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Abstract 

The design of phase boundaries has now become a consolidated strategy to improve the functional 

properties of piezoelectric oxides because of the unique properties that may be obtained in their 

vicinity. In particular, polymorphic phase boundaries (PPBs) have attracted significant interest in 

recent years because they represent a significant breakthrough in terms of enhanced piezoelectric 

activity of lead-free piezoelectric oxides. PPBs are temperature-driven phase transitions where both 

intrinsic and extrinsic contributions maximize, thereby enhancing the macroscopic properties of 

piezoelectric materials. This tutorial discusses potassium-sodium-niobate–based systems as model 

materials to reveal some of the most relevant advances in the design of PPBs through compositional 

modifications. We focus on how PPBs can be modulated by engineered doping and also discuss the 

direct relation between PPBs and the enhancement of piezoelectric activity. Finally, we briefly 

describe the main experimental techniques for detecting PPBs.  
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I. INTRODUCTION 

Piezoelectric oxides, mostly perovskite-structure materials (general formula, ABO3), exhibit 

notable capacity to convert electrical energy into mechanical energy and vice versa. As functional 

materials, they are widely used in modern electronic devices for such things as high-precision 

actuation, medical ultrasonic imaging, fuel injection, printing machines, and green electric power 

generation.1 Although these materials have long been in commercial use, emerging challenges have 

retained the attention of the scientific community to find new high-performance piezoelectric oxides 

with specific characteristics and/or functionalities. For instance, environmental concerns have led to 

the development of new eco-friendly piezoelectric compositions.2 More recently, advances in 

piezoelectric technology for energy harvesting have demonstrated the need for low-cost, high-

sensitivity piezoelectrics that undergo large deformations in response to low applied voltages.3 

Today, the huge market of piezoelectric oxides is particularly dominated by polycrystals because 

polycrystalline materials are easily manufactured with reproducible properties at low cost. Although 

single crystals usually offer enhanced properties, they are expensive to manufacture on a large scale, 

which limits their commercial use.4 The clear advantages of using polycrystals in piezoelectric 

technologies have also produced a scientific challenge because the miniaturization trend requires 

piezoceramics with submicron grain size.5 Thus, numerous studies have focused on producing high-

performance nanostructured piezoceramics. 

Compositionally, the usefulness of piezoelectric oxides is mainly determined by the construction 

of phase boundaries between ferroelectric polymorphs.6 Numerous experimental and theoretical 

works have investigated the relationship between phase boundaries and piezoelectric activity. The 

intrinsic mechanism that enhances the properties near the phase boundaries is generally accepted to 

be the anisotropic flattening of the free-energy profile, which is a mechanism common to most phase 

transitions.7–9 A flat energy profile involves an easy path for varying the polarization because phase 

boundaries separate two phases with different polarization orientations. Therefore, both polarization 

rotation and polarization extension are mechanisms for improving properties that depend on the 

polarization variation, such as the piezoelectric response.10 
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Note that ferroelectric domains usually form in piezoelectric oxides to compensate the 

depolarization field and minimize the stress produced by cooling from the nonpolar cubic phase to 

the polar ferroelectric phase. Domains are regions with differing polarization orientations separated 

by so-called domain walls. The boundary conditions between adjacent domains depend on the 

crystallographic phase such that the domain configuration is often complex at phase boundaries.11 

Given a suitable external stimulus, domain walls can move, thereby producing a polarization 

variation. This extrinsic mechanism is generally the main contribution to the piezoelectric response 

in oxide-based piezoceramics.12  

This tutorial describes a temperature-driven phase boundary, known as polymorphic phase 

boundary (PPB), wherein both intrinsic and extrinsic contributions are maximized. In addition, it 

covers the construction of PPBs in piezoelectric oxides and presents a broad overview of the 

experimental techniques for detecting PPBs.  

 

II. POLYMORPHIC VERSUS MORPHOTROPIC PHASE BOUNDARY 

Lead zirconate titanate, Pb(Ti,Zr)O3 (PZT), is surely the best known polycrystalline piezoelectric 

oxide because of its outstanding properties and ease of large-scale manufacturing.13,14 PZT has 

exceptional properties for compositions in which the so-called morphotropic phase boundary (MPB) 

forms between the tetragonal and rhombohedral polar phases (via an intermediate monoclinic 

phase).6,15 In general, MPBs delimit compositional-driven structural phase transitions (Fig. 1). 

Therefore, large polarization rotation and/or polarization extension phenomena promote the 

electromechanical properties enhancement of materials with MPBs.10 The compositionally induced 

structural change is of significant practical interest because the transition driver (i.e., the 

composition) is maintained under working conditions. Thus, the functional properties of MPB 

materials are notably stable over a broad range of temperature, time, and pressure.16  

The extraordinary electromechanical properties of PZT are also due to the ease with which it can be 

compositionally engineered, making this system adaptable to a wide range of different applications. 

Although PZT has been commercially undisputed for a long time, environmental concerns over its 

lead content have triggered an intense search for high-performance lead-free piezoelectric 
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materials,17–20 which has focused on compositions with PZT-like MPBs. However, replacing PZT 

has proven to be a titanic scientific and technological challenge such that lead-based piezoelectrics, 

and particularly PZT, currently remain exempted as hazardous substances in electric and electronic 

components. 

 
FIG. 1. Schematic representation of a composition-versus-temperature plot when a phase boundary 
exists between ferroelectric polymorphs F1 and F2 that coexist for a particular composition. (a) A 
polymorphic phase boundary (PPB) separates two polymorphs for a given composition over a narrow 
temperature range. (b) A temperature-independent morphotropic phase boundary (MPB) separates 
two polymorphs.  

 

Several lead-free oxide-based solid solutions have already been intensively investigated. Among 

these, potassium-sodium-niobate–based materials, (K,Na)NbO3 (KNN), have been enthusiastically 

explored because they provide a strong piezoelectric response and a relatively high depolarization 

(Curie) temperature for a singular KNN composition.21 The surprising properties of this material 

originate not only in a MPB but also in a polymorphic phase boundary (PPB). From a broader 

perspective, PPBs are regions where a temperature-driven structural phase transition occurs (Fig. 1), 

which is also described as a structurally bridging low-symmetry (monoclinic) region.22 

Like a MPB, the phase coexistence in a PPB favors the polarization-rotation phenomenon because 

the energy profile flattens in this region.23 Moreover, a reversible electric-field–induced phase 
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transition (i.e., a polarization-extension phenomenon) is reportedly responsible for the enhanced 

properties in PPB regions.24 Although it is generally agreed that both polarization rotation and 

extension (i.e., intrinsic contributions) increase upon approaching PPBs, recent results demonstrate 

that the extrinsic contribution to the material response is also maximized at PPBs.25 In fact, an 

enhanced extrinsic response seems to be a universal feature in ferroelectric compositions containing 

phase boundaries. Note that the extrinsic contribution is defined as any response other than the 

intrinsic response and, in perovskite polycrystals, is mainly due to domain-wall motion.26 

Designing appropriate PPBs has thus become a fundamental avenue to enhance the piezoelectric 

properties in numerous lead-free oxide-based piezoelectric systems, as detailed in several recent 

reviews.2,9,27 Significant progress has been made, and excellent properties characteristics have been 

achieved for specific compositions. However, the major drawback of PPB-containing piezoelectrics 

is that their properties are temperature sensitive, which limits the use of these materials in commercial 

applications.  

 

III. EXPERIMENTAL DETECTION OF POLYMORPHIC PHASE BOUNDARIES 

This section focuses on the detection of PPBs. Since PPBs are regions delimiting two ferroelectric 

phases, they can be detected by any experimental technique that resolves structural phases. Although 

this basic principle seems simple, in practice, an accurate determination of phase compositions at 

PPBs requires a careful combination of powerful analytical tools.  

 

A. X-ray diffraction 

X-ray diffraction (XRD) is a well-known technique that is widely used in materials science to identify 

structural phases. Temperature-dependent XRD measurements provide information about phase 

transformations bridged through a PPB (Fig. 2).25 An advanced analysis is possible by using high-

resolution synchrotron XRD, which gives precise information on the phase composition and reveals 

intermediate phases that may coexist in PPBs.28,29 
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FIG. 2. Temperature-dependent x-ray diffraction (XRD) results for 
(K0.44Na0.52Li0.04)(Nb0.86Ta0.10Sb0.06)O3 (KNL-NTS). (a) XRD one-dimensional patterns for KNL-
NTS reveal different crystallographic phases at three representative temperatures. A cubic phase and 
an orthorhombic phase appear at high and low temperatures, respectively, and a tetragonal phase is 
detected slightly above room temperature. (b) A contour plot reveals clearly the existence of a room-
temperature orthorhombic-tetragonal PPB region, where the width and intensity of the reflection 
lines change as the sample goes from the orthorhombic phase to the tetragonal phase. 

 

B. Dielectric response 

The temperature dependence of the dielectric response provides a relatively simple experimental 

method to reveal PPBs. The real (ε′) and imaginary (ε′′) permittivity versus temperature (T) plots 

show a local maximum when a phase transformation occurs, as is observed on the well-known ε′(T) 

plot of barium titanate.30 PPBs cause similar, but broader, local maxima in ε′(T) and ε′′(T) plots (Fig. 

3), which constitutes a useful, low-cost method to examine, for instance, how a compositional 

modification shifts the PPB region. 

Note that dielectric measurements are useful only when PPB region is expected to be appeared, 

because local maximum in permittivity-versus-temperature plot may emerge as a result of 

phenomena other than phase transformations, such as relaxation processes.31–33 
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FIG. 3. Schematic representation of temperature dependence of real permittivity (ε′) in potassium-
sodium-niobate–based (KNN-based) systems. Four polymorphic phases, rhombohedral (R), 
orthorhombic (O), tetragonal (T), and cubic (C), appear in this system as the temperature increases. 
The phase changes are revealed as local maxima in the ε′-T plots. (a) Unmodified (K0.5Na0.5)NbO3 
shows the R-O and O-T phase transformations below and above room temperature, respectively, 
whereas the T-C phase transition occurs at high temperature. (b) The O-T phase boundary shifts to 
room temperature upon appropriate substitution at the (K, Na) and/or Nb sites by isovalent cations. 
This effect is usually accompanied by a decrease in the T-C transition temperature. (c) An appropriate 
choice of additives and their concentration suppresses the O-T boundary in favor of the R-T phase 
boundary. 
 

C. Other experimental techniques 

As stated above, all experimental techniques that detect polar phases may be used to characterize 

PPB regions. Thus, Raman spectroscopy, transmission electron microscopy, neutron diffraction, and 

other techniques may also be considered. For instance, the results of Raman spectroscopy of KNN-

based systems indicate that the vibrations of NbO6 octahedrons are sensitive to phase transitions. 

Therefore, the temperature dependence of the wavenumber of the double-degenerate symmetric O–

Nb–O stretching vibration mode gives useful information about the structure around a PPB.34,35 
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IV. PIEZOELECTRIC MATERIALS WITH POLYMORPHIC PHASE BOUNDARY 

From a functional perspective, the design and control of PPBs have been used to significantly 

enhance the piezoelectric activity of lead-free piezoelectric oxides. In this context, extensive research 

has focused on constructing PPBs in lead-free compounds to emulate high-performance PZT 

materials with MPB.9,27 Consequently, KNN-based systems are discussed here as model materials to 

evince some of the most relevant advances in the design of PPBs through compositional 

modifications. Some practical aspects in the design of the most renowned PPBs in KNN 

piezoceramics systems are highlighted. Note that the most significant breakthrough concerning the 

piezoelectric properties of KNN via compositional design has been achieved by the stabilization of 

a rhombohedral–tetragonal phase boundary,27,36 which shifts both the classical rhombohedral–

orthorhombic and orthorhombic–tetragonal transitions near to room temperature [see Fig. 3(c)]. 

Special emphasis is placed on the coupling between phase boundaries and piezoelectric activity and 

on how PPBs may be modulated by engineered doping. 

 

A. Orthorhombic-tetragonal phase boundary 

Interest in PPBs was triggered by the well-known work of Saito et al.21 in 2004, who obtained a 

large piezoelectric response from a KNN system by a complex simultaneous substitution into both 

the A and B sites of the perovskite lattice, revealing the coexistence of tetragonal (T) and 

orthorhombic symmetries (O) at room temperature for a given composition. Their work introduced 

a processing route for producing textured polycrystals that triggered research to obtain lead-free 

piezoceramics with similar properties without requiring special processing but taking advantage of 

the benefits of the O-T PPB.  

From a broader perspective, chemical modifications of KNN-based materials enable the 

fabrication of PPBs with tailored functional characteristics, thereby providing control over the 

physical properties of the resulting materials. Over the last 15 years, most efforts have focused on 

the selective replacement of the elements forming the (K, Na)NbO3-based perovskite structure; that 

is, substitution into the (K, Na) and Nb sites by the elements with the same valence and similar ionic 
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radius. Thus, the design of O-T phase boundaries in KNN-based materials involved selective 

substitutions that improved the piezoelectric response of these materials.9,27  

The substitution of Li+ and/or Ag+ into (K, Na) sites produces the most prominent modulation of 

the O-T boundary [Fig. 3(b)].34 Both substitutions shift the O-T boundary close to room temperature, 

facilitating the polarization process, which results in a significant piezoelectric response. Intriguing 

features appear in relation to the physical mechanism responsible for the stabilization of the O-T 

boundary near room temperature. For instance, the (K, Na) site-selective replacement provokes a 

structural instability related to the tetragonal phase, which increases as Li+ and/or Ag+ cations are 

incorporated into the perovskite lattice.9,37,38 This instability originates from the competition of Li+ 

and/or Ag+ cations with Na+ and K+ at the A site of the perovskite to form a new solid solution and 

strongly distorting the lattice, thereby transforming the structure from orthorhombic to tetragonal 

symmetry. Note that, although the ionic radii of Li+ and Ag+ are similar to those of Na+ and K+, the 

former are clearly smaller.39 From a practical point of view, therefore, TO−T decreases, which results 

in the formation of room-temperature O−T PPBs. 

A similar strategy based on substitution of isovalent additives into the Nb5+ site has also been 

widely used to modify the O-T boundary in the KNN system, with the most outstanding substitutions 

being by Sb5+ and/or Ta5+ cations.9,40,41 In general, substitution into the B site decreases the TO−T 

phase and, simultaneously, increases the TR−O phase depending on the additive and its concentration 

(e.g., substitution by Sb5+ more strongly affects the phase transition than substitution by Ta5+). Note 

that some limitations apply to substitution into the B site; for instance, (i) reduction of the Curie 

temperature, (ii) the generation of compositional inhomogeneity (i.e., the inhomogeneous 

distribution of Nb5+, Ta5+, and Sb5+), which is rather difficult to avoid because of the phase 

segregation of end members over a wide temperature range, and (iii) the high cost of producing Ta5+. 

These facts imply that, in general, substitution into the B site is accompanied by simultaneous 

substitution into the A site (i.e., a co-substitution strategy), with the combinations Li+-Sb5+, Li+-Ta5+, 

and Li+-Sb5+/Ta5+ being the most used because they do not reduce the Curie temperature.9,37 
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FIG. 4. Effect of compositional modifications induced by doping with a transition-metal oxide, MO 
(M2+ = Ni2+, Cu2+, Co2+, or Mn2+) on O-T phase boundary of (K0.44Na0.52Li0.04)1-

xMx/2(Nb0.86Ta0.10Sb0.04)O3 system, abbreviated as (KNL)1−xMx/2-NTS. As a representative example, 
panel (a) shows the real permittivity versus temperature for (KNL)1−xMx/2-NTS (at 100 kHz), for 
M2+= Co+2 where 0 ≤ x ≤ 0.05. The upper red arrows correspond to the evolution of the TO-T and TC 
phases, and the lower arrows correspond to the evolution of the TO-T phase for different doping levels. 
(b) Piezoelectric coefficient d33 as a function of tetragonality ratio c/a for (KNL)1−xMx/2-NTS 
ceramics for several metal ions M2+. Note that the doping strategy with  M2+ transition elements in 
the (KNL)1−xMx/2-NTS system produces two different behaviors depending on the doping level and 
ionic radii. At low doping level, the T polymorph is most relevant because it has greater tetragonality. 
In contrast, for compositions with high M2+ content (0.03≤ x ≤ 0.05), the O polymorph, which 
involves the stabilization of orthorhombic symmetry, becomes more relevant. 
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Historically, engineered doping has been widely used to modulate the functional properties of 

various materials. For KNN-based systems, doping is often used to form point defects and thereby 

tailor the electrical properties of the material; however, the O-T phase boundary is also modified. Of 

the possible additives (or doping elements), many aliovalent compositional modifications have been 

studied with ions of either higher valence (donors) or lower valence (acceptors).38 Three approaches 

have been widely reported: selective modification of either the A or B site by aliovalent metals and, 

more importantly, the simultaneous modification of both the A and B sites. Depending on the ionic 

radius of the dopants, some of the selected additives could be substituted into either the A or B site.  

In this regard, the modifications induced by doping with transition-metal oxides MO (M2+ = Ni2+, 

Cu2+, Co2+, and Mn2+),42−45 at the O-T phase boundary are highlighted below as illustrative examples 

(Fig. 4). As mentioned before, the selected M2+ ion could, depending on its ionic radius, substitute 

into either the A or B site. Consequently, taking into account its valency, M2+ can act either as a 

donor-dopant (if introduced into an A site) or as an acceptor-dopant (if introduced into a B site). 

Therefore, doping KNN-based systems by M2+ produces two different behaviors. From both 

perspectives (i.e., doping level and ionic radii), the room-temperature stabilization of the O-T 

boundary at low doping levels is tentatively associated with doping by M2+ donors [Fig. 4(a)], with 

a slight reduction with increasing ionic radius of the dopant. This behavior can be explained by noting 

that the M2+ ions may occupy the A sites (donor-type doping), which causes lattice slack, thereby 

shifting TO−T closer to room temperature. Moreover, the simultaneous motion of 90° and 180° 

domains due to the stabilization near room temperature of the O-T phase boundary stabilizes the 

piezoelectric properties [Fig. 4(b)]. In contrast, for a high doping range, the system becomes 

orthorhombic, and an increased ionic radius increases TO−T [Fig. 4(a)]. In this case, the solubility of 

M2+ ions in the perovskite lattice seems rather limited, which gives rise to a secondary phase that 

may be assigned to a tetragonal tungsten-bronze–type structure. Furthermore, M2+ ions substitute into 

the B site, exhibiting some properties of acceptor-type additives. Thus, piezoelectric properties are 

degraded [Fig. 4(b)]. 
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B. Rhombohedral–tetragonal phase boundary 

Since 2013, research into the design of polymorphic phase boundaries has turned toward the 

stabilization of a new room-temperature rhombohedral–tetragonal (R-T) phase boundary.27 The 

room-temperature stabilization of a R-T phase boundary is revealed mainly by the high degree of 

polarization directions the system exhibits at room temperature, which is associated with the 

polarization direction along the [001]p and [111]p primitive-cell edges for the R and T phases, 

respectively. The coexistence of the R and T phases contributes to the domain-wall mobility and 

therefore to the enhanced piezoelectric properties at room temperature. 

In analogy with the above, this section presents details about the main strategies for stabilizing 

the rhombohedral–tetragonal phase boundary in KNN-based systems by compositional design. 

Generally speaking, the construction of a rhombohedral–tetragonal phase boundary is governed by 

an appropriate choice of additives and the control of their concentrations.27 By tailoring the additive 

content, the O-T boundary can be suppressed in favor of a new R-T phase boundary. To illustrate 

this, Fig. 5 shows the construction of a rhombohedral–tetragonal PPB in KNN-based ceramics. As 

expected, the system is clearly polymorphic at room temperature because of the coexistence between 

tetragonal and orthorhombic or rhombohedral symmetries modulated by the additive content [Fig. 

5(a)]. The O-T phases coexist for compositions with 0.00 ≤ x ≤ 0.06 (where x is the doping 

concentration), which is more relevant to the peaks associated with T symmetry.46 In contrast, the 

compositional range 0.07 ≤ x ≤ 0.08 produces a mixed R-T phase structure. The temperature 

dependence of the permittivity [Figs. 5(b) and 5(c)] further confirms the stabilization close to room 

temperature of the R-T phase boundary. As the dopant concentration increases, TO–T reduces whereas 

TR−O increases, which stabilizes the R-T phase boundary when the O-T boundary disappears. As 

expected, the stabilization of PPBs plays a crucial role in the functional properties of the system.46 

Figure 5(d) shows the evolution of d33 for O-T and R-T phase boundaries, revealing that the O-T 

phase boundary (0.00 ≤ x ≤ 0.06) increases d33, which reaches a maximum of ~315 pC N−1 at x = 

0.06. In addition, d33 is substantially enhanced near the R-T phase boundary, reaching a maximum 

of ~400 pC⋅N−1 at x = 0.07. 
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FIG. 5. Systematic study of the effects of compositional design by selective substitution into the B 
sites with Sb5+ ions in 0.96[(K0.48Na0.52)0.95Li0.05Nb1−xSbxO3]-0.04[BaZrO3] lead–free piezoceramics 
(KNLN1−xSx-BZ). (a) The coexistence between a tetragonal symmetry (T, P4mm), an orthorhombic 
symmetry (O, Amm2), and a rhombohedral symmetry (R, R3c) is identified from inspecting the x-
ray diffraction pattern. (b) Real permittivity (ε′) versus temperature of KNLN1−xSx-BZ at 100 kHz. 
The red arrows in panel (a) indicate the TO-T and TC evolution, whereas the blue arrows indicate the 
TR-O evolution depending on the Sb+5 content. Panel (c) shows a detail of the ε′-T curves in the 
temperature range −80 to 100 °C, where two situations can be identified depending on the doping 
content. For low doping, the material have O-T phase coexistence near room temperature whereas, 
for high doping, the O-T phase boundary is suppressed in favor of a new R-T phase transition. Panel 
(d) shows how the O-T and R-T phase boundaries affect the d33 value at room temperature, suggesting 
that the piezoelectric properties of the system can be enhanced by modifying the phase coexistence 
and the relative volume fraction of each polymorph. 

 

The existence of an intermediate state between both O-T and R-T phase boundary was recently 

demonstrated and shows that an R–O–T multiphase coexists with diffuse behavior.27,29,47,48 The R–

O–T phase boundary was produced in the KNN system, showing that it is mainly composed of the 

O and T phases, whereas the R phase is present but in the form of a “diffuse” phase.48 This approach 
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was used on materials with high piezoelectric response (d33 = 400–650 pC/N), enhanced strain 

response, and superior temperature stability. 

Finally, note that PPBs behave similarly with regard to the phase ratio of the system. Thus, research 

indicates that both the phase ratio and the tetragonality (as indicated by the c/a ratio) determine the 

functional properties—in particular, the piezoelectric response [Fig. 4(b)].27,49,50 Thus, a larger 

tetragonality ratio combined with a higher relative volume fraction of the T phase produces superior 

piezoelectric response.  

 

V. SUMMARY AND OUTLOOK 

As discussed above, piezoelectric oxides with PPBs have attracted significant attention because of 

their potential for use as high-performance lead-free piezoceramics. PPBs are regions where two 

ferroelectric polymorphs coexist and both polarization variation and domain-wall motion are 

maximized. The major drawback of PPBs is that they include regions where a temperature-driven 

structural phase transition occurs, which means that the functional properties around PPBs are often 

thermally unstable. However, significant efforts are being made to obtain materials with thermally 

stable piezoelectric properties by constructing new PPBs through compositional design.  

Given that dopants strongly affect the phase ratio forming PPBs, engineered doping has proven to be 

a useful tool to tune the functional properties of these materials. Although the physical mechanisms 

responsible for the enhanced piezoelectric properties associated with PPBs should be further studied, 

the stabilization of a rich tetragonal region in PPBs seems to be crucial for improving the 

piezoelectric activity. Thus, although more efforts are needed for these materials to enter industrial 

applications, PPB oxide-based lead-free materials now offer a realistic alternative to lead-based 

materials. 
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