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Abstract. The algorithm proposed in [9] for incremental elastoplasticity is extended and
applied to shakedown analysis. Using the three field mixed finite element proposed in [22]
a series of mathematical programming problems or steps, obtained from the application
of the proximal point algorithm to the static shakedown theorem, are obtained. Each step
is solved by an Equality Constrained Sequential Quadratic Programming (EC-SQP) tech-
nique that allows a consistent linearization of the equations improving the computational
efficiency.

1 INTRODUCTION

Directs methods are largely used for shakedown analysis of elastic-plastic structure
under variable [1, 2] or cyclic loading [3] as an efficient alternative to time consuming
incremental time-stepping calculations. In recent papers [4, 5], the finite element shake-
down analysis has been effectively carried out by means of an iterative algorithm that in
[6] has been shown to be obtained from a mathematical programming problem, consisting
in the application of the proximal point algorithm to the static shakedown theorem and
in the solution of this problem by means of dual decomposition methods. Each proximal
point step define a pseudo elasto-plastic problem, coincident with that defined by us-
ing incremental iterative algorithms in the elastoplastic case [7, 8] while the optimization
subproblems, deriving from decomposition techniques, exactly correspond to the standard
return mapping by closest point projection scheme (CPP). The major advantage of the
dual decomposition approach is that the inequality constraints arising from the constitu-
tive laws are eliminated from the step equations using the CPP scheme at the local level
(Gauss point or finite element) while the stresses and the plastic multipliers are implicitly
defined in terms of the displacement. The finite step equations are so transformed into
a nonlinear system of equations, without inequalities, easily solved by means of standard

1

An efficient numerical method for shakedown analysis 	

608

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/294831442?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Antonio Bilotta, Leonardo Leonetti and Giovanni Garcea

arc–length strategies. The global description of the algorithm is always performed in
terms of displacement variables alone.

The use of descriptions based on displacement variables alone can not be the best
choice, potentially more efficient and robust analysis algorithms can be obtained by di-
rectly solving the proximal point step equations maintaining all the variables of the prob-
lems at the same level. In this work the algorithm already successfully used for incre-
mental elastoplastic analyses in [9, 10], is applied to shakedown (see also [8]). Adopting
the mathematical programming point of view an equality constraints sequential quadratic
programming (EC-SQP) formulation is proposed to solve the problem. The algorithm is
subdivided in two phases: i) a suitable estimate of the active constraints at the current
iteration is performed employing the closest point projection scheme; ii) the solution of
a quadratic programming that retains only the active constraints is performed. In this
way the solution of each QP problem is easier than the general case and it also makes it
possible to deal with very large dimension problems. In particular the solution of the QP
subproblem can be performed after condensation of the locally defined quantities (stresses
and plastic multipliers) so maintaining, at the global level of analysis, a pseudo compatible
system with a smaller computational cost. The algorithm has then the same organiza-
tion as standard strain driven elastoplastic algorithm based on closest point projection
return mapping schemes and only a few modifications of the existing codes are required
to implement the present proposal.

The proposed framework can gain a further improvement if the use of high performance
finite elements is advocated, see for example [11, 12, 13, 14, 15] for applications in the
linear and in the nonlinear field, [16, 17, 18, 19] for applications to inverse problems and
[20, 21] for fracture related contexts. In the present case the finite elements used are of
mixed type, see [22], and plastically enriched in order to work well both in the elastic and
in the elastoplastic fields as mandatory for shakedown problems [5, 23]. They are based
on a three field interpolation and are so well suited for the application of the proposed
algorithm. The numerical results show how a great improvement in terms of robustness
is achieved with respect to previous proposals.

2 AMATHEMATICAL PROGRAMMINGAPPROACH FOR SHAKEDOWN
ANALYSIS

In the following, the static shakedown theorem is rewritten as a mathematical program-
ming problem by introducing the finite element interpolation. The chosen FEM format
is based on the general three field interpolation presented in [22] but any other kind of
finite element could be used.

2.1 The shakedown equations in FEM format

We consider an elastoplastic body Ω subjected to bulk load b and tractions f , that
can varying in time inside a given load domain. The load domain will be amplified by a
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load parameter λ.
Following [22] where more details can be found, we adopt a finite element formulation

based on the interpolation of three fields: displacement u, stress σ and plastic multiplier
γ. These interpolations can be expressed as:

u := Nde σ := Sβe γ := Gκe, (1)

where N , S and G are the matrices containing the interpolation functions and de, βe and
κe are the vectors collecting the finite element parameters. The interpolation functions
G are assumed to be non–negativeness so allowing the condition γ ≥ 0 to be easily
expressed by making κe ≥ 0, where, from now on, vector inequality will be considered
in a component-wise fashion. Moreover an important aspect regards the continuity order
of the assumed interpolations, the displacement field has to be capable of assuring the
inter-element continuity while σ and γ can be defined locally inside the element.

The interpolation allows to write the discrete form of the equilibrium equations as

Ae

{
QT

e βe − λpe

}
= 0 (2)

Ae being the standard assembling operator which takes into account the inter–element
continuity conditions on the displacement field and

Qe :=

∫

Ωe

STDN , pe :=

∫

Ωe

NTb+

∫

∂Ωe

NTf (3)

are the element equilibrium matrix and load vector while D is the compatibility operator.
For the sake of the following discussion eqs.(2) can be rewritten as

QTβ − λp = 0 (4)

where β, d and p denote the global vectors collecting all the stress parameters βe, the
displacement parameters de and the applied loads pe, while Q

T the related global equilib-
rium matrix. From now on a subscript e denotes finite element representation of a global
quantity.

2.2 The elastic envelope of the stresses

We assume that the external actions p are expressed as a combination of basic loads
pi belonging to the admissible closed and convex load domain

P :=

{
p ≡

p∑
i=1

aipi : amin
i ≤ ai ≤ amax

i

}
(5)

Denoting with β̂i the elastic stress solution for pi, the elastic envelope Ŝ

Ŝ :=

{
β̂ ≡

p∑
i=1

aiβ̂i : amin
i ≤ ai ≤ amax

i

}
(6)
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defines the set of the elastic stresses β̂ produced by each load path contained in P.
By construction Ŝ and P are convex polytopes and each β̂ ∈ Ŝ can be expressed as a

convex combination of the Nv elastic envelope vertexes β̂
α
that can be usefully referred

to the reference stress β̂
0
so obtaining:

β̂ = β̂
0
+

Nv∑
α=1

tαβ̂
α

tα ≥ 0
Nv∑
α=1

tα = 1 (7)

If the external loads increase by a real number λ the elastic envelope becomes λŜ :={
λβ̂e : β̂e ∈ Ŝ

}
. Note that the vertexes of the stress envelope could be a subset of the

2p vertexes of P.

2.3 The shakedown elastic domain

Following [12, 22, 9], the plastic admissibility condition is rewritten, in a weak form,
as ∫

Ω

δγϕ[σ] ≡ ∆κT
e ϕe[βe] = 0 ∀δγ ≥ 0, (8)

where ϕe[βe] :=
∫
Ωe

GTϕ[βe] and ϕ is the yield function.
Eq. (8) allows to control plastic admissibility in the Ne element so that β will be

plastically admissible if

ϕ[β] ≤ 0 ⇐⇒ ϕe[βe] ≤ 0, ∀e = 1 . . . Ne . (9)

Finally it is useful to express the plastically admissible condition for all the stresses
contained in the amplified elastic envelope λŜ translated by β̄. Due to the convexity of
ϕe and Ŝ this can be easily expressed in terms of the plastic admissibility of all vertex

stresses βα = λ(β̂
α
+ β̂

0
) + β̄

ϕ[λβ̂ + β̄] ≤ 0, ∀β̂ ∈ Ŝ ⇐⇒ ϕ[βα] ≤ 0, ∀α (10)

From now on we denote with a Greek superscript vertex quantities.

2.4 The static theorem in discrete format and the mathematical program-
ming point of view

The Bleich–Melan static theorem states that a load domain multiplier λs will be safe
if there exists a time–independent self-equilibrated stress field β̄ so that each stress in
λsŜ+ {β̄} is plastically admissible. The multiplier λa can be evaluated as the maximum
of these safe multipliers recasting the static theorems in terms of total stress, instead
of self–equilibrated ones, making possible a unified notation for shakedown and limit
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analysis, i. e.
maximize λs

subject to QTβ = λsp

ϕ[β + λsβ̂
α
] ≤ 0, α = 1 · · ·Nv

(11)

with p ≡ QT β̂
0
and β ≡ β̄+λsβ̂

0
. When β̂

0
= 0 we have the classic form in terms of the

self–equilibrated stress. Furthermore, without any loss in generality, we can set β̂
0
as a

generic vertex of Ŝ so β becomes the total stress of this vertex. We assume β̂
1 ≡ 0 and in

the follow we also put ϕα[β, λ] ≡ ϕ[β + λsβ̂
α
]. When the external load domain collapses

in a single point (amin
i = amax

i ) eqs.(11) directly transform into the standard form of the
static theorem of limit analysis.

The actual solution strategy can be implemented on the basis of a proximal point
method applied to (11) by definineg a sequences of subproblems or steps by adding a
quadratic terms to the objective function of Eq. (11)

maximize ∆ξ(n)λ(n) − 1

2
∆βTH∆β

subject to QTβ(n) − λ(n)p = 0

Φ[β(n), λ(n)] ≤ 0,

(12)

where the superscript (·)(n) will denote quantities evaluated in the nth step, the symbol
∆(·) = (·)(n)− (·)(n−1) is the increment of a quantity from the previous step and ∆ξ(k) > 0
is a real positive number and to simplify the notation we collect all ϕα[β, λ] in the global
vector Φ[β, λ] = {ϕ1, · · · ,ϕNv} while Φe[β, λ] is its counterpart at the element level.

H is the compliance matrix and is defined by the following equivalence

∑
e

βT
e Heβe = βTHβ with He :=

∫

Ωe

STC−1S (13)

Note that, due to the local nature of the stress interpolation H has a block diagonal
structure that couples only the local finite element stress variables.

2.5 The pseudo elastoplastic step equations

Introducing the dual multiplier ∆d and ∆κ associated to the equalities and inequalities
constraints respectively, each finite step is defined by the first order conditions of (12). In
the following we subdivide the step equations in the local equations, that is those defined
on the element, and in the global equations, that is those coming from the assemblage
of the contributions of all the elements. In the case of limit analysis these equations
exactly corresponds to a step of an arc-length algorithm used to solve the incremental
elastoplastic problem [4, 5]. For this reason it will be called the pseudo elastoplastic step.

In order to simplify the notation the superscript (n) will be omitted.
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2.5.1 First order conditions

From the stationary condition of the Lagrangian of (12) with respect to β and ∆κ we
obtain the plastic admissibility and plastic consistence conditions

{
rσ ≡ He∆βe −Qe∆de +Ae[βe, λ]∆κe = 0

rµ ≡ Φe[βe, λ] ≤ 0, ∆κe ≥ 0, ∆κe
TΦe[βe, λ] = 0,

(14a)

where Ae[βe, λ] :=
(

∂Φe[βe,λ]
∂βe

)T

. Eq. (14a) are expressed in terms of quantities defined

only at the element level, for this reason they constitutes the local equations of the prob-
lem.

In the same fashion the stationary condition with respect to ∆d and λ furnish the
equilibrium equations and the normalization condition, coupling all the variables of the
problem and define the global level of the analysis,

{
ru ≡ QTβ − λp = 0

rλ ≡ ∆ξ −∆dTp−∆κTΦ,λ = 0
(14b)

where Φ,λ :=
(

∂Φβ [β,λ]

∂λ

)
has zero first components due to the choice of β̂

0
= 0.

Eqs. (14) for H∆β = 0, apart from the inessential scaling for ∆ξ(k), are the primal–
dual conditions of the shakedown theorems. We refer to [6, 9] to prove this occurrence at
convergence.

3 A NEW SOLUTION SCHEME FOR THE PSEUDO-ELASTOPLASTIC
STEP

We will present now an application of the SQP method to solve Eq. (14). The algorithm
exploits the problem structure allowing its solution at the global level by means of a
Newton (Riks) scheme which is characterized by slight differences with respect to standard
SD-CPP formulations.

3.1 The linearized equations for the elastoplastic step and the sequential
quadratic programming (SQP) formulation

The estimate of the unknowns relative to the new step, z(n) = {λ(n),β(n),d(n),κ(n)},
will be denoted by zj+1 = zj + ż where, in order to make the notation simpler, the
superscript relative to the step number has been dropped leaving only the indication for
the current j–th iteration. The starting point for the new algorithm is the linearization
of the finite step equation (14) which yields for the local equations (14a)

{
−Hetβ̇e +Qeḋe −Aj

eκ̇e − λ̇aj
λ = −rj

σ,

Φe
j+1 ≤ 0 , κe

j+1 ≥ 0 , (κe
j+1)TΦe

j+1 = 0.
∀e (15a)

6
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where aj
λ = Ae,

j
λ ∆κe

j and

Het ≡ He +
∑
k

∆κek
∂Φek

∂βe

����
βe=βj

e

, Φe
j+1 ≡ Φe

j +Aj
e

T
β̇e +Φe

j,λ β̇e.

κj
ek and Φek are the kth components of ∆κj

e and Φe
j respectively, Moreover, the lineariza-

tion of the global finite step equations (4) gives:

{
QT β̇ − λ̇p = −rj

u

ḋ
T
p+ κ̇TΦ,jλ +ajT

λ β̇ + ajλλλ̇ = rjλ
(15b)

where ajλλ = ∆κTΦ,λλ.
Eq. (15) could also be obtained by applying a sequential quadratic programming (SQP)

approach to (14). However the solution of a QP sub-problems with a standard SQP
algorithm requires a great computational effort due to the coupling action exerted by the
equilibrium constraints. A method to efficiently solve Eq. (15) is that proposed in [9] and
briefly described in the following section.

3.2 The EC-SQP formulation

In the present proposal the SQP equations in (15) are solved by using an equality
constraint sequential quadratic programming (EC-SQP) approach [9]. Each iteration of
the EC-SQP approach consists of two phases: i) estimation of the active set of constraints;
ii) solution of an equality constrained quadratic program that imposes the apparently
active constraints and ignores the apparently inactive ones. The idea is to identify the
active constraints for the actual estimate of the solution using information available at a
point near to zj+1, a point which in the sequel will be denoted by z̄j+1.

3.2.1 The detection of the active set of constraints

The estimation of the active constraints is performed by advocating the decomposition
point of view, i. e. solving an optimization problem obtained by the original ones (15a)

for a fixed, properly assumed, value of the global variables: d̄
j+1

= dj and λ̄j+1 = λj.
The series of decoupled problems obtained in this way have the same form as a standard
CPP scheme and it can be easily solved at the local element level in a way as efficient as,
or also more, than the standard SD-CPP approach.

At the iteration j + 1 then the active set of constraints is obtained by solving (15a)
assuming ḋ = 0 and λ̇ = 0. The result is a problem that is now decoupled at the local
level, i. e. {

−Het
˙̄βe −Aj

e
˙̄κe = −rj

σ,

Φ̄e
j+1 ≤ 0 , κ̄e

j+1 ≥ 0 , (κ̄e
j+1)T Φ̄e

j+1
= 0.

∀e (16)

7
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where the symbols with a bar denote the estimates of the new quantities. In particular
Eqs.(16) are the first order conditions of the following QP problem:





min
(β̇e)

:
1

2
( ˙̄βe)

THet
˙̄βe + ( ˙̄βe)

Tgj,

subj.: AjT
e

˙̄βe +Φj
e ≤ 0,

∀e (17)

where gj = He(β̄e
j − β∗

e) and β∗
e = β(n−1)

e +H−1
e Qe∆dj

e. The decoupled QP problems
(17) can be efficiently solved at local level, by using the Goldfarb-Idnani active set method
[5]. The evaluation of the set of active constraints is then continuously updated with the
iterations and if ∆dj converges to ∆d(n+1) the active set converges to that of the nonlinear
problem.

3.2.2 The solution of the QP equality constraint scheme

After the detection of the set of active constraints, and assuming that this set is not
void, we have to solve Eqs. (15) by means of the following system of equations in which
only the residuals of the active constraints are considered:




· AjT
e · Φj

e,λ
−Aj

e −Het Qe −aj
λ

· QT
e · −pe

−(Φj
e,λ )

T −(aj
λ)

T −pT
e −aλλ







κ̇e

β̇e

ḋe

λ̇


 = −




rj
µ

rj
σ

rj
u

rjλ


 , zj+1 = zj + ż, (18)

where the further condition κj+1 ≥ 0 needs to be imposed.
System (18) is easily solved by static condensation of the local defined quantities. In

particular, recalling that the QP scheme in (17) solves the first two equations of (18)
zeroing the global variables we obtain

{
β̇e =

˙̄βe +H−1
et (Qeḋe − λ̇aj

λ)

κ̇e = ˙̄κe +WAT
j H

−1
et (Qeḋe − λ̇aj

λ),
(19)

where W =
[
AT

j H
−1
et Aj

]−1
. At the global level then we have to assemble the condensed

element contribution as

Ae

(
QT

e EtQe

)
ḋ− λ̇yj = −Ae

(
r̃j
u

)
, −pT ḋe − htλ̇ = −r̃jλ, (20)

where yj = p+Ae

(
QT

e Eta
j
λ

)
and

r̃j
u = rj

u +QT
e (Etr

j
σ −H−1

et AjWrj
µ) and Et = H−1

et −H−1
et AjWAT

j H
−1
et .

Et has the same expression as the algorithmic tangent matrix evaluated by standard
SD-CPP formulation and ht is obtained from the Gauss elimination process.

8
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System (20) is coincident with the iteration scheme proposed in [6] except for the new
definition of quantities r̃j

u. Note that Et and H−1
et AjW are evaluated at each step of the

QP problem, by the optimization algorithm used, so only the evaluation of r̃j
u and uj is

required. In the case of an element with zero active constraints the solution is obtained
from previous scheme by deleting the first row and column from system (18).

4 NUMERICAL RESULTS

To evaluate the performance of the proposed algorithm, several numerical tests have
been performed by analyzing 2D problems in plane stress/strain conditions and for dif-
ferent material. For each test a series of equilibrium paths at increasing values of the first
arc–length parameter are evaluated using the strategies better described in [9, 24, 5]).

The results are compared with the interior point algorithm IP-M proposed in [6, 23] and
with the algorithm in [6] (SD-CPP). In order to highlight the efficiency and the robustness
of each nonlinear strategy the following indicators are compared: (I) the number of points
furnished by the Riks analysis strategy in the evaluation of the equilibrium path (stps),
the number of false steps (when convergence is not reached within a maximum number of
loops) are reported in brackets; (II) the total number of the iterations required for each
step to converge (lps); (III) the total cpu time (CPU).

The finite elements used in the numerical tests are those proposed in [12, 22]. They
are four-node elements with a bi-linear interpolation of the displacement field and a 5-
parameter stress field interpolation and a piecewise-constant interpolation over some sub-
areas into which the internal area of the element is divided: one for the FC1 element
and four for the FC4 element. A comparison with a compatible four node element with
a bilinear interpolation for the displacements and 4 Gauss integration points, denoted by
Q4, is also presented.

The only test presented here regards a classical limit analysis problem for which the
geometry, the material, the applied loads and one of the meshes used in the analyses are
shown in Fig. 1. Plane stress condition is assumed and the collapse load multiplier is
compared with the value λc = 0.8006 obtained by several authors [5, 1].

Tab. 1 reports the results obtained with the three nonlinear algorithms for different
initial step size and the three finite elements. As can be observed the robustness of
the algorithm is good showing a smooth decrease in the number of required steps and
iterations according to the assigned step size. For the greatest initial step size it performs
the evaluation of the collapse state with a single step and without any loss in accuracy.
On the contrary the standard SD-CPP algorithm is adversely affected by the increase in
the step size registering occurrences of step failure already from the second size of the first
step increment. The IP-M confirms its robustness but also its unsuitability when used for
small step sizes.

9
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Figure 1: Plate with a circular hole.

5 CONCLUSIONS

In this paper the method presented in [9] for the incremental elastoplastic analysis has
been extended to shakedown. The method is based on a proximal point approximation of
the Melan static theorem that retains, at each iteration, all the variables of the problems.
In the solution process, based on the equality constrained approach, the set of active
constraints is obtained by solving a simple quadratic programming problem which has the
same structure and variables of a standard return mapping by closest point projection
scheme, i.e. it is decoupled and it can be solved at a local level. The solution of the
equality constraint problems is performed by means of a static condensation of the locally
defined variables, stress and plastic multiplier parameters, for which the inter element
continuity is not required so obtaining, at the global level, a pseudo-compatible scheme
of analysis that has the same structure as classic path following arc-length methods.

The numerical results are performed adopting the finite element interpolation proposed
in [22]. This finite element uses a three field interpolation with a good accuracy with
respect to both the elastic and elastoplastic response. This makes the proposed numerical
framework particularly suitable for shakedown analysis. The numerical results show a
great improvement in robustness and efficiency with respect to previous proposals.

The presentation and the application are limited to the perfect plasticity case but its
extension to other more complex associated cases is simple [2].
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Q4 FC1 FC4

stps lps CPU stps lps CPU stps lps CPU incr.
S
D
-C

P
P 15 (-) 54 2.23 15 (-) 54

1.63
16 (-) 68 2.69 5e-5

(1.16)
9 (1) 40 2.55 12 (2) 46 1.81 15 (3) 63 4.28 5e-4
11 (5) 45 4.19 11 (5) 43 2.60 14 (6) 60 8.26 5e-3
10 (8) 41 6.04 10 (8) 42 3.67 16 (10) 66 12.35 5e-2

E
C
-S
Q
P 15 (-) 57 1.46 15 (-) 55 1.17 16 (-) 71 1.56 5e-5

7 (-) 36 0.93 7 (-) 36 0.77 9 (-) 78 1.72 5e-4
2 (-) 21 0.56 2 (-) 22 0.49 2 (-) 48 1.07 5e-3
1 (-) 19 0.51 1 (-) 19 0.42 1 (-) 38 0.85 5e-2

IP
-M

20 (-) 118 2.58 20 (-) 114 2.46 5e-5
8 (-) 56 1.29 8 (-) 62 1.35 5e-4
2 (1) 32 1.95 2 (-) 32 1.03 5e-3
1 (1) 28 1.80 1 (-) 26 0.87 5e-2

Table 1: Plate with circular hole, mesh 12×12 (338 dofs). Analysis report, vA,max = 5e−3, toll = 1e−4,
desired = 12, max = 50. Computed collapse multiplier and relative error: λc = 0.8073 (0.84%) Q4;
λc = 0.8079 (0.91%) FC1; λc = 0.8030 (0.30%) FC4.
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