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Abstract. The problem of determining the elastoplastic properties of a prismatic bar from the 
given relation from experiment between torsional moment MT and angle of twist per unit of 
rod’s length θ is investigated as inverse problem. Proposed method of solution of inverse 
problem is based on solution of some sequences of direct problem with application of the 
Levenberg-Marquardt iteration method. In direct problem these properties are known and 
torsional moment as a function of angle of twist is calculated form solution of some non-
linear boundary value problem. For solution of direct problem on each iteration step the 
method of fundamental solutions and method of particular solutions is used for prismatic 
cross section of rod. The non-linear torsion problem in plastic region is solved by means of 
the Picard iteration 

1 INTRODUCTION 
In the torsion problem of prismatic bars one can distinguish two cases of torsion: uniform 

and nonuniform torsion. When a bar is subjected to two concentrated torsional moments at its 
ends while warping of the cross section is not restrained, the angle of twist per unit length 
remains constant along its axis and the bar is under uniform torsion. The subject of this paper 
is the elastic-plastic uniform torsion.  

The torsion analysis of bars has a long history, and can be traced back to Saint-Venant, who gave a 
final conclusion to the problem of elastic uniform torsion. The Saint-Venent semi-inverse method is 
used not only for the elastic torsion but very often for the elastic-plastic torsion analysis (see for 
example books: [1] chapter 3, [2] chapter 11, [3] chapter 4). The main interest from designer point of 
view is torsional rigidity. Its can be easily obtained from relations between torsional moment and 
angle of twist per unit length. If elastoplastic material properties of bar are known this relation is 
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obtained by solution some non-linear boundary value problem. Such problem here is called as direct 
problem of elastoplastic torsion. Now there is many methods for solution direct problem.

If elastoplastic material properties are not known and are determined from experimentally given 
discrete values of torsional moment ( )iTiT MM θ=  and angle of twist per unit length iθ  we have 
inverse problem of elasto-plastic torsion. Such inverse problem has received relatively little attention 
in literature in comparison with direct problem. Mamedov [4-5] considered inverse problem for 
determining so-called plasticity function in Hencky correlation. Inverse problem was solved by 
solution of sequence direct problem using finite element method. In paper [6] also plasticity function 
is identified within the range of 2J -deformation theory. The method used by authors is based on the 
finite-difference discretization of the non-linear elastoplastic problem, and parametrization of the 
unknown plasticity curve. Similar considerations are given in paper [7] when author consider power-
law material.  

In mentioned above papers for solution inverse elastoplastic problem the mesh methods were used 
(FEM and FDM). In last decades the meshless methods have been become popular in computational 
mechanics. One of meshless method is method of fundamental solutions (MFS). This method was 
used with success for solve inverse heat conduction problems. As of right now, the MFS was applied 
in following inverse heat conduction problems involving the identification of heat sources, e.g. [8], 
boundary heat flux, e.g. [9], Cauchy problem, e.g. [10], backward heat conduction problem, e.g. [11], 
Stefan problem [12], or identification of geometry of boundary, e.g. [13]. Mentioned above 
application of MFS are related with 2-D problems. 

The purpose of this paper is the application of the MFS method to the inverse elasticplastic torsion 
problem in prismatic rod case. There are many different models of isotropic elastoplasticity. 
Therefore, it is difficult sometimes to make a decision of what model to use for numerical 
implementation. In this paper we chose the Ramberg-Osgood stress-strain relation [14]. To the best 
knowledge of the authors, this paper is a first application of this method to the inverse elastoplastic 
problem.  

2 FORMULATION OF THE PROBLEM 
The governing equation of elastic torsion of a prismatic bar has form: 

G
yx

⋅⋅−=
∂
∂+

∂
∂ θψψ 22

2

2

2

 for ( ) Eyx Ω∈, ,
(1)

where ψ(x, y) is a Prandtl stress function, θ is a angle of twist per unit length, G the shift 
modulus. 
The torsion moment is express as: 

∫∫= dxdyM T ψ2 (2)

and magnitude of the resultant shear stress as: 

ψψψ
grad

yx
=
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Since the lines of shear stress at each point of the boundary of the section must be directed 
along the tangent to the boundary, the lateral surface of the bar being stress free, the boundary 
curve Γ must be a line of constant stress function. For simply connected cross section, we may 
take 

0=ψ  for ( ) Γ∈yx, . (4)

According the Saint-Venant torsion theory only stress τxz, τyz are not equal zero: 

yxz ∂
∂= ψτ , 

xyz ∂
∂−= ψτ .

(5)

In the elastic region the torsional rigidity is constant and there is linear relation between 
torsion moment (2) and angle of twist per unit length θ.  

3.1 Plastic torsion 
For elastoplastic torsion there is few different models of plastic behavior. Generalized form 

of the Ramberg-Osgood stress-strain law has been used in deformation theory of Nadai: 

























+=

−1

1
n

yE σ
σασε

(6)

where yσ  is yield stress, α = 0.02 (for example). 
If all of the stress components are normalized by the yield stress yσ  and strains are 

normalized with respect to the corresponding tensile yield strain 
E

y
y

σ
ε =  then 

nσασε += (7)

where yεεε = , yσσσ = . 
The invariant can be introduced in the form of the effective stress eσ : 

ijije SS
2
32 =σ .

(8)

where ijkkijijS δσσ
3
1−=  is the second invariant of the stress deviator, kkσ

3
1  is hydrostatic 

component of stress.  
In simple tension Hencky-Misses criterion reduces to 1=eσ

( ) ij
n
eijkkijij SS 1

2
3

3
211 −+−++= σδσννε

(9)

Since only two components of stress, namely xzττ =13  and yzττ =23  have been assumed to be 

non-zero (5), that 0=kkσ , ( ) ij
n
eijij SS 1

2
31 −++= σνε  and ( )223 yzxze ττσ += . 
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Assuming that 
yxz ∂

∂= ψτ , 
yyz ∂

∂−= ψτ : 

21223











∂
∂+

∂
∂=

yxy
e

ψψ
σ

σ
(10)

The generalized stress-strain relation can be written in form: 
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By expressing the strain component in terms of the displacement and its derivatives the stress-
strain relations have form: 
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Differentiating first equation (12) by y and second by x: 
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and subtracting and after simplified we obtain the differential equation which is supposed 
governed torsion loading in the plastic region: 
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For the dimensionless variable: 
yLσ

ψ=Ψ , 
L

x
X = , 

L

y
Y = , 

y

G
G

σ
=~ , L⋅= θθ~  we can written 

the stress components as: 

Yxz ∂
Ψ∂=τ , 

Xyz ∂
Ψ∂−=τ

(15)

and therefore eq. (7) has form 
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and the plastic condition: 
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For elastic region the governing equation (1) has form: 
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and for plastic region the governing equation (14) has form: 
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where: ( )ν
ακ
+

=
12

. 

The Torsion moment (2) for dimensionless variable is express by: 

∫∫Ψ= dXdYM T 2~ (20)

where ( )yTT LMM σ3~ = . 
Direct elastoplastic problem depend on solution Eq. (19) with boundary condition (4) for 

prismatic cross section of rod. In such case the non-dimensional angle of twist θ and the non-
dimensional material parameters κ and n are known. After determination stress function Ψ the 
torsional moment M T is calculated. As was mentioned above purpose of this paper is 
application of MFS for solution of inverse elastoplastic problem. Proposed method is based 
on Leveberg-Marquadt iteration what requires solution of direct problem at each iteration 
steps. 

 APPLICATION OF THE METHOD OF FUNDAMENTAL SOLUTIONS FOR 
SOLUTION OF DIRECT AND INVERSE PROBLEM 

In the direct problem the non-dimensional angle of twist θ and the non-dimensional 
material parameters κ and n are known. Then problem is in solution non-linear differential 
equations (19) with boundary condition (4). 
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 Algorithm 1 – direct problem for prismatic cross section of rod 
Step 1 Choose initial values for the parameters κ = 0 and n = 0 
Take j = 0 and solve simple problem by use the Method of Fundamental Solutions 

Gj
~~-22 ⋅=Ψ∇ θ , ( ) Ω∈YX ,

( ) 0, =Ψ YXj , ( ) 1, Γ∈YX

( )
0

,
=

∂
Ψ∂

n
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22

2
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N
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
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
 −+−=Ψ ∑

=

(21)

Remark: In numerical experiment the cross section of bars can have axis of symmetry. In such 
case it is convenient consider some repeated element of cross section. On axis of symmetry Γ2
in repeated element one have boundary condition with normal derivative and other part of 
boundary Γ1 Dirichlet boundary conditions (Fig. 1 a).  
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Step 2 For known κ, n approximate the right hand side function 
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by Radial Basis Function and Mononomials: 
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Step 2 Calculate the particular solution: 
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Step 3 Solve homogenous problem  
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( ) 0,1
2 =Ψ∇ + YXh

j , ( ) Ω∈YX ,

( ) ( )YXYX p
j

h
j ,, 11 ++ Ψ−=Ψ , ( ) 1, Γ∈YX

( ) ( )
n

YX

n

YX p
j

h
j

∂
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−=
∂

Ψ∂ ++ ,, 11 , ( ) 2, Γ∈YX

by use the Method of Fundamental Solutions. 
Step 4 Calculate the solution as a sum of homogenous and particular solution: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∑∑∑
=

+

=

+

=

+
+ ++
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Step 5 Evaluate 
21 jj Ψ−Ψ= +Ψε

If tol≤Ψε  calculate ( ) ∫∫
Ω

+Ψ=
e

dXdYnM jT
~

12,,~~ κθ  and STOP 

Else j = j + 1 and go back to Step 2 
In the inverse problem the non-dimensional material parameters κ and n are unknown, but 

we known the non-dimensional torsional moment as a function of the non-dimensional angle 
of twist ( )θ~~~

TT MM = . For solving this problem for prismatic cross section of rod the 
Levenberg-Marquardt method [15] can be used according with following algorithm: 

 Algorithm 2 – inverse problem for prismatic and circular cross section 

Step 1 Identification of the linear ranges of function ( )θ~~
TM , θmin

Step 2 For the nonlinear ranges (θmin - θmax) choose initial guess for the fitted parameters 
0κκ = , 0nn = , and κ, n

Step 3 Compute ( )n,κε  according to formula: 

( ) ( )[ ] ( ) ( )
n

nnMnnM
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n

n iTiT
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i
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i
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κ
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= 2

,,~~,,~~
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nMnM
MnM

n iTiT
Ne

i
TiiT , 

Remark: This Step requires solution of direct problem (Algorithm 1) 3·Ne times. 
Step 4 Pick a modest value for λ, say λ=0.001 
Step 5 Solve the linear system of equations: 


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
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

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where: 
κ
ε

∂
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n
b

∂
∂−= ε
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2

1,1 1 

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∂
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κ
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n
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∂
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∂== ε
κ
ε
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2

2,2 1 

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

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∂
∂+=

n
A

ελ

Step 6 Evaluate ( )nn δδκκε ++ ,  (solve direct problem - Algorithm 1 Ne times)
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Step 7 If ( ) ( )nnn ,, κεδδκκε ≥++ , λλ ⋅=10  and go to Step 5 
Step 8 If ( ) ( )nnn ,, κεδδκκε <++ , 10λλ = , update the trial solution δκκκ += , nnn δ+=

If [ ] toln ≤2,δδκ  STOP  
Else go back to Step 5 

5 NUMERICAL EXAMPLE 
The first and second numerical experiment are effect for a rod of square cross section for  

κ = 0.023076923 and n = 2.0 for first and n = 3.0 for second case. 

Figure 1: The consider repeated element  of cross section of bar a) and distributed collocation, source and 
interpolation points b). 

All numerical experiments for prismatic cross section are carried out for Nc = 176 number of 
collocation points ( ) ( )21, Γ∪Γ∈cc YX , and for Nz = 60 number of source points (Fig. 1 b). 
Source points are located on the fictitious contour similar to the boundary of the area at a 
distance s = 0.2 from it (Fig. 1 b). The figure 1b shows the distribution of collocation, source 
and interpolation points for consider repeated element of cross section of bar. For 
interpolation of the right hand side of equation (9) as a radial basis function is used the 
inverted multiquadric function ( ) 22ˆ1ˆˆ cRR mm +=ϕ  for shape factor c = 0.1 and L = 6 
monomials and is used M = 225 interpolation points ( ) Ω∈II YX , . 

For given parameters n, κ by using Algorithm 1 the non-dimensional torsional moment MT
as a function of the non-dimensional angle of twist θ was approximate (Fig. 2). The figure 2 
shows the results of the identification ( )θ~~~

TT MM =  for κ = 0.023076923, n = {1; 2; 3; 4}. For 
n = 1 the torsion problem has an elastic character and the calculation results MT (points) lie 
close to the linear solution (gray solid line). With the increase of the value of n, the deviation 
of the nonlinear solutions of linear solutions is growing. For all four examples of discrete 
results (θ, MT) are approximated using a continuous function ( )θ~~

TM  (dashed line in Figure 2). 

s

source points 

collocation 
points 

Γ1

Γ1

Γ2

Γ2



interpolation 
points 

Γ1

0=Ψ

Γ2

Γ2

a) b) Γ1

0=
∂
Ψ∂
n
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Figure 2: The non-dimensional torsional moment MT as a function of the non-dimensional angle of twist θ for 
square cross section of rod and for two different values of parameters n, κ. 

The obtained function ( )θ~~~
TT MM =  was used to defined the nonlinear ranges (θmin, θmax). 

For θmin < θ < θmax the input data { }Ne

iiiTM 1
~,~

=θ  to the inverse problem of determination of the 
non-dimensional material parameters κ and n (Algorithm 2) were generated.  
For subsequent values of the coefficients κ and n, in step 3 the value of ( )nM iT ,,~~ κθ  (22) was 

calculated using Algorithm 1. Derivatives ( )
κ

κθ
∂

∂ nM iT ,,~~
, ( )

n

nM iT

∂
∂ ,,~~ κθ  have been 

approximated by using the finite difference for κ = κ0/200, n = n0/200. Identification of 
material parameters κ and n have been made for Ne = 10, for 

( )( ) ( )1~~1~~
minmaxmin −−−+= Neii θθθθ , i=1,…,Ne. 

The results of the numerical experiment (Table 1) shows that the accuracy and the 
convergence of the iterative method depends on the initial value of κ0; n0 parameters. In one 
case, an acceptable result was obtained after 11 iterations while in the other for less than 10 
iterations. Thus showing that the proposed algorithm is fast converging. 
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Table 1: The numerical experiment of identification of elastoplastic properties κ, n

κ = 0.023076923, n = 2.0, θmin=0.9, θmax=4.5
iter κ N [ ]

2
, nδδκ κ N [ ]

2
, nδδκ κ n [ ]

2
, nδδκ

Κ0 = 0.02; n0 = 2.5 κ0 = 0.015;  n0 = 3.0 κ0 = 0.03;  n0 = 3.0 
0 0.02198 2.05849 2.21E-01 0.02235 1.9772 5.11E-01 0.00241 2.7717 1.15E-01 
1 0.0229 2.00407 2.72E-02 0.02294 2.00393 1.34E-02 0.00633 2.5791 9.63E-02 
2 0.02278 2.00737 1.65E-03 0.02273 2.0085 2.28E-03 0.01014 2.42563 7.68E-02 
3 0.02279 2.00707 1.46E-04 0.02273 2.00851 6.95E-06 0.01339 2.29794 6.39E-02 
4 0.02279 2.00705 1.00E-05 0.022734 2.00851 3.57E-07 0.01608 2.20315 4.74E-02 
5 0.02279 2.00705 6.72E-07    0.01817 2.13657 3.33E-02 
6       0.02184 2.02195 5.73E-02 
7       0.0229 2.00368 9.15E-03 
8       0.02283 2.00613 1.23E-03 
9       0.02284 2.0058 1.68E-04 
10       0.02284 2.00579 5.02E-06 
11       0.022839 2.00579 1.51E-07 

κ = 0.023076923,  n = 3.0, θmin=0.6, θmax=4.5
iter κ N [ ]

2
, nδδκ κ N [ ]

2
, nδδκ κ n [ ]

2
, nδδκ

Κ0 = 0.02;  n0 = 2.5 κ0 = 0.03;  n0 = 1.5 κ0 = 0.03;  n0 = 2.0 
0 0.0342 2.84126 4.21E-01 0.07839 2.63604 5.69E-01 0.0342 2.84126 4.21E-01
1 0.02225 2.976 6.76E-02 0.03224 2.54848 4.95E-02 0.02225 2.976 6.76E-02
2 0.02328 2.99569 9.86E-03 0.02536 2.90776 1.80E-01 0.02328 2.99569 9.86E-03
3 0.02324 2.99758 9.48E-04 0.02326 2.99399 4.31E-02 0.02324 2.99758 9.48E-04
4 0.023236 2.99758 7.91E-07 0.02324 2.99736 1.68E-03 0.023236 2.99758 7.91E-07
5    0.02324 2.9976 1.22E-04    
6    0.023235 2.9976 1.30E-11    

6 CONCLUSIONS 
A new inverse method for determining the elastoplastic properties of materials in the 

torsion problem of prismatic bars is proposed. The algorithm is based on knowledge of some 
couples of torsional moment and angle of twist { }Ne

iiiTM 1
~,~

=θ  what permits to obtain non-

dimensional material parameters κ and n. In proposed inverse method the Leveberg-Marquadt 
iteration is used what requires solution direct problem at each iterations. The direct non-linear 
torsion problem is solved by means of Picard iteration procedure. For prismatic cross section 
of rod at each iteration step method of fundamental solution and method of particular solution 
is used. Particular solutions are obtained by means of radial basis function. The propose 
algorithms are easy o implementation and can be use to complicated geometry because is 
mesh free. The Leveberg-Marquadt iteration method with MFS is always quickly convergent. 
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