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Abstract. In this work a linear hexahedral element based on an assumed-strain finite
element technique is presented for the solution of plasticity problems. The element stems
from the NICE formulation and its extensions. Assumed gradient operators are derived via
nodal integration from the kinematic-weighted residual; the degrees of freedom are only
the displacements at the nodes. The adopted constitutive model is the classical associative
von-Mises plasticity model with isotropic and kinematic hardening; in particular a double-
step midpoint integration algorithm is adopted for the integration and solution of the
relevant nonlinear evolution equations. Efficiency of the proposed method is assessed
through simple benchmark problem and comparison with reference solutions.

1 INTRODUCTION

An assumed-strain finite element technique for the solution of plasticity models is
presented. The element stems from the NICE formulation [1] and its further extensions
[2, 3] that uses the weighted residual method to enforce weakly the balance equation with
the natural boundary condition and also the kinematic equation that links the element-
wise and the assumed-deformation gradient. Assumed gradient operators are derived via

1

Assumed-strain finite element technique for accurate modelling of plasticity problems  

653

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/294831479?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


E. Artioli, G. Castellazzi and P. Krysl

nodal integration from the kinematic-weighted residual. Since the assumed-deformation
gradients are expressed entirely in terms of the nodal displacements, the degrees of freedom
are only the primitive variables (displacements at the nodes). In this work the NICE-H8
8-node hexahedral element is investigated. The adopted constitutive model is classical
von-Mises plasticity in the realm of small deformation. A double-step midpoint integration
algorithm is also presented for the integration and solution of the relevant nonlinear
evolution equation for the plastic strain tensor [4]. The performances of the proposed
approach are illustrated by means of a classical benchmark.

2 Weighted residual formulation of small-displacement, snall-strain deforma-
tion

We consider the model of small-displacement, small-strain deformation governed by
the following equations:

BTσ = b̃, (1)

σ =
∂W
∂ε

(2)

ε = Bu, (3)

in Ω, together with the following boundary conditions

(u)i = (ũ)i on ∂Ωu,i, (4)

(NTσ)i = (̃t)i on ∂Ωt,i for i = 1, 2, 3. (5)

In the above equations, u is the displacement vector, ε and σ are the vectors of strain
and stress respectively, B and BT are linear differential operators of symmetric gradient
and divergence respectively, D is a symmetric positive definite material stiffness matrix,
b̃ is a prescribed body load term, N is the outward unit normal vector on ∂Ω, and ũ
and t̃ are the prescribed displacements and prescribed tractions. Following the derivation
presented by Castellazzi and Krysl [3], the model problem described above is recast in
the form of a saddle-point problem given by the following equations:

RBt = δR(u, ε̄) · δu =

∫

Ω

[
δuTBT ∂W

∂ε̄
− δuTb̃

]
dV −

∫

∂Ωt

δuTt̃dS = 0,

RK = δR(u, ε̄) · δε̄ =

∫

Ω

δε̄TD (Bu− ε̄) dV = 0.

where D = ∂2W/∂ε̄2 is the tangent stiffness of the material. The two conditions above
represent the weighted residuals of the balance + traction boundary condition and the
kinematic equation.

In the present context, the strains ε̄ and δε̄ are derived from the displacement field
using a special gradient operator and therefore are assumed in the form

ε̄ = Bu, δε̄ = Bδu (6)
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where B is the assumed strain-displacement operator. Consequently, we can write the
weak problem of finding u, B that satisfy the balance residual

RBt = δR(u, ε̄) · δu =

∫

Ω

[
δuTBT ∂W

∂(Bu)
− δuTb̃

]
dV −

∫

∂Ωt

δuTt̃dS = 0, (7)

and the kinematic residual

RK =

∫

Ω

(Bδu)T D
(
Bu−Bu

)
dV = 0, (8)

where the test function δu is designed to vanish along the parts of the boundary ∂Ωu

(where essential boundary conditions are prescribed). Note that both conditions are
now expressed in terms of the unknown displacement field, operated upon by both the
symmetric gradient and the assumed symmetric gradient: the role of the assumed strain
is now carried by the (at this point undetermined) assumed strain-displacement gradient
operator B.

Introducing a finite element approximation for u =
∑

I NIuI , and η =
∑

I NIηI , where
NI are suitable finite element basis functions, the discrete kinematic weighted residual
equation (8) becomes

∑
I,J

ηT
I

(∫

Ω

BI
TD(BJ −BJ) dV

)
uJ = 0 . (9)

where we have introduced the strain-displacement matrices BJ = B(NJ), defined element-
by-element, and the, as yet unknown, strain-displacement matrices BI that are used to
produce the assumed test and trial strains.

The kinematic residual was used by Krysl and Zhu [1] to design the assumed-strain
gradient operator, B, from the condition that such operator should satisfy a priori the
kinematic residual statement. The derivation proceeds directly by discretizing the residual
with finite elements, in the present case with eight-node hexahedral finite elements, termed
in the following NICE-H8, and thereby obtaining the discrete assumed-strain operators.

Nodal quadrature is performed at the nodes in the volume integrals. For the hexahe-
dron used in the present work the nodal quadrature rule is easily specified as

∫

V

(•)(x) dV ≈
∑
e

∑
K∈nodes(e)

(•)(xK)J (xK)wK , (10)

where e iterates all the elements in the mesh, K runs over all the quadrature points in the
element. Furthermore xK is the location of the quadrature point (node), J (xK) is the
Jacobian of the isoparametric mapping, and wK is the weight of the quadrature point. In
this case, the quadrature points coincide with the nodes, and the weights are all equal to
one (if we assume that the standard shape is a tensor product of three bi-unit intervals).
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Omitting details for brevity’s sake, the assumed-strain nodal matrix is finally obtained as
a weighted average of the elementwise strain-displacement matrices

BJ =

∑
e∈elems(K)J (xK)wKBJ(xK)∑

e∈elems(K)J (xK)wK
. (11)

It is noted that the stiffness matrix is symmetric, since

∫

V

BI
TDBJ dV =

∫

V

BI
TDBJ dV =

∫

V

BI
TDBJ dV . (12)

3 Midpoint integration algorithm for von-Mises plasticity

3.1 Constitutive equations

We consider small strain von-Mises plasticity with linear isotropic and kinematic hard-
ening [5, 6]. Splitting of stress and strain tensors, σ and ε, into deviatoric and volumetric
parts gives:

σ = s + pI with p =
1

3
trσ (13)

ε = e +
1

3
θI with θ = trε (14)

where tr indicates the trace operator, while I, s, p, e, θ are respectively the second order
identity tensor, the deviatoric and volumetric stress, the deviatoric and volumetric strain.

The constitutive equations governing material behavior are

p = Kθ (15)

s = 2G(e− ep) (16)

Σ = s−α (17)

F = �Σ� − σy (18)

ėp = γ̇n (19)

σy = σy,0 +Hisoγ (20)

α̇ = Hkinγ̇n (21)

γ̇ ≥ 0 , F ≤ 0 , γ̇F = 0 (22)

where K is the material bulk modulus, G is the material shear modulus, ep is the traceless
plastic strain, Σ is the relative stress in terms of the backstress α, introduced to describe
the shifting of the yield surface in deviatoric stress space due to kinematic hardening.
Moreover, F is the von-Mises yield function, n is the normal to the yield surface, σy is
the yield surface radius, σy,0 the initial yield stress, Hkin and Hiso are the kinematic and
isotropic linear hardening moduli. equations (22) are the so-called Kuhn-Tucker loading
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conditions, which render the constitutive model under consideration a non-smooth convex
optimization problem [7]. In particular, the second equation limits the relative stress
within the admissible convex set bounded by the yield surface F = 0, while the other two
determine the type of loading phase the material is experiencing, namely elastic when
F < 0 γ̇ = 0, and plastic when F = 0 γ̇ > 0, respectively. It is noted that the constitutive
equation relating the volumetric part of stress and strain is linear, thus the numerical
schemes treated in the following deal only with the deviatoric part of the model.

In the following we resume a double-step midpoint integration algorithm for the in-
tegration and solution of the constitutive model within a strain-driven framework. The
problem at hand consists of computing state variables at any integration point (element
node) for a given loading history in terms of the total strain ε, which is intended as a
known function of the non-dimensional pseudo-time variable t ∈ [0, T ], with t = 0 and
t = T initial and final instant of the loading history, respectively. A uniform partition
of the time history [0, T ] is considered, and for each sub-interval [tn, tn+1], referred as a
step, state variables at initial instant tn, indicated by the subscript n, are assumed to be
known. The advancement in time of the material state is performed updating the state
variables according to the constitutive equations, given the total strain εn+1 at the final
instant of the current time step. Each computation is referred as an integration step.
Implementation into the NICE-H8 finite element formulation, in particular, permits to
update the stress σ and the material tangent stiffness consistent with the integration
algorithm:

D =
dσ

dε

∣

∣

∣

∣

n+1

(23)

required at the level of equation (12).

3.2 Double-step midpoint method

Double-step midpoint methods divide the current time interval [tn, tn+1] into two in-
tervals [tn, tn+α] and [tn+α, tn+1], or sub-steps, being tn+α ∈ [tn, tn+1] the midpoint instant,
such that:

α =
tn+α − tn
tn+1 − tn

In the following it will be implicitly assumed that α = 1/2, even the formulation can be
applied to a general values for α ∈ [0, 1] The integration of the evolution equations and
the inherent solution is performed first for state variables values at tn+α, and subsequently
at tn+1. Midpoint methods have a sound mathematical structure, grant second-order ac-
curacy and quadratic convergence. In the following we present the algorithmic procedure
followed on each sub-step computation.
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3.2.1 First sub-step: [tn, tn+α].

The rate equations (19) and (21) are integrated value with the backward Euler method
over [tn, tn+α]. This leads to the discrete rate forms:

�
epn+α = epn + λ1nn+α

αn+α = αn + λ1Hkinnn+α

(24)

where λ1 represents the plastic rate parameter increment

λ1 =

� tn+α

tn

γ̇dt

Hence, the updated values for state variables at tn+α become:

⎧⎪⎨
⎪⎩

sn+α = 2G (en+α − epn+α)

Σn+α = sn+α −αn+α

γn+α = γn + λ1

(25)

The computation of the plastic multiplier λ1 is carried out resorting to a classical return
map concept, i.e. the sub-step is initially supposed to be elastic, which leads to the
following midpoint elastic trial state

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ep,TR
n+α = epn

sTR
n+α = 2G (en+α − epn)

αTR
n+α = αn

ΣTR
n+α = sTR

n+α −αTR
n+α

γTR
n+α = γn

(26)

If the trial solution (26) is plastically admissible, i.e.

�ΣTR
n+α� ≤ σy,0 +Hisoγ

TR
n+α (27)

the state variables at tn+α are updated with the trial ones (λ1 = 0). If ΣTR
n+α violates the

yield limit, a plastic correction is carried out:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

epn+α = ep,TR
n+α + λ1nn+α

αn+α = αTR
n+α +Hkinλ1nn+α

sn+α = sTR
n+α − 2Gλ1nn+α

Σn+α = ΣTR
n+α − Y λ1nn+α

γn+α = γTR
n+α + λ1

(28)
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where the normal tensor nn+α = Σn+α/�Σn+α� is obtained by the co-alignment relation

Σn+α

�Σn+α�
=

ΣTR
n+α

�ΣTR
n+α�

(29)

while the plastic multiplier λ1 is computed by enforcing plastic consistency F (Σn+α) = 0
for the corrected state, and, after some algebra, is given by the following expression

λ1 =
�ΣTR

n+α� −
�

σy,0 +Hisoγ
TR
n+α

�

2G+Hiso +Hkin
(30)

3.2.2 Second sub-step: [tn+α, tn+1]

Solution at final instant tn+1 is computed with a non-standard procedure, still involving
a return map projection. A non-standard endpoint elastoplastic trial state for history
variables is computed, obeying a linear interpolation in time through values at tn and at
tn+α, namely:

hv
TR

n+1 =
1

α
hvn+α − 1− α

α
hvn+1 (31)

where the barred quantity hv
TR

n+1 indicates the end-point trial value of any history variable.
A return map correction is then performed directly on the trial solution (31) and enables
to calculate λ̄2 which satisfies

γn+1 = γ̄TR
n+1 + λ̄2 (32)

where γn+1 is the plastic rate parameter at tn+1, consistent with the yield surface limit.

Specifically, the scheme proceeds as follows: if the barred trial relative stress Σ̄
TR
n+1 is

consistent with the trial yield limit:

�Σ̄TR
n+1� ≤ σ̄TR

y,n+1 = σy,0 +Hisoγ̄
TR
n+1 (33)

state variables at tn+1 are updated with the the trial ones. If this is not the case, a plastic
correction is performed the usual form:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

epn+1 = ēp,TR
n+1 + λ̄2nn+1

sn+1 = s̄TR
n+1 − 2Gλ̄2nn+1

αn+1 = ᾱTR
n+1 +Hkinλ̄2nn+1

Σn+1 = Σ̄
TR
n+1 − Y λ̄2nn+1

γn+1 = γ̄TR
n+1 + λ̄2

(34)

The endpoint unit normal to the yield domain nn+1 results

nn+1 =
Σn+1

�Σn+1�
=

Σ̄
TR
n+1

�Σ̄TR
n+1�
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while solution of the discrete plastic admissibility condition F (Σn+1) = 0, gives

λ̄2 =
�Σ̄TR

n+1� −
(

σy,0 +Hisoγ̄
TR
n+1

)

2G+Hiso +Hkin
(35)

which is substituted in (34) for state variables update at final instant. Finally the elasto-
plastic material tangent stiffness D consistent with the algorithm is computed in closed
form [8]; details are here omitted for conciseness.

4 NUMERICAL EXAMPLES

4.1 Stretched plate with circular hole

In this section we present a classic example that illustrates the capabilities of the
proposed element to simulate elastoplastic media having a plate shape. Comparison
are carried out using standard hexahedral eight nodes element, and the Abaqus C3D8H
element. The NICE-H8 element uses 8 point of integration located at nodes and the
integration rule uses weights equal to 1 [1]. A perforated strip in uniaxial tension under
plane stress condition is considered. This problem is a popular benchmark used to assess
accuracy and efficiency of the numerical method [9, 10, 11]. The strip has the following
material properties: E = 7000 Kg/mm2, ν = 0.2, σy = 24.3 Kg/mm2, zero hardening
moduli. With reference to Figure 1(a) the following dimensions are considered: W = 20
mm, L = 36 mm, T = 2mm mm and D = 10 mm. Due to the symmetry of the domain,
only one quadrant of the strip is discretized and proper boundary conditions are considered
along symmetry axes 1(b). The loading condition for the plate is an imposed displacement
of 10 mm on the upper boundary of the plate AB, applied with 30 equal increments. The
curves in Figure 2, reports the nodal reaction sum along side AB versus the imposed
displacement, and shows a good agreement between present and reference solutions. The
initial and final configuration for the plate are represented in Figure 3(a), together with
equivalent plastic strain which appear to be localized at the nodes around the circular
hole. It is remarked that the NICE-H8 formulation permits to recover inelastic strain and
equivalent stress directly on the domain, without any post-processing, since the recovered
quantities at the nodes (that is at the quadrature points) are the actual solution. The
nodal values are then linearly interpolated across the faces of the elements, as it can be
appreciated by inspecting Figure 3(b).

8

660



E. Artioli, G. Castellazzi and P. Krysl

BA

(a) (b)

Figure 1: Stretched plate with circular hole: (a) geometry and boundary conditions (b) adopted mesh.

Figure 2: Stretched plate with circular hole: response curves for AB edge displacement vs nodal reaction
sum.
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(a) (b)

Figure 3: Stretched plate with circular hole: (a) undeformed (red) and deformed (black) configurations
and equivalent plastic strain nodal localization. (b) equivalent plastic strain recovery.

5 CONCLUSIONS

In this work we have introduced the NICE-H8 linear hexahedral element based on
an assumed-strain finite element technique, in conjunction with J2 plasticity. The el-
ement approach is based on assumed gradient operators, derived via nodal integration
from the kinematic-weighted residual, which leads to a pure displacement formulation.
The adopted constitutive model is the classical associative von-Mises plasticity model
with isotropic and kinematic hardening. A double-step midpoint integration algorithm
is adopted for the integration and solution of the relevant nonlinear evolution equations.
The formulation shows reliabiliy and robustness when compared to standard 3D finite
element reference solution indicating its feasibility for practical application.
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