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Abstract. Distributed plasticity beam column elements are able to efficiently track hysteretic 

nonlinear behavior of structures under static or dynamic loading. This is accomplished by a 

refined discretization of the element in control sections along its length, each one being 

represented by a set of longitudinal fibers. The global response of the element results from a 

two level integration. In the first the non-linear stress of every fiber is integrated across the 

cross-sectional area to derive the constitutive relation of the control section and then 

integration along the element’s length is proved sufficient to yield the current state of the 

element.  

This work focuses on the formulation of both displacement and force based beam-column 

elements where the internal variables that describe the element’s state, namely fiber stresses 

or strains are expressed in rate form, herein using Bouc-Wen hysteretic models. Both 

formulations are derived from a unified approach based on the two field Hellinger-Reissner 

potential which highlights their differences. For simplicity reasons the methodology is applied 

on plane frame elements based on Euler–Bernoulli kinematics.  

The main advantage of expressing the evolution of each internal variable through a 

differential equation offers the ability to solve the entire set simultaneously with the global 

structure’s equations of motion in state space form. Accurate solutions are derived from 

proper implementation of an efficient numerical ODE solver. 
 

 

1 INTRODUCTION 

Distributed plasticity models monitor plasticity in multiple sections along the element’s 

length. These control sections are described by constitutive relations of classical plasticity in 

terms of stress resultants, or they are subdivided in longitudinal fibers representing a uniaxial 

stress-strain law [1]. The first elements of this category were based on the classical finite 

elements method (Bathe [2]) where the displacement field along the element is expressed with 

cubic polynomials. This methodology describes only constant axial force and linear curvature, 

which is not accurate in the plastic region where curvature is distributed non-linearly along 

the element. To address this problem, force based models have been proposed that interpolate 

nodal forces inside the element maintaining equilibrium. The thorough investigation of these 

models, in the general framework of the direct stiffness method following a standard non-

linear finite element procedure, was performed by Spacone et al. [1]. They suggested an 
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iterative procedure under constant displacements for the element state determination 

establishing compatibility. Later, Neuenhofer and Filippou [3] showed that elemental 

iterations are not necessary as the element stresses gradually converge while the whole 

structure is in equilibrium. Although these formulations have been proved very efficient 

algorithmically, they were not established variationally as notified by Hjelmstad and 

Taciroglu [4]. In their paper force based formulations are proposed based on mixed 

variational approaches. In the same context Alemdar and White [5] review classical 

displacement and force based formulation along with the mixed ones and highlight the 

advantages of the later. Hence, mixed methods seem to dominate recent research for the 

formulation of numerical strategies for the nonlinear beam problem as they are proved more 

efficient considering also the works of Taylor et al. [6] and Saritas and Soydas [7]. 

In all previous works plasticity is incorporated in its classical form by linearization of the 

resulting equations. On the other hand Simeonov et al. [8] have developed a force based 

element where material constitutive relations are considered in rate form and they are solved 

simultaneously in state space form with the global differential equations of motion. Jafari et 

al. [9] have extended this formulation in large displacement analysis. In addition Triantafyllou 

and Koumousis [10] proposed a generic finite element procedure where material nonlinearity 

is treated at the elemental level through proper implementation of the Bouc-Wen hysteretic 

rule. Herein, distributed plasticity beam formulations for both displacement and force based 

approach in state space form are developed where constitutive equations are expressed in rate 

form.  

2 EULER-BERNOULLI BEAM THEORY 

The basic degrees of freedom of a beam after excluding rigid body motions are obvious in 

Figure 1 and consist of deformations    1 2, ,
T

q u θ θ  and their energy counterpart forces

   1 2, ,
T

Q N M M . 

 

Figure 1: Local degrees of freedom of the beam element     

In order to fully describe the current state of a deformable beam, in general knowledge of 

three fields is required, namely the displacement field u(x,y), the deformation field ε(x,y) and 

the stress field σ(x,y). 

From compatibility and equilibrium relations that connect displacements and deformations 

the following relations are obtained: 
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        
1 0 0 1 0 0

1 1,    , 0 1 0 0

1 10 0 0 1

q T q Q T Q T
L L

L L

  
      
 
  

  (1) 

where q, {Q} are the displacements and forces at the original system and T is the 

equilibrium transformation matrix. According to Euler-Bernoulli beam theory kinematics, the 

displacement field is defined by the assumption that plane sections before deformation remain 

plane and normal to the elastic line after deformation, thus for a beam problem we have: 

 
1 2

( )
( , ) ( ) ( ) ( )    ,   ( , ) ( )

v x
u x y u x y θ x u x y u x y v x

x


      


   (2) 

The same assumption is also valid for the deformation field. Hence, the axial strains at any 

point of the beam are given by the relation:  

 1 0( , ) ( ) ( )ε x y ε x y φ x     (3) 

where, the deformation field  0( ) ( ), ( )
T

d x ε x φ x consists of the axial centerline 

deformation ε0(x) and curvature φ(x). Stress field can be fully derived from the deformation 

field through constitutive relations σ(x,y)=f(ε(x,y)). However, the opposite is not unique, as 

the deformation field can be expressed both by the stress or displacement field. Euler-

Bernoulli beam theory considers only the effects of axial stress σ1, thus by applying 

equilibrium conditions in a cross section, the stress resultants are calculated as follows: 

 
1 1( ) ( , )    ,    ( ) ( , )

A A

N x σ x y dA M x y σ x y dA       (4) 

The same relations can be casted in matrix form as: 

   1( ) 1 ( , )
T

A

P x y σ x y dA     (5) 

where   ( ) , ( )
T

P x N x M x  

4 CONSTITUTIVE BEHAVIOUR 

Based on the endochronic theory of plasticity [11] the Bouc-Wen model [12] provides a 

robust method to describe inelastic hysteretic behavior of materials. The advantage of the 

model is based on its ability to incorporate the whole inelastic loading path, namely elastic 

loading, yielding, kinematic hardening and unloading, in a single differential equation. 

The uniaxial state of every nonlinear material can be defined when internal variables 

expressed by evolution equations are considered along with the generalized state variables of 

stress and strain. Considering the Bouc-Wen model, stress can be decomposed in two parts, a 

reduced elastic part and a hysteretic one.  

 (1 )el hσ σ σ α E ε α E z           (6) 
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where α is the post yield stiffness to elastic stiffness ratio and z is a hysteretic deformation 

parameter which serves as an internal variable, whose evolution with time follows the 

nonlinear differential equation: 

 1 2 1 2( , ) (1 ) , ,     sgn( )

n

y

z
z z ε h h ε h h β γ z ε

ε
             (7) 

where h1,h2 are Heaviside type of functions that control the hysteretic behavior of the 

material and dot (·) denotes differentiation with respect of time. More specifically, h1 can be 

regarded as the uniaxial flow rule that controls yielding, while h2 controls loading-unloading 

situations. Parameter n controls the smoothness of the transition from the elastic to the 

inelastic regime, while the terms β and γ are factors that affect the shape of the hysteresis 

loop.  

An equivalent model was proposed by Sivaselvan and Reinhorn [13] by considering both 

deformation and stress as independent variables of the model. By substituting equation (7) in 

the rate form of equation (6) we can obtain: 

 
1 2 tan 1 21 ( 1) , ,     sgn( )

n
h

h

h

y

σ
σ α h h E ε E ε h h β γ σ ε

σ
                     (8) 

where, hσ σ α E ε     and (1 )h

y yσ a σ    are the hysteretic part of the total stress and 

the hysteretic part of the yield stress respectively. 

Also from equation (8) the tangent material modulus is given by the equation: 

 
tan 1 21 ( 1)E α h h E          (9) 

By combining equations (3), (4) and (8), cross sectional tangent stiffness can be derived as: 

    tan( ) 1 1 
T

A

k x y E y dA       (10) 

Therefore, by eliminating rates from equation (8) the standard constitutive material law 

results (σ1=Etan·ε0) and substituting this equation along with equations (3) and (10) in (5) 

results in the cross sectional constitutive equation: 

 ( ) ( ) ( )P x k x d x    (11) 

Also, the cross sectional flexibility matrix can be calculated from the inverse of the 

stiffness matrix: 

 1( ) ( )f x k x
   (12) 

It turns out that the dependence of the classical Bouc-Wen model only on the deformation 

field makes it appropriate for a displacement based beam formulation, while the dependence 

of the Sivaselvan-Reinhorn model on both deformation and stress fields renders it appropriate 

for a force-based beam formulation. 
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5 VARIATIONAL FORMULATION 

5.1 Two field approach 

Apart from the two classical principles of virtual displacements and virtual forces more 

generalized ones exist that use more than one fields as independent. Herein, the mixed 

Hellinger-Reissner variational principle [14] which takes into account both the displacement 

and the stress fields as independent is employed. This hybrid method is used to derive in a 

unified way the element’s state for the case of displacement and force based methods. 

For an elastic material with stress σ1 and strain ε1 the Hellinger-Reissner functional can be 

stated in terms of the two independent variables of stress σ1 and displacement u1 as follows: 

 1

1 1 1 1

1

Π ( , ) ( ) Π ( ) 
HR ext

V

uσ u σ χ σ dV u
x

 
    

 
   (13) 

Where χ(σ
1
) is the complementary energy density function, Πext(u) is the functional of 

external loading and integration is performed in the undeformed volume V of the element. The 

above functional can be written also in terms of stress resultants {P} as described in [15]. 

      2

2

( )

Π ( , ) ( ) ( ) ( )
( )

T

HR

L

u x

x
P u N x M x χ P dx Q q

v x

x

   
           

    

   (14) 

where L is the undeformed length of the element and N(x), M(x) are given from equations 

(4). 

In order to calculate the state of the element, stationarity of the Hellinger-Reissner 

functional is imposed by setting its first variation with respect to the two independent fields 

equal to zero. 

 Π Π Π 0HR u HR P HRδ δ δ     (15) 

where δu is the variation with respect to the displacement field and δP is the variation with 

respect to the stress field expressed in stress resultant terms. Each of the two added terms in 

equation (15) is calculated as follows: 

      2

2

( )

Π ( ) 0
( )

T T

u HR

L

δu x

x
δ P x dx Q δ q

δv x

x

   
           

    

   (16) 

      2 2

2 2

( ) ( )

( ( ))Π ( )   ( ) ( ) 0
( ) ( )( )

T T

P HR

L L

u x u x

x xχ P xδ δ P x dx δ P x d x dx
v x v xP x

x x

        
                             
             

    (17) 

where in the last equation the derivative of the complementary energy with respect to the 
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stress resultants is equal to the strains  0 ( ), ( )
T

d ε x φ x namely the axial deformation and 

curvature at the cross sectional centroid. Equations (16) and (17) fully describe the state of an 

elastic element, while with the additional consideration of proper constitutive equations and 

evolution equations of internal variables the state of the nonlinear element can also be 

defined. In particular, equation (16) corresponds to the principle of virtual work or principle 

of virtual displacements and is the weak form of equilibrium equations, while equation (17) 

corresponds to the principle of virtual complementary work or principle of virtual forces 

which is the weak form of the compatibility equations. 

5.2 Displacement based derivation 

In displacement based or stiffness based formulation the only independent field is the 

displacement field. Deformations are defined with proper differentiations of displacements 

and stresses are calculated using the constitutive laws. Therefore the quantity inside the 

bracket in equation (17) is always equal to zero. This means that in displacement based 

formulation compatibility equations are valid in their strong form as they are satisfied 

pointwise and not in an average sense. 

To proceed with the formulation, the displacement field must be defined in advance. This 

is accomplished in classical FEM with the implementation of cubic polynomial shape 

functions [N] that relates internal with nodal displacements (u(x)=N(x)·q). This is the source 

of inaccuracies of the formulation as the outcome displacement field loses accuracy in the 

nonlinear case, although it is exact in the linear one. Deformations are defined as derivatives 

of displacements which leads to the following relation: 

       0
2

2

( )

(x)
( ) ( )

( )(x)

u x

xε
d x N x q a x q

v xφ
x

 
                
  

  (18) 

where α(x) are shape functions that relate cross sectional deformations with nodal 

displacements. These shape functions account for constant distribution of axial deformation 

along the element’s length and linear distribution of curvature. Equation (16) when 

considering equation (18) can be written as follows: 

        ( ) ( )
T T

L

P x δ d x dx Q δ q     (19) 

By substituting equations (11) and (18) in the above relation and after performing some 

algebraic calculations, we end to the basic equations that determine the state of the element, 

namely its current stiffness and nodal forces. The local stiffness matrix of the element is 

determined through integration of cross sectional stiffness over its length as: 

 ( ) ( ) ( )T

L

K α x k x a x dx     (20) 

Also, the vector of element’s nodal forces is derived through integration of cross sectional 

forces over its length as: 

    ( ) ( )T

L

Q α x P x dx    (21) 
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It should be noted that equilibrium equation (19) is not satisfied for every admissible 

displacement field that satisfies essential boundary conditions, but is only satisfied for the 

applied displacement field described by the cubic polynomials. For this reason equilibrium 

equations are not satisfied in a strong form but only in an average sense.  

5.3 Force based derivation 

In order to satisfy equilibrium in strong form a force based or flexibility method is 

required. Equation (19) is valid for all admissible variations of δu that satisfy the essential 

boundary conditions (0) (0) ( ) 0δu δv δv L   . Integrating by parts and considering the 

essential boundary conditions, the classical equilibrium equations, in the absence of body 

forces, are derived: 

 
2

2

( )( )
0,   0

d M xdN x

dx dx
    (22) 

By integrating these equations and applying the natural boundary conditions 

1 2( ) ,  (0) ,  ( )N L N M M M L M     we end to the basic equation that interpolates nodal 

forces to cross sectional forces: 

 
1 0 0

( ) ( ) ( )    ( )
0 1

P x b x Q x Q xx x

L L

 
    
 
 

  (23) 

The displacement field in this formulation is arbitrary as no interpolation functions were 

adopted, which establishes the strong form formulation of the equilibrium equations.  

Equation (23) is then substituted into the weak form of the compatibility equation (17) and 

the following relation is derived: 

        ( ) ( )
T

L

δ P x d x dx δ Q q     (24) 

Substituting again equation (23) in the above equation implies the following result: 

    ( ) ( )T

L

q b x d x dx    (25) 

which means that nodal displacements can be calculated from cross sectional deformations. 

If the basic relation    ( ) ( ) ( )d x f x P x   (where f(x) is the cross sectional flexibility) is 

considered, element’s flexibility matrix is derived as: 

 ( ) ( ) ( ) ( )T

L

F x b x f x b x dx     (26) 

The last two equations are sufficient to determine the state of the element in the 

elastoplastic case if they are combined with the nonlinear evolution equations of the cross 

sectional stresses and flexibility. 
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6 NUMERICAL IMPLEMENTATION 

6.1 Discretization aspects 

All the presented integrals should be calculated numerically, which means that the 

integrants should be evaluated at discrete points. To calculate the integrals over the length of 

the element Gauss-Lobatto integration is chosen as the more appropriate one, as it includes 

both element ends, where plastic deformations concentrate, as quadrature points. On the other 

hand integrals over the cross-section are evaluated by discretizing cross sections in 

longitudinal fibers, each one representing the respective material properties and by adding 

each fiber’s contribution.  

6.2 Displacement based formulation 

In the displacement based formulation the primary unknowns are the nodal displacements 

which also define the internal displacement field through shape function interpolation. In the 

nonlinear case the internal Bouc-Wen hysteretic variables z should be evaluated at the 

discretization points. Hence, the total unknowns of the element are (6+NGL·Nfib), where NGL 

are the Gauss-Lobatto quadrature points and Nfib are the number of cross-sectional fibers. 

By substituting equation (6) in equation (5) the expression of the cross sectional forces is 

derived: 

                   =  
T T

el hys el hysP l C l d l C z k d k z                          (27) 

where [l] is the matrix with fibers coordinates, [Cel] and [Chys] are diagonal matrices of 

(Nfib, Nfib) dimension that include αi·Ei·Ai and (1-αi)·Ei·Ai terms respectively and {z} is 

hysteretic variables vector of (Nfib,1) dimension. In the above equation the first part is the 

reduced elastic contribution and the second part is the hysteretic one. The elastic part is 

treated normally which ends to the derivation of the reduced elastic matrix of the element Kel. 

The nodal hysteretic forces are calculated using equation (21) in matrix form using Gauss-

Lobatto integration as follows. 

      
 

 

1 1

1
GL

GL
GL

hys

hys N

Nhys N

k z

Q GL GL

zk

        
             

         

  
  (28) 

where    (1
2 2

T

i ii
L LGL w a ξ        is the Gauss-Lobatto addition term concerning i 

cross section with wi  and ξi  being quadrature’s weight and position respectively. After 

incorporating rigid body motion and transforming to global system, the global element’s 

hysteretic forces are derived. Assembling every element’s contribution forms the global 

equation of the hysteretic nodal forces of a structure with Nel  number of elements and Ndof  

degrees of freedom. 

    H H SS S
F K z      (29) 
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where 
H S

K   of dimension (Ndof, Nel·NGL·Nfib) is the global hysteretic matrix of the 

structure and  
S

z  is the total vector of hysteretic variables with dimension (Nel·NGL·Nfib, 1) 

Global dynamic equilibrium leads to the global dynamic equations of motion in the 

following form: 

             ( )el HS S S SS S S S
M u C u K u K z P t                 (30) 

These equations along with the Bouc-Wen evolution equations are solved in state space 

form by adding the velocities as additional unknown vector. Consequently, the following 1st 

order ODE system is formed. 

  
 
 
 

 
          

 

1
( )

1 sgn( ) ,  1...

SS

el HS S S SS S S S

n
S

i i i el GL fib

y

uu

x u M C u K u K z P t

z
z β γ z ε ε i N N N
ε



 
 
                           

   
     

          
  
  



  



 

  (31) 

The main advantage of the displacement based formulation is that all matrices are formed 

at the beginning and remain constant throughout the numerical procedure. In every time step 

only fiber rate strains have to be calculated through nodal velocities that are inserted into the 

Bouc-Wen equations.  

6.3 Force based numerical formulation 

In force based approach the internal stress field of the element is considered unknown and 

should be evaluated through the solution procedure. Although cross sectional forces are 

calculated from nodal forces through equilibrium considerations, cross sectional stresses at 

fiber points are difficult to evaluate as there isn’t a unique stress field that satisfies cross 

sectional equilibrium. This fact leads to the introduction of all fiber stresses in the beam 

element’s unknown vector. Also, introducing cross sectional deformations in the unknown 

vector resolves the lack of interpolation of the deformation field through nodal displacements. 

Fiber uniaxial strains are then easily calculated from cross sectional deformations as linear 

strain distribution is considered always valid. Hence, the total unknowns of the element are 

(6+NGL·Nfib+NGL·2) and the global equation of motion is written in the form: 

          tan ( )
S S SS S S

M u C u K u P t           (32) 

where [Ktan]S
 is the whole structure’s tangent global stiffness matrix. The ODE system is: 

  

 
 

 
 

 
        

       
   

1

tan

1

tan

( )

S
S

S SS SS S

S SS S S

S SS S

uu

M C u K u P tu
x

d f b F q

σ E l d





  
  
                 

     
   
          






 



  (33) 
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where matrix [E
tan

]
S
 is a block diagonal matrix (Nel·NGL·NNfib, Nel·NGL·NNfib) that contains 

all fiber’s material tangent modulus. Every fiber’s tangent modulus can be calculated from 

equation (9). The cross sectional flexibility matrix is the inverse of the tangent stiffness matrix 

derived in equation (10). Then the stiffness of the element calculated by inverting the 

flexibility stiffness matrix (equation (26)) which finally is assembled to form the global 

stiffness matrix [K
tan

]
S
 of the structure. 

Vector {d}
S
 is a block vector (2·Nel·NGL, 1) that contains all cross sectional deformations of 

the structure. Vector {q}
S
 is a block vector with dimension (3·Nel, 1) that includes every 

element’s nodal velocities as they are extracted from the global structure’s nodal velocities 

vector {u}
S
. Matrix [ f ]

S
 is a block diagonal matrix (2·Nel·NGL, 2·Nel·NGL) that contains current 

flexibility matrices of all control sections. Matrix [ b ]
S
 is a block diagonal matrix (2·Nel·NGL, 

3·Nel) that contains equilibrium interpolation matrices evaluated at every cross section of all 

elements. Finally, Matrix [F]
S

-1
 is a block diagonal matrix (3·Nel, 3·Nel) containing the stiffness 

matrices of all structure’s elements. 

Vector {σ}
S
 is a block vector (Nel·NGL·NNfib, 1) that contains all fiber stresses of the 

structure and matrix [ l]
S
 is a block diagonal matrix (Nel·NGL·NNfib, 2·Nel·NGL) with fiber cross 

sectional coordinates. 

7 NUMERICAL EXAMPLE 

To highlight the efficiency of the proposed formulations, a simple, one bay steel frame is 

analyzed under static and dynamic loading. The span and height of the frame is 6m and 3m 

respectively and both columns and beam have a standard IPE300 cross section. The  

constitutive law of steel is considered bilinear with 2% post-yield to pre-yield stiffness ratio 

and yield stress σy=235 MPa .To simulate this behavior with the Bouc-Wen model the 

following parameters were selected: n=25, β=γ=0.5. 

 

Figure 2: Comparison of both displacement and force based formulations.  

First, a static nonlinear analysis is carried out for both formulations and nonlinear base 

shear- tip displacement curves are presented in Figure 2. The results are compared against 

those of Opensees Software [16] using the classical displacement and force based 

formulations with the iterative Newton –Raphson procedures. As it can be observed the 

proposed formulations are able to track the exact nonlinear behavior of the steel frame as they 
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yield nearly identical results with the well documented Opensees software. Difference 

between force and displacement based formulation is due to the inefficiency of the latter to 

satisfy equilibrium in its strong form. This error which originates from the enforcement of the 

displacement field can be diminished with h-refinement of the elements by adding multiple 

internal nodes. 

The same frame is also analyzed dynamically under a scaled seismic excitation.  

  

Figure 3: Input acceleration time history. 

 

Seismostruct software [17] is utilized for the comparison. After performing the analysis the 

following tip displacement time histories are derived for both formulations. The results of the 

proposed model are in full agreement with the Seismostruct software.  

  

Figure 4: Tip displacement time histories of the displacement and force based models. 

The fact that the force based models present greater displacements proves the results of 

Figure 2 as their ultimate strength seems to be smaller comparing to the displacement based 

models. 

8 CONCLUSIONS 

- Distributed plasticity beam models have been proposed where constitutive behavior 

is incorporated in rate form by using hysteretic models of Bouc-Wen Type. 

- Displacement and force based formulations were derived from the Hellinger-Reissner 

variational principle and their pros and cons were highlighted. 

- For both formulations a system of equations for solving the nonlinear problem 

simultaneously were developed in state space form.  

- The main advantage of the proposed methodology is that avoids the need to linearize 

equations following a predictor- corrector scheme, as the system of equations are 

solved in differential form. 

- The accuracy and efficiency of the proposed methodology is verified numerically in 

both static and transient analysis. 
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