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Abstract. In this work a beam element based on the finite element method, suitable for the 
inelastic dynamic analysis of structures is presented. The hysteretic beam element proposed 
by Triantafyllou and Koumousis [1] is extended to account for stiffness degradation, strength 
deterioration and pinching phenomena. The behavior of the element is governed by the Bouc-
Wen model of hysteresis while stiffness and strength degradation are based on Baber and 
Wen model [2] and pinching on Foliente’s model [3]. The case of non-symmetrical yielding, 
important for concrete members, is also taken into account.  

The proposed formulation is based on additional hysteretic degrees of freedom which 
herein are considered as hysteretic curvatures and hysteretic axial deformations of the cross-
sections. The elements are assembled using the direct stiffness method to determine the mass 
and viscous damping matrices, as well as the elastic stiffness and the hysteretic matrix of the 
structure. The entire set of governing equations of the structure is solved simultaneously. This 
consists of the linear global equations of motion and the nonlinear local constitutive 
evolutionary equations for every element. The system is converted into a state space form and 
the numerical solution is obtained implementing a variable-order solver based on numerical 
differentiation formulas (NDFs). In this way linearization at the global structural level is 
avoided facilitating considerably the solution. Furthermore, degradation phenomena are easily 
controlled through the model parameters at the element level and not in a macroscopic way 
which requires a computationally demanding bookkeeping mechanism. 

Numerical results are presented that validate the proposed formulation and verify its 
computational efficiency as compared to the standard elastoplastic finite element method and 
existing experimental data. 

1 INTRODUCTION 
Hysteresis is a phenomenon where a system’s response depends not only on its current 

state but also on the history of previous states. It is a nonlinear phenomenon characterized as 
rate-independent. The phenomenon of hysteresis is manifested in various scientific fields 
ranging from Chemistry and Biology to Mechanics. 

For many years the design and analysis of structures was based on the elastic method and 
allowable stresses. Its simplicity and low demand in computational resources offered the basis 
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for design in previous decades. This was followed by the Load Resistant Factor Design 
(LRFD) method also based on elastic analysis. These methods though fail to capture the real 
behavior of a structure especially under dynamic loading. Therefore the need for more refined 
models was evident. Several hysteretic models have been developed in the last decades. These 
can be divided into two main categories, the multi-segment hysteretic models and smooth 
hysteretic models. 

Multi-segmental models, such as bilinear, trilinear and other multi-linear hysteretic models 
preceded the smooth models. These divide the behavior of the element into partial linear 
stages such as the initial elastic, yielding, hardening/softening stages with unloading and 
reloading branches. Examples of such models are those proposed by Clough (1966), Τakeda 
(Takeda et al. 1970) [13] and Park (Park et al. 1987) [14] among others. 

Alternatively, smooth hysteretic models are based on continuous change of stiffness after 
yield and during unloading stages, which can accommodate also degradation phenomena. 
They have the ability to model different types of hysteretic behavior and are based on a 
smooth hysteretic function and a set of user defined parameters. The Bouc-Wen model 
belongs to this category and has been widely used. Extensions of this model are the Baber – 
Noori (1985) [11], Baber – Wen (1981) [2], Foliente (1995) [3] and Sivaselvan-Reinhorn model 
(2000) [12]. 

2 THE BOUC-WEN HYSTERETIC MODEL 
In this work the Bouc-Wen hysteretic model is employed. It is a smooth hysteretic model 

that was first proposed by Bouc (1967) and was later modified by Wen (1980)[4]. Its 
mathematical description for a Single Degree of Freedom (sdof) system is as follows: 
 

   0, (1 ) ( ( ))n

mu cu aKu z p
z Ku

K K z sgn du a K A z sgn zdu 

   
 
     


 


 
(1)  

where m, c, K are the mass, viscous damping and stiffness respectively and α is the ratio of 
the post-yield to the initial elastic stiffness: α=Kpl/Kel.  

According to Ma et al.[5] parameter A was considered to be equal to one, A=1. The signum 
function sgn(x) returns 1, 0, or -1 (depending on whether x is positive, zero, or negative, 
respectively).  

The above formulation leads basically to a non-linear first order differential equation based 
on a set of parameters defined by the user. The hysteretic function z and its derivative with 
respect to time  ̇ are related to the derivative of displacements with respect to time  ̇ (namely 
the velocity), times a non-linear coefficient K, as shown in (1). The Bouc-Wen model can be 
visualized as a mechanical model consisting of a parallel combination of a linear spring with 
stiffness αKel and a nonlinear spring with stiffness (1-α)Kel (Figure 1).  

Considering a single degree of freedom system the restoring force is equal to the sum of 
the elastic force Fel and the hysteretic force Fh: 
 

     (1 ) ( ) ( )y y el h

y y

F F
F t a u t a z t F t F t

u u
      (2)  
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Regarding the bending degrees of freedom (Figure 1) the generalized moment-curvature 
relation can be expressed as: 
 

    (1 ) ( )M t aEI t a EIz t    (3)  

 
Figure 1: Bouc-Wen model expressed in Moment-Curvature terms and its mechanical model. 

The hysteretic function z(t) is governed by the following non-linear first order differential 
equation: 
 

    1
n

y

zz t u sgn zu
z

 
 
   
 
 

 (4)  

The parameter n is a positive number that controls the transition from the elastic to the 
inelastic region. Larger values of n lead to sharper transition and the response approaches the 
bilinear behavior as shown in Figure 2: 

 
Figure 2: Response for different values of n. 
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3 HYSTERETIC BEHAVIOR WITH ASYMMETRIC YIELD MOMENT 
To account for cross sections with asymmetric yield moments Wang and Foliente [6] 

proposed the following relation when considering bending degrees of freedom: 
 

* *
* 1 ( ) 1 ( )(1 )

2 2y y y
sgn M sgn MM a M M      

      
    

 (5)  

By expanding relation (5) for both the bending and axial degrees of freedom the following 
relation is derived: 
 

1 ( ) 1 ( )  
2 2y y y

sgn z sgn zz z z                
 (6)  

where zy can be regarded as either the yield curvature or the yield centerline axial 
deformation. Using equation (6) the model is capable of simulating non symmetrical yielding 
which is important especially for concrete frames. An example of hysteretic loops produced 
with asymmetric yield moment is shown in Figure 3 where the positive yielding moment is 
less than 200 kNm while the negative is over 200 kNm for a frame cross section. 

 
Figure 3: Hysteretic loops with asymmetric yield moment. 

4 HYSTERETIC BEHAVIOR WITH DEGRADATIONS 
Hysteretic loops presented in the previous figures don’t fully describe the real behavior of 

structures subjected to cyclic loading. This is due to the fact that under cyclic loading the 
phenomena of stiffness degradation, strength deterioration and pinching are usually 
manifested. These are due to micro cracks being created and extended in later loading cycles, 
which lead to stiffness and strength loss. Pinching is the sudden loss of stiffness resulting in 
loops that are thinner in middle range than at the ends. It is caused by the slipping of 
reinforcement in reinforced concrete members or the loosening and slipping of joints in 
timber and steel structures. The models proposed by Baber and Wen (1981) [2] are employed 
in this paper for stiffness and strength degradation together with the one by Foliente (1995) [3] 
for pinching. 

In their work Barber and Wen (1981) presented two additional parameters vs and ns to 
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introduced into the differential equation as follows: 
 

  1 ( ( ))
n

s
y s

zz t v sgn z
z n

  
     
  

 (7)  

where vs is the parameter that controls the strength deterioration and ns is the parameter 
controlling stiffness degradation. These two parameters are functions of the hysteretic energy 
dissipation (namely the energy dissipated by the hysteretic spring) and are defined by the 
following relations: 
 

1 ,   0
 

1 ,   0

h
s n n

h
s v v

n c e c
v c e c
  
  

 (8)  

The energy dissipated by the hysteretic spring is defined both for bending and axial 
degrees of freedom respectively as: 
 

(1 ) ( )

(1 ) ( )

h

h
u u

e a EIz t d

e a EAz t de
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 




 (9)  

The dissipated energy is represented by the area inscribed by the hysteretic loops. 
Parameters cn and cv are positive with usual values being in the order of 10-3-10-4. It results 
that for ns=vs=1 the model does not degrade. Figures 4(a) and 4(b) show the effect of varying 
the values of cn and cv respectively on a frame cross section under sinusoidal excitation. 

 
(a)                                                                                      (b) 

Figure 4: Response for different values of cn (a) and cv (b) for sinusoidal excitation. 
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 (10)  

where h is defined as: 
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 (13)  

Regarding the parameters introduced in the above equations (11), (12) and (13): p is a 
constant that controls the rate of initial drop in slope, ζ1,0 is the measure of total slip, ψ0 is a 
parameter that contributes to the amount of pinching, δψ is a constant specified for the desired 
rate of pinching, λ parameter that controls the rate of change of ζ2 as ζ1 changes, q is a 
constant that sets a fraction of zu as the pinching level, ζ1 controls the intensity of pinching or 
magnitude of initial drop in slope (dz/du) and finally ζ2 causes the pinching region to 
spread[5]. The pinching effect is shown in Figure 5.  

 
Figure 5: Response of cross section exhibiting pinching under sinusoidal excitation. 

5 THE DETERIORATING HYSTERETIC BEAM ELEMENT 

5.1 Constitutive relations 
A prismatic 2d hysteretic beam element with start node 1 and end node 2, together with its 

end forces is presented in Figure 6. 

 
Figure 6: Hysteretic beam element 

-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08-200

-150

-100

-50

0

50

100

150

200

Curvature (rad/m)

M
om

en
t (

kN
m

)

 

 

722



Sofianos C., Koumousis V. 
 

 
 

7 

The inelastic moment-curvature relation and axial force-axial centerline strain relation at a 
cross section at a distance s from the start node are expressed as follows: 
    , , (1 ) ( , )

( , ) ( , ) (1 ) ( , )u u u

M s t aEI s t a EIz s t
N s t a EAu s t a EAz s t

  
  

 (14)  

where M is the internal moment, φ is the total curvature, E is Young’s modulus and I is the 
moment of inertia of the cross section, while N is the axial force and A the area of the cross 
section. The hysteretic parameter z is defined as the hysteretic part of the curvature when 
considering the bending degrees of freedom and zu is the hysteretic axial centerline 
deformation. Introducing the evolution equations defined in (10) the following equations are 
obtained: 
 

 

  0
, 0

0 ,

1 ( ( ))

1 ( ( ))

n

s
y s

n

u
u u s u

y s u

zz t h v sgn z
z n

zz t h v sgn z
n

  


  



     
  
     
  

 (15)  

Parameters α and αu are material dependent that can be identified by independent pure 
bending and axial tests respectively.  

Considering Euler-Bernoulli assumptions the curvature is approximated by the following 
relation: 
 2

2

w
s

 



 (16)  

where w is the transverse deflection of the beam. Substituting relation (16) into (14): 
  

 
2

2

, ( , )
( , ), (1 ) ( , )

M s t EI s t
w s ts t a a z s t

s








  



 (17)  

where ( , )s t can be regarded as a measure of an “equivalent generalized curvature”. 
Similarly considering the axial degrees of freedom we obtain: 
  

 
0

0

, ( , )
( , ), (1 ) ( , )u u u

N s t EA s t
u s ts t a a z s t

s








  


 (18)  

where N is the axial force and 0 ( , )s t  is the generalized axial centerline strain in 
accordance with the generalized curvature ( , )s t . 

5.2 Discretization with Finite Element Method 
Using cubic polynomial interpolation functions for the displacement field the following 

expression is derived: 
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 1 2
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0 0 0 0
   

0 0
N Nu

d
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  
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   
 (19)  

Where the nodal displacement vector {d} is defined as: 
 

   1 1 1 2 2 2    Td u w u w   (20)  

while the corresponding shape functions are: 
 2 3

1 2 3 2 3

2 3 2 3 2 3

4 5 62 2 3 2

31 1 2

2 3 2

s s s sN N N
L L L L

s s s s s sN s N N
L LL L L L

     

       
 (21)  

The total curvature φ can be expressed as: 

      3, 4, 5, 6,0     0ss ss ss ss bN N N N d B s d         (22)  

where the subscript ,ss denotes double differentiation with respect to the space variable s, 
which results in: 
 

     2 3 2 2 3 2

6 12 4 6 6 12 2 6( ) 0    0 b
s s s ss d B s d

L LL L L L L L
               

 (23)  

The hysteretic curvature is defined via the following linear shape functions [1]: 
 

7 81 s sN
L L

     (24)  

and can be written as: 
 

   1 1
7 8

2 2

b b
b

b bz

z z
z N N N

z z

          
      

 (25)  

the generalized curvature can therefore be expressed as: 
 

    1
3, 4, 5, 6, 7 8

2

0     0 (1 )
b

ss ss ss ss b

z
a N N N N d a N N

z


           
 (26)  

Similarly the generalized centerline axial deformation is expressed as: 
 

    1
0 1, 2, 9 10

2

0 0      0 0  (1 )
u

s s u

z
a N N d a N N

z


           
 (27)  

where the corresponding shape functions are[1]: 

 
9 10

1 1N N
L L

    (28)  

5.3 Constitutive matrix relation 
By means of the principle of virtual work the following relation is obtained [1]: 
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    

 

(29)  

Relation (29) includes the elastic and hysteretic behavior of the element, where the axial 
forces are uncoupled with bending moments and shearing forces in both the elastic and 
hysteretic part. Additionally it can be written in a more compact form as: 

         f 1a k d a h z    (30)  

where the first term represents an elastic behavior based on the reduced, plastic stiffness 
and the second term adds the hysteretic part. It is evident that in the case where a=au=1 
relation (29) reduces to the classical stiffness matrix of the elastic beam and the hysteretic 
term is wiped out. In relation (30) [k] is the element stiffness matrix and [h] is the element 
hysteretic matrix. These basic matrices are defined at elemental level, are formed once in the 
beginning of the analysis and remain unchanged thereafter. 

5.4 Transformation to the global system 
The end displacements of the element as well as the end forces can be expressed in the 

global system using the following relations: 
     

    f
d u

F

 

 
 (31)  

where [Λ] is the classic 2D transformation matrix and θ is the right hand angle between the 
global X axis and the local x axis of the element (Figure 6). Consequently equation (30) can 
be written for both axial and bending components as: 
 

             1T TF a k u a h z       (32)  

5.5 Evolution equations 
The nonlinear behavior of the element is governed by the Bouc-Wen evolution equations 

(10) including stiffness, strength degradation and pinching. Equations (15) using (22) 
transformed to the global system (32) can be expressed in terms of nodal velocities as: 
 

                ,
, 1 , ( )

n

b s b b
y s

z s t u
z s t h v sgn z s t B s u B s

z n
 

 
        
 

 (33)  

 

                
,

,

,
, 1 , ( )

n

u
u u s u u u u

y s u

s
z s t u

z s t h v sgn z s t B u B s
z n

 
 
        
 

 (34)  
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5.6 State space formulation 
The equation of motion for a frame structure with nf degrees of freedom and nel elements 

can be established as follows: 
 

                 ( )s s s sM U C U K U H Z P t     (35)  

where [M]s is the mass matrix, [C]s is the viscous damping matrix, [K]s is the stiffness 
matrix, containing only the elastic part of relation (30), [H]s is the hysteretic matrix of the 
structure and {P(t)} is the (nf  x1) vector of external forces. The mass, viscous damping and 
the stiffness matrices are square symmetric with dimensions (nf  x nf) while [H]s is orthogonal 
(nf  x 4nel). These matrices are assembled following the direct stiffness method, Bathe (2007) 

[7], while the viscous damping matrix in general may be of the form of a Rayleigh damping 
matrix, Chopra (2006) [8]. The unknown vectors {U} and {Z}, dictate the structure of the 
hysteretic matrix. The hysteretic behavior is defined at the element level in terms of hysteretic 
curvatures and centerline axial deformations from relations (33) and (34). The hysteretic 
matrix of each element, expressed in the global system, is appended to form the 
corresponding hysteretic matrix of the structure. Equations (35), together with evolution 
equations (33), (34), fully describe the response of the system to a given external force and 
initial conditions.  

To solve the dynamic equilibrium equations presented in (35), the system can be 
transformed into a set of first order differential equations in state space form. Introducing the 
vector of nodal velocities { u } as auxiliary unknown vector we can write the system in a non-
autonomous state-space form as follows: 
 

      ( )x G x P t   (36)  

where the vector {x} is defined as: 
 

       TT T Tx U U Z    
 (37)  

and the operator G is: 
 

              
    

1 1 1
0 0

0 , 0

I
G x M K M C M H

Y U Z

  

 
 

  
 
 

 (38)  

The operator G is a state dependent operator since Y contains the evolution equations of 
every element: 
 

                ( )
, 1 sgn ( )

n i
i i ji

j s j j j
y s

z t u
Y u z h v z t B u B

z n
 

 
     
 
 

 (39)  

The above system, for specific dynamic loading and given initial conditions on {x}, is 
integrated using a variable-order solver based on the numerical differentiation formulas 
(NDFs) i.e. a multistep solver. 
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6 NUMERICAL RESULTS 
To verify the proposed model effectiveness in simulating the hysteretic behaviour of 

structural members its results are compared to existing experimental data. The material 
properties, the geometry of the specimen and a discussion of the experimental results are 
available in the study of T.Ninakawa and K.Sakino[9]. For the simulation one element was 
used and the results are shown in Figure 7. The parameters used for the model are  =    , 
 = =   ,  = ,   =     ,   =     , ζ   =   ,  = , ψ =      , δψ=      ,      ,  =    . 

 
Figure 7: Analytical and experimental response of specimen CCA-6: Moment-Curvature diagrams  

In the next example a typical 6 story frame (the Woodland Hills hospital in California) is 
subjected to the El Centro accelerogram, scaled up by a factor of 2. The geometry of the 
frame and its properties can be found in the work of Wong & Yang (1999)[10]. The results 
obtained for the left end section of the beam #25 of the first floor for the analysis without 
degradations are shown in Figure 8(a) while the results with degradations are shown in Figure 
8(b). 

 
(a)                                                                              (b) 

Figure 8: Moment-Curvature diagram for the end section of beam #25 without degradations (a) and with 
degradations(b). 
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CONCLUDING REMARKS 
A wide range of hysteretic behavior can be modeled by the proper control of the Bouc-

Wen model parameters and the degradation parameters. The beam element is formulated with 
four new degrees of freedom accounting for the hysteretic part of the curvature and axial 
centerline deformation. The entire problem is casted into two sets of equations namely the 
linear equations of motion and the nonlinear evolution equations, which are solved 
simultaneously by implementing a numerical differentiation scheme. Comparisons between 
the results and experimental data show good correlation demonstrating the effectiveness of 
the proposed model to simulate degradation effects. 
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