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Abstract. Developing benchmark analytic solutions for problems in solid and fluid me-
chanics is very important for the purpose of testing and verifying computational physics
codes. Our primary objective in this research is to obtain a benchmark analytic solution to
the equation of motion in radially symmetric spherical coordinates. An analytic solution
for the dynamic response of a sphere composed of an isotropic visco-plastic material and
subjected to spherically symmetric boundary conditions is developed and implemented.
The radial displacement u is computed by solving the equation of motion, a linear second-
order hyperbolic PDE. The plastic strains εp

rr and εp
θθ are computed by solving two non-

linear first-order ODEs in time. We obtain a solution for u in terms of the plastic strain
components and boundary conditions in the form of an infinite series. Computationally,
at each time step, we set up an iteration scheme to solve the PDE-ODE system. The
linear momentum equation is solved using the plastic strains from the previous iteration,
then the plastic strain equations are solved numerically using the new displacement. We
demonstrate the accuracy and convergence of our benchmark solution under spatial mesh,
time step, and eigenmode refinement.

1 INTRODUCTION

In this paper we derive an analytic solution for the geometrically linear dynamic re-
sponse of a sphere for the purpose of comparing it to the results from computational
physics codes. An example of a spherical solid mechanics problem is the Blake problem,
which has been of considerable long-term [1, 2] and recent [3] interest to the scientific com-
munity. The Blake problem consists of a spherical inclusion within an infinite medium.
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In contrast, the dynamic sphere problem considered here develops an analytic solution
for the dynamic response of a spherically symmetric shell composed of a visco-plastic,
isotropic material and subjected to prescribed time-dependent boundary conditions im-
posed at both the inner and outer radii (ri and ro, respectively). The boundary conditions
are arbitrary and may be any one of the following: applied radial stresses, applied radial
strains, or applied radial displacements. The physical problem under consideration is
illustrated in the figure below.

Figure 1: 2-D schematic of dynamic sphere problem.

In spherical coordinates the stress-strain constitutive relation for a visco-plastic isotropic
material is given by the linear system [4]

σ = Cεe (1)

= C(ε − εp) (2)

= Cε − Cεp (3)

= Cε + λp, (4)

λp = −Cεp. (5)

Here σ is the total stress tensor, λp is the plastic stress tensor, ε is the total linear strain
tensor, εe is the elastic strain tensor, εp is the plastic strain tensor, and C is the constant
fourth-order stiffness tensor. For a spherically symmetric shell, the shear components of
the strain (εrθ, εrϕ, εθr, εθϕ, εϕr, εϕθ) are all identically zero, so the only stresses on the
shell are normal stresses (σrr, σθθ, σϕϕ). Also, by the isotropic symmetry of the material,
the tangential stresses and strains satisfy σθθ = σϕϕ, λp

θθ = λp
ϕϕ, εθθ = εϕϕ, and εp

θθ = εp
ϕϕ.

The governing equations of the dynamic sphere problem come from the balance laws
of continuum mechanics. We formulate these laws in material coordinates, so the balance
of mass equation is automatically satisfied. Additionally, we assume that the shell is kept
at constant temperature, so the balance of energy equation can also be neglected. The
initial-boundary value problem (IBVP) to be solved, which comes from the equation of
motion, is

c−2
r utt = urr +

2

r
ur −

2

r2
u + c−2

r fλ; t > 0, ri ≤ r ≤ ro (6)

fλ =
1

ρ0

[
∂λp

rr

∂r
+

2

r
(λp

rr − λp
θθ)]; t > 0, ri ≤ r ≤ ro (7)
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u(r, 0) = 0, ut(r, 0) = 0; ri ≤ r ≤ ro (8)

αBur(rB, t) + βBu(rB, t) = BCB(t) − dλp
rr(rB, t); B = i, o; t > 0 (9)

In this system u(r, t) is the radial displacement, and in (8) we have set initial displacement
and velocity equal to zero. fλ is the contribution of the plastic stress to the acceleration of
the material. This term is given by (7), where fλ is defined in terms of the radial plastic
stress λp

rr and the tangential plastic stress λp
θθ. From (5), we see that the plastic stresses

are given in terms of the plastic strains by

λp
rr = −Crrrrε

p
rr − 2Crrθθε

p
θθ, λp

θθ = −Crrθθε
p
rr − (Crrrr + Crrθθ)ε

p
θθ. (10)

Boundary conditions are given by (9), where B = i refers to conditions imposed on the
inner surface and B = o refers to conditions imposed on the outer surface. BCi(t) and
BCo(t) are prescribed time-dependent boundary conditions imposed on the inner and

outer surfaces, respectively. The speed of sound through the material is cr =
√

Crrrr

ρ0
, and

ρ0 is the initial density. For later times, the density ρ is given by the linearized Lagrangian
mass equation

ρ = ρ0/(1 + εrr + 2εθθ). (11)

The values of the material constants αi, αo, βi, and βo depend on whether displacement
(Dirichlet), strain (Neumann), or stress (Robin) boundary conditions are imposed [5, 6, 7].
The parameter d that appears in (9) is equal to zero when Dirichlet or Neumann conditions
are imposed and is equal to unity when Robin conditions are imposed.

The system of equations given by (6)-(10) is not complete. Evolution equations must
be given for the plastic strain components. In this work the plastic strain tensor evolves
according to the Bodner-Partom (BP) model for visco-plasticity [8]. For a radially sym-
metric spherical shell problem, the equations are

ε̇p
rr = Srrγ, ε̇p

θθ = Sθθγ; (12)

εp
rr(r, 0) = 0, εp

θθ(r, 0) = 0; (13)

Srr = σrr −
1

3
(σrr + 2σθθ), Sθθ = σθθ −

1

3
(σrr + 2σθθ); (14)

In this system ε̇p
rr = ∂εp

rr

∂t
and ε̇p

θθ =
∂εp

θθ

∂t
are the plastic strain rates. (13) gives initial

conditions for the ODEs (12). According to the BP model, these rates are proportional to
the stress deviator components Srr and Sθθ, which are defined by (14). The factor γ that
appears in (12) is the proportionality coefficient for the BP model. We refer the reader
to [8] for the details of how to compute it.

2 ANALYTIC SOLUTION

Our primary objective is to obtain an analytic expression for u(r, t) in terms of λp
rr and

λp
θθ that solves the system (6)-(9). In order to obtain a solution, we introduce the variable
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w(r, t) = r1/2u(r, t). The transformed equation of motion is

rc−2
r wtt = rwrr + wr −

µ2

r
w + r3/2f, (15)

where µ = 3/2 and f = c−2
r fλ. We decompose w into two terms w = w + w̃. We

take w(r, t) = γ0(t) + γ1(t)r and choose the coefficients γ0 and γ1 so that w satisfies the
transformed boundary condition equations. This amounts to solving the linear system

[

β∗
o α∗

o + β∗
oro

β∗
i α∗

i + β∗
i ri

] [

γ0(t)
γ1(t)

]

=

[

ki(t)
ko(t)

]

(16)

where

α∗
i =

αi√
ri

, α∗
o =

αo√
ro

, β∗
i =

βi√
ri

− αi

2r
3/2
i

, β∗
o =

βo√
ro

− αo

2r
3/2
o

(17)

are transformed boundary condition coefficients and

ki(t) = BCi(t) − dλp
rr(ri, t), ko(t) = BCo(t) − dλp

rr(ro, t) (18)

are transformed boundary conditions. From this system and the form chosen for w, it is
easy to show that w can be expressed as

w(r, t) = [γ0,o + γ1,or]ko(t) + [γ0,i + γ1,ir]ki(t), (19)

where γ0,o, γ1,o, γ0,i, and γ1,i are constants. The transformed IVBP solution w̃(r, t) satisfies

rc−2
r w̃tt = L(w̃) + f̃ , (20)

w̃(r, 0) = w(r, 0) − w(r, 0), w̃t(r, 0) = wt(r, 0) − wt(r, 0), (21)

α∗
Bw̃r(rB, t) + β∗

Bw̃(rB, t) = 0, B = i, o (22)

where

L(w) = rwrr + wr −
µ2

r
w (23)

is the Sturm-Liouville operator and

f̃ = L(w) − c−2
r rwtt + r3/2f. (24)

Thus we have reduced the problem of finding the displacement u to the problem of solving
the homogeneous IBVP (20)-(22). The solution to (20)-(22) has the form

w̃(r, t) =
∞
∑

n=1

an(t)ψn(r), (25)
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where ψn(r) are eigenfunctions which are computed from solving the autonomous problem
(with f̃ ≡ 0) and an(t) are time-dependent coefficients that satisfy the second-order-in-
time ODE

d2an

dt2
+ c2

rλnan = Fn. (26)

Here λn is the eigenvalue corresponding to eigenfunction ψn and Fn(t) is a source function
given by

Fn(t) = c2
r

∫ ro

ri
f̃(r, t)ψn(r)dr
∫ ro

ri
rψ2

n(r)dr
. (27)

The eigenfunctions are given by

ψn(r) = c1,nJµ(r
√

λn) + c2,nYµ(r
√

λn), (28)

where Jµ and Yµ are Bessel functions of order µ of the first and second kind, respectively,
and c1,n and c2,n are constants that depend on eigenvalue λn. The solution to the ODE
(26) is given by

an(t) = c3,n cos cr

√

λnt + c4,n sin cr

√

λnt +
1

cr

√
λn

∫ t

0

Fn(τ) sin cr

√

λn(t − τ)dτ, (29)

where the constants c3,n and c4,n are given by

c3,n =

∫ ro

ri
rw̃(r, 0)ψn(r)dr
∫ ro

ri
rψ2

n(r)dr
, c4,n =

1

cr

√
λn

∫ ro

ri
rw̃t(r, 0)ψn(r)dr
∫ ro

ri
rψ2

n(r)dr
. (30)

For the derivation of this solution, we refer the reader to [9, 10]. Thus we have an
analytic expression for the displacement u = r−1/2(w + w̃) in terms of λp

rr and λp
θθ solving

the original IBVP (6)-(9).

3 COMPUTATION OF ANALYTIC SOLUTION

Our ultimate objective in developing the analytic solution derived in the previous
section is to compare it with results of computational physics codes. The analytic solution
of the dynamic sphere problem is cast as an infinite series solution. In practice, however,
we truncate the Fourier-Bessel series solution (25) after a finite number of terms. We
also notice that our benchmark solution requires us to evaluate several space and time
integrals, so computationally we must apply spatial and time meshes. Additionally, the
plastic stress and strain equations (10)-(14) must be solved numerically. There is no
analytic expression for these quantities.

In this section we describe the algorithm we use to compute all relevant quantities at
each time step. For any integer n ≥ 1, we assume that the solution has been computed
up to time tn−1. At each time step, we iterate between the equation of motion (6) and the
plasticity equations (10)-(14) to obtain a solution. For convenience we define the plastic
strain increment to be ∆εp(tn) = εp(tn) − εp(tn−1). The procedure is described in the
following algorithm.
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Algorithm 1 (Decoupling Equations at Time Step n) Compute u, εp, and λp at
time tn.
Set ε

p,(0)
rr (tn) = εp

rr(tn−1), ε
p,(0)
θθ (tn) = εp

θθ(tn−1), λ
p,(0)
rr (tn) = λp

rr(tn−1), λ
p,(0)
θθ (tn) = λp

θθ(tn−1).
for iteration k = 1, 2, · · · do

Compute u(k)(tn) with analytic solution using λ
p,(k−1)
rr (tn), λ

p,(k−1)
θθ (tn) in plastic force

term.
Substitute u(k) and λp,(k−1) into (12) and solve for ε

p,(k)
rr (tn), ε

p,(k)
θθ (tn) using explicit

forward Euler finite difference method.
Substitute ε

p,(k)
rr (tn), ε

p,(k)
θθ (tn) into (10) to obtain λ

p,(k)
rr (tn), λ

p,(k)
θθ (tn).

If ||∆εp,(k)(tn) − ∆εp,(k−1)(tn)||L∞ ≤ tol||∆εp,(k−1)(tn)||L∞,
Set u(tn) = u(k)(tn), εp(tn) = εp,(k)(tn), λp(tn) = λp,(k)(tn).
Exit loop.

end for

In this algorithm, the L∞ norms are computed over the spatial mesh and tol is a user-
defined tolerance that determines when the iteration scheme converges.

We point out here that the analytic solution for u given in the previous section contains
spatial integrals of spatial derivatives of λp

rr and temporal integrals of time derivatives of
λp

rr. It is possible to use finite difference approximations to evaluate these derivatives.
However, the best approach, leading to the fastest convergence, is to use integration by
parts to remove as many plastic stress derivatives as possible from the analytic solution.
We also note that when evaluating the plastic stress integrals, sixth-order Newton-Cotes or
a similar high-order numerical quadrature scheme must be used to compute the integrals
accurately. A lower-order quadrature scheme, such as the trapezoid rule, will result in
nonphysical oscillations.

4 SELF-CONVERGENCE ANALYSIS

In this section we consider a test problem and examine how the computed solution
converges with respect to space and time meshes as well as with respect to number of
terms (eigenmodes) taken in the series solution. We impose stress boundary conditions
on the inner and outer radii, so d = 1 in (9). We take the interior of the shell to be a
void, so BCi(t) = 0, and on the outer radius we take a time-varying smooth jump stress
condition. Figure 2 gives a plot of the outer radius stress boundary condition. The curve
takes the form of a hyperbolic tangent function. The exact form and parameters used for
this boundary condition can be found in Section 2 of [11].

In all of our simulations, we take inner radius ri = 1 cm, outer radius ro = 2 cm,
and we run our simulations out to a final time of T = 3.5 microseconds. The constants
appearing in the boundary conditions (9) are given by

αi = αo = Crrrr, βi =
2

ri

Crrθθ, βo =
2

ro

Crrθθ. (31)

The stiffness tensor coefficients that appear in the problem are computed in terms of
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Figure 2: Stress boundary condition on outer radius.

engineering constants [12]. For an isotropic material, the coefficients are given by

Crrrr = K +
4

3
G, Crrθθ = K − 2

3
G, (32)

where the constants K and G are the bulk and shear moduli of the material, respectively.
Table 1 gives the parameter values, which are taken from Case (d) of [11], that we use in
our simulations. The parameter values given in the table do not correspond to any real
material. Our only interest here is verification of physics codes.

Table 1: Parameters used in convergence simulations.

Parameter Value
ri 1 cm
ro 2 cm
ρ0 1000 kg/m3

K 100 GPa
G 60 GPa

In order to assess the convergence of our benchmark analytic solution, we will take
both a qualitative and quantitative approach. Qualitatively, we will simply plot rele-
vant physical quantities for different size meshes and show that the plots converge. To
demonstrate quantitative convergence, we will compute L∞ norms of percent errors with
respect to extremely refined reference solutions and show that these norms are small. For
example, the L∞ norm of the percent error between the displacement u and a reference

7
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displacement uref is computed by the expression

% error =
||u − uref ||L∞

||uref ||L∞
× 100%, (33)

where we take the L∞ norm either in time over the interval (0, T ) along shell boundaries
or in space over the spherical shell (ri, ro). The quantities of interest in our convergence
analysis are displacement, velocity, and radial and tangential total strain, plastic strain,
and stress.

We begin by considering spatial convergence. To assess convergence qualitatively, we
ran simulations with nl = 500 eigenmodes, nt = 8000 equally spaced time intervals, and
uniform spatial meshes with varying numbers of intervals. The top two plots in Figure 3

Figure 3: Top Left: Spatial convergence plot of ut vs. r through radial shell at time T = 3.5 microsec-
onds. Top Right: Zoomed-in plot of ut. Bottom: Log-log plot of L∞(ri, ro) percent error of ut through
shell vs. nr.
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show the velocity ut vs. radial position r through the shell at final computation time
T = 3.5 microseconds for uniform spatial meshes of size nr = 2000, 2500, 3000, 3500,
4000, and 4500 intervals. The zoomed-in plot at the top right of the figure shows that the
velocity profile is converging as the mesh is refined. The bottom plot in Figure 3 gives a
log-log plot of the L∞(ri, ro) norm of the percent error of ut vs. nr for nr varying from
500 to 5500 in increments of 500. A mesh of nr = 6000 intervals was used to compute a
reference solution for (33). We notice that the percent error corresponding to nr = 3500
is approximately 10−4.5%. Of all the quantities of interest, the one with the highest error
through the shell is radial plastic strain, with an L∞(ri, ro) norm of percent error of
approximately 10−3.5% for nr = 3500. Computing L∞(0, T ) norms of percent errors on
the inner and outer radii gives even smaller errors. Therefore, because these errors are so
small, we take nr = 3500 as an appropriate spatial resolution for a “converged” solution.

To assess temporal convergence, we ran simulations with nr = 3500 uniform spatial
intervals, nl = 500 eigenmodes, and uniform time meshes of varying sizes. The top two
plots in Figure 4 show the radial plastic strain εp

rr vs. time t at the inner radius ri for time
meshes of size nt = 5500, 6000, 6500, 7000, and 7500 uniform time steps. The zoomed-in
plot at the top right of the figure shows that the radial plastic strain profile is converging
as smaller step sizes are used. The bottom plot in Figure 4 gives a log-log plot of the
L∞(0, T ) norm of the percent error of εp

rr at ri vs. nt for nt varying from 2500 to 7500
in increments of 500. A mesh of nt = 8000 intervals was used to compute a reference
solution for (33). We notice that the percent error corresponding to nt = 6500 is less
than 0.01%. Radial plastic strain has the largest L∞(0, T ) norm of percent error at ri

of all the quantities of interest. We obtain similar results when we compute L∞(0, T )
norms of percent errors at the outer radius ro. Computing L∞(ri, ro) norms of percent
errors at final time T , we find once again that εp

rr exhibits the largest error, this time
with error approximately 0.1%. Because these errors are so small, we take nt = 6500 as
an appropriate temporal resolution for a “converged” solution.

Finally, we assess eigenmode convergence. We ran simulations with nr = 3500 uniform
spatial intervals, nt = 6500 uniform time steps, and varying numbers of eigenmodes. The
top two plots in Figure 5 show the radial strain εrr vs. time t at the outer radius ro for
nl = 100, 150, 200, 250, and 300 eigenmodes. The zoomed-in plot at the top right of the
figure shows that the radial strain profile is converging as more eigenmodes are used. The
bottom plot in Figure 5 gives a log-log plot of the L∞(0, T ) norm of the percent error of
εrr at ro vs. nl for nl varying from 100 to 450 in increments of 50. A reference solution
with nl = 500 eigenmodes was used to compute the percent error in (33). We notice
that the percent errors for all of the eigenmodes shown in the log-log plot are less than
10−5%. For nl = 300 (fourth mark from the right in the log-log plot), the error is less
than 10−6.5%. Of all the quantities of interest, velocity has the largest L∞(0, T ) norm
of percent error at ro, slightly less than 10−5% when nl = 300. In the L∞(0, T ) norm
at ri, velocity still has the largest error, approximately 10−3.6% when nl = 300. In the
L∞(ri, ro) norm at final time T , the quantity with the largest error is radial stress, with
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Figure 4: Top Left: Spatial convergence plot of εp
rr vs. t at inner radius. Top Right: Zoomed-in plot of

εp
rr. Bottom: Log-log plot of L∞(0, T ) percent error of εp

rr at ri vs. nt.

error approximately 10−1.27% when nl = 300. Therefore, since these errors are so small,
we take nl = 300 as an appropriate eigenmode resolution for a “converged” solution. We
argue that a “self-converged” benchmark analytic solution requires at least nr = 3500
uniform spatial intervals, nt = 6500 uniform time steps, and nl = 300 eigenmodes in the
series solution.

5 Conclusions

In this paper we examine the dynamic sphere problem for a visco-plastic isotropic ma-
terial following the Bodner-Partom (BP) model. The governing equations come from the
balance of linear momentum in continuum mechanics formulated in material coordinates
and the BP equations of plastic flow. We derive an analytic solution that has the form of
an infinite series of Bessel functions. We establish convergence of our truncated solution

10
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Figure 5: Top Left: Spatial convergence plot of εrr vs. t at outer radius. Top Right: Zoomed-in plot of
εrr. Bottom: Log-log plot of L∞(0, T ) percent error of εrr at ro vs. nl.

under different types of refinement for a particular test problem. We find for all fields
of interest (displacement, velocity, strains, and stresses) that, under spatial refinement,
the truncated solution exhibits errors of less than 0.001% under appropriate L∞ norms.
Under temporal refinement, all fields of interest exhibit errors of less than 0.1% under
appropriate L∞ norms. Finally, under eigenmode refinement, we see that all fields of
interest exhibit errors of less than 0.01% under appropriate L∞ norms.
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