate the relation η at any time t.

As noted before, plastic flow begins at the inner face of the sphere. Let te be the time
of the end of elastic stage when σi,r reaches the yield stress σy (if it does), i.e.,

σi,r = σy at t ≥ te.

Let re and Re be the inner and the outer radii corresponding to te, so that

r(te) = re, (14)

R(te) = Re, (15)

σi(ρ) < σy for re < ρ ≤ Re at t = te,

and

ηe = Re/re, he = Re − re.

In other terms, te is defined by the solution (13) with σy for σi,r. Ratio ηe is calculated
by Eq. (9) with σy for σi,r. Then, r

e is obtained by Eq. (11) for t = te and η = ηe, and
finally Re = ηere.

In the case of brittle fracture the lifetime of a shell can be defined as the time at which
the equivalent stress at some point along the vessel reaches the ultimate stress, such as
when σi,r = σs, where σs is the brittle strength. Time to rupture te is then determined
by the solutions (13) with σs for σi,r.

For an elastic-perfectly plastic vessel, the time at which the stress intensity at the inner
surface reaches the yield point does not correspond to the breakdown. This is explained
by the fact that the plastic material is enclosed within the elastic material, which prevents
unrestricted flow. Therefore, durability is to be determined with taking into consideration
the period of the plastic-zone propagation throughout the sphere wall.
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Figure 1: Partially plastic spherical shell

4 SOLUTION FOR THE PARTIALLY PLASTIC STAGE — LIFETIME
ASSESSMENT

As the vessel thickness decreases below he, a zone of yielding moves outward from the
bore through the sphere. According to [11, 12], there is a spherical bounding surface
which divides the inner and plastic material from the outer and still elastic material. In
the material already yielded the stress-components change their values continuously. For
strains in both the elastic and partially plastic sphere, the deformations are assumed to be
negligible with respect to the dimensions of a deforming element. Let ρy = ρy(t), (t ≥ te)
denote the instantaneous value of the radius of the plastic front as shown in Fig. 1. Let
also the pressure of the elastic part on the plastic part be denoted by q = −σρρ(ρy).

4.1 Fully plastic yielding condition

To investigate the progress of the plastic-elastic boundary from the increasing inner
face toward the decreasing outer face of the vessel in the process of corrosion, consider
the state of stress for instantaneous values of r, R, ρy : r < ρy < R, as it was performed
by [11, 12], and others.

Conditions throughout the inner plastic region (r ≤ ρ ≤ ρy) are governed by the von
Mises-Hencky yield condition, expressed by Eq. (4). This equation can, by means of Eqs.
(5), be reduced to

|σθθ − σρρ| = σy.

Substituting the above relationship into the equation of equilibrium of an element of the
sphere

dσρρ

dρ
+ 2

σρρ − σθθ

ρ
= 0,
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one can obtain differential equation

ρ

����
dσρρ

dρ

���� = 2 σy.

The solution of this equation is

|σρρ| = 2 σy ln ρ+ C, (16)

where C is the integration constant. The boundary conditions for the plastic-zone are

σρρ(r) = −pr, σρρ(ρy) = −q.

Entering with these values into Eq. (16), one finds that the following equation holds at
any t

|q − pr| = 2 σy ln
ρy
r
. (17)

For the outer elastic shell (ρy ≤ ρ ≤ R), the expressions for the stresses are obtained
from Eqs. (6)–(7) by putting r = ρy, pr = q, and ∆p = |q − pR|. In particular, the
expression for the stress intensity (6) can, recalling that σi(ρy) = σy, be rewritten in the
form

|q − pR| =
2σy

3

(R/ρy)
3 − 1

(R/ρy)3
. (18)

The addition of Eqs. (17) and (18) gives

|pr − pR| = ∆p =
2σy

3

(
1−

ρ3y
R3

+ 3 ln
ρy
r

)
. (19)

The plastic front continues outward until it coincides with the moving outer surface:
ρy = R. Using R for ρy, Eq. (19) becomes

∆p = 2 σy ln η. (20)

Therefore, full plasticity is reached when the ratio η equals

η = ηf = exp

(
∆p

2σy

)
. (21)

Several solutions have been published for the partially plastic thick-walled sphere under
internal pressure. Eq. (19) and (20) for pR = 0 agree fairly well with the formulas
presented in [11, 12].

7

735



Yulia G. Pronina

4.2 Lifetime assessment

Since the moment t = te, σi(r) = σy and the corrosion rate vr is not accelerated by
stress increase,

vr = vy = ar +mrσy. (22)

The integral of this equation, satisfying the condition (14) is

r = re + vy (t− te). (23)

These equations hold true for t ≥ te.
Consider now the elastic-zone of the sphere ρy ≤ ρ ≤ R. As it was mentioned in Section

4.1, the expressions for the stress intensity are obtained from Eqs. (6), (7) by putting
r = ρy and ∆p = |q − pR|. Comparing Eqs. (6), (7) for r = ρy, with taking σi(ρy) = σy

into account, one can find

σi(R) = σi(ρy)
ρ3y
R3

= σy

ρ3y
R3

. (24)

The rate of corrosion at the outer surface (ρ = R) is defined by Eq. (2). Substituting
Eq. (24) into Eq. (2) gives for t ≥ te

dR

dt
= −

(
aR +mR σy

ρ3y
R3

)
. (25)

The radius ρy is to be determined from Eq. (19) with (23) for r:

ln ρ3y −
ρ3y
R3

=
3∆p

2σy

− 1 + 3 ln [re + vy (t− te)], (26)

where re, vy are defined by Eqs. (14), (22), respectively. For any t > te, the radius ρy can
be found by a trial-and-error procedure.

Thus, for lifetime assessment of the ideal elastic-plastic sphere under pressure it is
necessary to solve the simultaneous equations (25), (26) with “initial” condition (15).
Lifetime is then defined as the time tf at which ρy = R and unhindered plastic flow
begins. Using (8) and (23), complete yielding criterion (21) can be written in the form

R(t) = exp

(
∆p

2σy

)
[re + vy (t− te)] .

The final time t = tf satisfying the required equation is the lifetime of the vessel in the
sense involved.

In the general case, the problem is to be solved numerically. For some situations,
closed-form solutions of the problem have been derived. For a power hardening elastic-
plastic thick-walled spherical shell we can combine this theory with the solution presented
in [13].
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The dependence of the shell’s lifetime on the initial data has been analyzed. It has been
observed that, if the initial stress is close to the yield stress then the time of plastic-zone
propagation throughout the vessel’s wall can be much greater than the length of the pure
elastic stage. Thus, the plastic-zone progress should be taken into account for lifetime
assessment.

5 CONCLUSIONS

- Analytical solution for a pressurized thick-walled spherical shell of an ideal elastic-
plastic material under general mechanochemical corrosion conditions has been found.

- Formulas have been obtained for assessment of the time of the initial yielding at the
bore of the sphere and the time of fully plastic yielding.

- For the case of homogeneous stress, vessel’s lifetime has been determined as the
time to complete dissolution.
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