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Abstract. This paper deals with automation of the isogeometric finite element formula-
tion. Isogeometric finite element is implemented in AceGen environment, which enables
symbolic formulation of the element code and the expressions are automatically opti-
mized. The automated code is tested for objectivity regarding numerical efficiency in a
numeric test with the Cooke membrane. This test shows that automatic code generation
optimizes the isogeometric quadrilateral element with linear Bezier splines to the degree
of only twelve percent overhead against standard displacement quadrilateral element of
four nodes. Additionaly, the automated isogeometric element code is tested on a set of
standard benchmark test cases to further test the accurancy and efficiency of the pre-
sented isogeometric implementation. The isogeometric displacement brick element with
quadratic Bezier splines is in all tests compared to a collection of standard displacement
element formulations and a selection of EAS elements. The presented results show su-
perior behaviour of the isogeometric displacement brick element with quadratic Bezier
splines for coarse meshes and best convergence rate with mesh refinement in most test
cases. Despite all optimization of the element code the biggest disadvantage of the isogeo-
metric model remains the time cost of the isogeometric analysis. Thus, when considering
the ratio between solution error and solution time, the use of stable EAS elements, like
TSCG12, remains preferable.
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1 INTRODUCTION

[sogeometric analysis bridges the gap between fields of Computer Aided Design (CAD)
and Computer Aided Engineering (CAE) by unifying geometrical description (see [2]). It
merges the models for design and analysis into one, providing unprecedented accuracy
and robustness across a wide array of applications. The reason why isogeometric analysis
is not widely used in the engineering circles is its numerical complexity. The main goal of
this article is to present automated and optimized isogeometric analysis and to provide
the valid comparison of the convergence ratios and the solution times between classical
finite element analysis (FEA) and isogeometric analysis.

2 IMPLEMENTATION OF ISOGEOMETRIC MODEL

Isogeometric finite element is implemented in AceGen environment. AceGen generates
automated and optimized code of the isogeometric element for the isogeometric analysis.
AceGen environment enables many favourable options, including automatic derivation
of element residual and tangent matrix, symbolic formulation of the element code and
automatic optimization of the expressions.

The basis for the isogeometric analysis are NURBS functions which can exactly rep-
resent the actual geometry and the same basis is chosen for the approximation of the
unknown solution fields. The control points define the control mesh, which is the con-
vex hull of the actual geometry. Position of the control points and additional weights
control the actual geometry. NURBS functions are built as the cartesian product of the
Bezier splines that are local to parameter space and defined by knot vectors. Knot vectors
span the parameter space and define element domains, where NURBS basis functions are
smooth. Across knots, NURBS basis functions will be CP~™  where p is the Bezier spline
order and m is the multiplicity of the knot in question. The smoothness of the NURBS en-
sures higher accuracy compared to piecewise polynomial basis functions commonly used
in FEA. For implementation of the isogeometric analysis the typical FEA flowchart is
chosen. In preprocessing the boundary value problem is defined, the isogeometric control
mesh is generated and all geometrical data is prepared. The isogeometric mesh generator
makes mesh refinement via knot insertion, defines the elements and assigns nodes, nodal
weights and local knot vectors to each element. This is possible due to the regular shape
of the parameter space. Elements are mapped from parameter space onto parent element
domain which is bi-unit square in 2D or bi-unit cube in 3D. Like in FEA the loop goes
through all of the elements and builds element stiffness matrices within each element.
Integration is performed by gaussian quadrature on element level. In each Gauss points
are the NURBS basis functions evaluated. For evaluation of the Jacobi matrix of the
mapping from physical domain to the parent element domain, the automatic differentia-
tion procedure in AceGen is used. As the loop through the elements is over, the global
stiffness matrix and force vector are assembled.
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3 OBJECTIVITY REGARDING NUMERICAL EFFICIENCY

The formulation of the standard displacement quadrilateral element with four nodes
(Q1) is the same as the formulation of the isogeometric displacement quadrilateral element
with linear Bezier splines (Q1B1). The numerical efficiency of both mentioned finite
element models as also of the standard displacement quadrilateral element with nine nodes
(Q2) and the isogeometric quadrilateral elements with quadratic and cubic Bezier splines
labeled as Q1B2 and Q1B3 respectively are compared in a two-dimensional numeric test
with the Cooke membrane. Geometry and material data for the test are given in Fig. 1.
The average computation time pro iteration needed for building the tangent matrix of the
problem is noted as evaluation time. From the comparison of the evaluation time ratios
given in Table 1 can be concluded that the automated implementation of the isogeometric
model is objective regarding numerical efficiency because the isogeometric model Q1B1
has only twelve percent overhead in evaluation time against the standard displacement
model Q1.

Constraints Load Geometry Material

X=0: u=v=0 g¢g=1MPa h=44mm K =0.33333 MPa
hy=16mm x=0.5MPa
/=48 mm L=-

19 t=1mm

P

Figure 1: Cooke’s membrane: system, load and material data and expected result.

FE | DOF | vert. displ. | eval. time | code size
QIB1 | 40 | 36.6261 mm | 1.12281 | 12238 bytes
Q1B2 | 60 45.011 mm | 2.28856 | 24291 bytes
Q1B3 | 84 |45.5034 mm | 5.4093 | 42262 bytes

Q1 40 | 36.6261 mm 1 13236 bytes

Q2 144 | 454787 mm | 2.656363 | 26480 bytes

Table 1: Results for Cooke membrane with 4 x 4 elements.
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4 NUMERIC TESTS OF THE IMPLEMENTED ISOGEOMETRIC MODEL

The performance of the isogeometric model at large deformation problems is tested on
a set of standard benchmark test cases and compared with other finite element codes. The
benchmark test is designed to point out important properties of the proposed elements
at large deformation problems. These include high accuracy, low mesh distortion sensi-
tivity and locking free response for bending dominated situations, near incompressibility
problems and in the limit very thin elements. The stability of different element formula-
tions is also considered on the constant stress-strain tests cases. The three-dimensional
isogeometric brick element with quadratic Bezier splines (H1B2) is in all tests compared
to a standard displacement brick elements of eight and twenty nodes (H1 and H2 respec-
tively), standard displacement tetrahedral elements of four and ten nodes (O1 and O2
respectively) as well as to a selected set of brick EAS elements (9-mode HIE9, 21-mode
H1E21, 9-mode CG9 and 12-mode TSCG12), see [1], [3], [5] and [4].

w [mm]

0.015

0.010 -

Geometry Load I

a=1mm ¢ =0.0002 MPa L

Material Constraints 0006 1
K=208333Mpa X =0: u=v=w=0
41=96.1538 MPa X=a: u=v=w=0
fo2 Y=0: u=v=w=0
Y=a: u=v=w=0

Figure 2: Thin plate: system, load and material data, typical deformed mesh and resulting deflection
at the central point of the plate for all finite element formulations. TSCG12 element and the 21-mode
H1E21 element are the only elements that do not exhibit severe shear locking behavior in this test

In Fig. 2 the geometry and material data are given for a test case with a thin clamped
rectangular plate subjected to uniform loading. In Fig. 2 also the deflection at the center
of the plate is presented for all elements as a function of the ratio between the length and
the thickness of the plate. In this test the performance of finite element formulations is
compared on the same element mesh of 4 x 4 x 1 elements except for the isogeometric
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formulation the 5 x 5 X 1 mesh is used to obtain an element node in the center of the
plate. Best performance is achieved by the 12-mode element TSCG12 followed by the
21-mode element H1E21, all other elements exhibit severe shear locking behaviour.

5 FORMULATION EFFICIENCY CONSIDERATION

Isogeometric formulation efficiency is tested on numerical example of twisting a block
around its axis. The upper surface of a block with fully constrained bottom surface is
rotated around the center point for angle ¢. Deplaning of the upper surface in is not
restricted. Geometry and material data for the test are given in Fig. 3. The displacement
of nodes on the upper surface is applied incrementally until the solution converges.

Geometry Y — ¢
-1 0 1 a
h=5 mm S——————
a=1mm | ====
Material —— --=
K=2777.7777MPa | | T—— ===-
p=9259259 MPa || -==
B=-2 Z| [T~ ==-=
| I

C o

onstraints ~_ ‘
Z=0: w=0 ~ =‘
Y=0: v=0 =‘=
X=0: u=0 ’/‘

a

Figure 3: Twisting the block: geometry, load, material data and typical deformed mesh.

In Table 2 the maximal number of block turns (¢/27) with total solution time is given
for various mesh densities and element formulations. Total solution time is a sum of to-
tal assembly time needed for building the tangent matrices and total linear solver time
needed for solving the systems of equations. On Fig. 4 the total assembly time and total
linear solver time are plotted with respect to the number of degrees of freedom for the
isogeometric brick element with quadratic Bezier splines (H1B2), the standard brick dis-
placement element with eight nodes (H1) and full quadratic standard brick displacement
element with twenty-seven nodes (fH2). The results show exponential growth of linear
solver time in case of the isogeometric formulation in comparison to linear growth of linear
solver time for standard displacement element formulations. Assembly time for isogeo-
metric formulation grows proportionately with the number of degrees of freedom but at
much higher rate than for standard displacement elements. Here is to be noted that the
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Mesh DOF H1 Mesh DOF H2

nr. of turns timing nr. of turns timing

2x2x16| 414 3.6956 1.5810 s 1x1x8 | 414 1.9382 3.8130 s

4 x4x16 | 1150 3.6075 8.8789 s 2x2x8 | 1150 2.1439 12.4620 s
5 x5 x 20| 2088 4.3424 26.7229 s | 2 x 2 x 14| 2050 2.0471 24.7900 s
6 x 6 x 28 | 4018 2.8728 49.1809 s | 3 x 3 x 14 | 4018 1.7428 58.9359 s
7TXTx43 | 8128 2.1872 97.8720s | 4 x4 x 17 | 8100 1.4902 123.5119 s

Mesh | DOF H1B2

nr. of turns timing

2x2x8 | 400 2.5947 12.5600 s
3x3x12| 925 2.6486 41.9469 s
4 x4 x18 | 1980 2.1874 120.2559 s
DX 5 x 27| 4018 1.7538 289.7069 s
7xT7x33 | 8100 1.5683 685.8650 s

Table 2: Maximal number of block turns (¢/27) for converged solution of the twisting test with solution
time.

standard brick displacement element with twenty-seven nodes (fH2) has the same number
of integration points as the isogeometric brick element with quadratic Bezier splines.

AS time [s] LS time [s]
4001 250t
[ 200
300 H1B2 i
[ 150F H1B2
200} i
[ 100F fH2
[ r HI
L fH2 HI ,
100 : 500 .
; 1 ’ | | . . | . . | DOF L | | | DOF
2000 4000 6000 8000 2000 4000 6000 8000

Figure 4: Assembly time (AS) and linear solver time (LS) for the chosen element formulations in the
twisting block test.

6 CONCLUSIONS

The isogeometric finite element formulation is automated and optimized with auto-
matic code generator AceGen. The evaluation time obtained in the numeric test with the
Cooke membrane shows objectivity of the automated isogeometric element formulation
regarding numerical efficiency. The automated isogeometric element code is additionally
tested on a set of standard benchmark test cases. The three-dimensional isogeometric
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brick element with quadratic Bezier splines is in all tests compared to other finite element
formulations implemented in AceGen. Finite element codes taken into consideration are
isogeometric displacement brick element with quadratic Bezier splines, standard displace-
ment brick elements with eight and twenty nodes, standard displacement tetrahedral
elements with four and ten nodes, standard enhanced EAS brick elements with nine and
twenty-one enhanced modes (see [1, 5]) and two different modified EAS brick elements
with nine enhanced modes (see [3, 4]). The results obtained by the benchmark test show
best convergence rate for the isogeometric formulation regarding number of degrees of
freedom. The isogeometric element behaves exceptionally well in the test of formulation
stability. On the other hand exhibits the isogeometric element severe shear locking in
the case of in limit very thin plate. Despite all optimization, time efficiency tests show
isogeometric analysis to be the most time consuming. This is shown in a numerical test
of twisting a block around its axis. Assembly time for global tangent matrix and residual
and linear solver time for isogeometric displacement brick element with quadratic Bezier
splines grow at much higher rate then for other considered finite element formulations.
From obtained results follows that the ratio between solution error and solution time is
much better for considered EAS brick elements than for presented isogeometric formula-
tion.
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