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Abstract. The Discrete Element Method (DEM) is appropriate for modeling granular 
materials [14] but also cohesive materials as concrete when submitted to a severe loading 
such an impact leading to fractures or fragmentation in the continuum [1, 5, 6, 8]. Contrarily 
to granular materials, the macroscopic constitutive behavior of a cohesive material is not 
directly linked to contact interactions between the rigid Discrete Elements (DE) and 
interaction laws are then defined between DE surrounding each DE. Spherical DE are used 
because the contact detection is easy to implement and the computation time is reduced in 
comparison with the use of 3D DE with a more complex shape. The element size is variable 
and the assembly is disordered to prevent preferential cleavage planes. The purpose of this 
paper is to highlight the influence of DE rotations on the macroscopic non-linear quasi-static 
behavior of concrete. Classically, the interactions between DE are modeled by spring-like 
interactions based on displacements and rotation velocities of DE are only controlled by 
tangential forces perpendicular to the line linking the two sphere centroids. The disadvantage 
of this modeling with only spring-like interactions based on displacements is that excessive 
rolling occurs under shear, therefore the macroscopic behavior of concrete is too brittle. To 
overcome this problem a non linear Moment Transfer Law (MTL) is introduced to add a 
rolling resistance to elements. This solution has no influence on the calculation cost and 
allows a more accurate macroscopic representation of concrete behavior. The identification 
process of material parameters is given and simulations of tests performed on concrete 
samples are shown.  

 
 
1 INTRODUCTION 

Designing large scale structures is a real challenge for engineers nowadays. Concrete is 
widely used in all sort of buildings which can be submitted to severe loadings due to material 
or anthropogenic hazards such as rock falls, explosions or missile impacts. Then it’s very 
important to make an efficient design of these structures under such loadings leading to 
locally discontinuous behaviour. 

The Discrete Element Method (DEM), based on the distinct element model [14] is 
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appropriate for modeling a granular material, when a discrete element represents a grain, but 
also cohesive materials as concrete. Contact and cohesive interactions are used, and each rigid 
DE has an interaction range around it. Interactions laws are then defined between DE 
surrounding each element. 

Using spherical geometry for discrete element is well suitable to keep the computational 
time as low as possible especially when large structures are considered. In this case, the 
contact detection algorithm is easier to implement than for ellipsoidal and polyhedral 
elements. Despite this advantage, an excessive rolling occurs under shear where the rotation 
velocities of DE are only controlled by tangential forces. Then the macroscopic behaviour of 
concrete is too brittle. Therefore to overcome this drawback, a non linear Moment Transfer 
Law (MTL) is introduced to add rolling resistance to discrete elements. By using the MTL, 
the calculation is kept low and the behaviour of concrete at the macroscopic scale is well 
represented. 

In this paper, the discrete element model will be firstly presented. Then the identification 
process of DE parameters will be described. The second part illustrates the Moment Transfer 
Law (MTL) used, and local parameters calibration is presented in order to reproduce 
experimental macroscopic behaviour. 

2 DISCRETE ELEMENT MODEL 

2.1 Model description 
The present numerical model has been described in [11]. Each element is a rigid sphere 

with an individual mass and radius. To provide a polydisperse assembly with a particular size 
distribution, a geometrical algorithm using disorder technique generates a random distribution 
of centroids of spheres [4]. Then pairs of initially interacting discrete elements are identified 
by mean of two types of interactions: contact and cohesive links. These ones are defined by 
two stiffnesses, normal K� and tangential K� characterizing the elastic behavior of concrete. 
Then “Micro-macro” relations [11], which give these local stiffnesses, come from 
homogenized models [13] used for regular assemblies, but they have been modified to be 
adapted for disordered assemblies. Equation (1) shows these relations between two spheres a 
and b, where D�������  represents the initial distance between two elements and  S��� is the 
interaction surface. Also α, β, γ parameters will be identified by quasi-static tests. 
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           (1)

Then to model the non-linear behavior of concrete, two local criteria for rupture are used 
((2) and (3)). 
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� f��F�, F�� � F� � t�n�Φ�� F� �	S���C�																	�Sliding	criterion�																																							���	
	f��F�, F�� � S���� � F�																																												��en�ile	r��t�re	criterion�																							���		 

Where C� is the cohesion factor, Φ� the frictionnal angle, T the local tensile limit and ξ the 
softening factor that needs to be identified from global parameters such as compressive and 
tensile strengths σ� and σ� and fracture energy G�. Between elements in contact a classical 
Coulomb friction is used (Figure 1).  

 
Figure 1: Interactions law 

2.2 Identification procedure of parameters relative to the behavior 
A procedure for identifying all material parameters based on simulations of quasi-static 

compression and tension tests has been defined [11]. The number of discrete elements must be 
as small as possible to maintain a reasonable computation time. The specimen must be 
representative of the real behavior, so it should contain enough elements to guarantee a 
minimum number of links along with a correct distribution. The radius of interaction is 
chosen such that the average number of interactions per DE equals 12. This value is the 
average number of links present in a regular Face-Centered-Cubic assembly of elements, and 
by using this value privileged directions of interactions are prevented, then an isotropic 
distribution is ensured. 

After carrying out tests using the α, β, γ parameters for some values of KS/KN, the ratio 
E/E0 and the Poisson’s ratio were computed (a KS/KN = 1 yields the E0 value). We should find 
the α, β, γ values that give the best-fit approximation (Figure 2). 

Figure 2: Comparison of theoretical and numerical values of Poisson’s ratio and Young’s modulus 
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After identifying the linear parameters, is applied the process to determine actual concrete 
parameters. Figure 3 shows the flowchart of the identification procedure in order to obtain 
local parameters. Quasi-static tensile tests allow identifying the local tensile strength T and 
the softening parameter ξ. During a subsequent approach, compressive tests provide the 
appropriate cohesion parameter Co. All these tests are simulated and compared with respect to 
an experimental behavior of concrete, and then the parameters are calibrated in order to 
reproduce it. Notice that after carrying out several tests, it has been found that the two local 
parameters Φ� and Φ� have almost no influence on the macroscopic behavior of concrete. 

 
Figure 3: The identification process 

3 MOMENT TRANSFER LAW 

3.1 Drawback of DE model 

A quasi-static compression test has been simulated by mean of the DE model described 
before. Once we have calibrated the interaction range, the parameters relative to the linear 
behavior has been established, then a quasi-static compression simulation has been done. The 
behavior obtained numerically is too brittle as shown in Figure 4. 

 
Figure 4: Compression test with DE model 
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This can be explained by the excessive rolling happening under shear due to the circular 
shape of discrete elements despite its advantage of keeping low cost of calculation. Therefore 
two solutions can be introduced to ensure a sufficient ductile behavior of concrete. The first 
one is to increase the interaction range for each element, so the interaction radius should be 
increased. By this way the numerical specimen has a higher strength and the behavior is more 
ductile. Figure 5 shows the results of quasi-static compression with two values of the average 
of interactions per DE: 12 and 24.  

 
Figure 5: Influence of the interaction range on the numerical quasi-static compressive behavior of concrete  

By increasing the value of the mean number of interactions from 12 to 24, we found that 
the compressive strength increases three times (from 35 MPa to 112 MPa), even the behavior 
becomes more ductile. We should notice that before simulating the non linear behavior for 
each case, the elastic parameters should be calibrated. The main disadvantage of this solution 
is the big computational cost when we increase the interaction range from 12 to 24 i.e. for a 
sample of 4850 DE it increases 5 times. Therefore we cannot adopt this choice because when 
simulating the behavior of full structure by mean of 3D DE, the computational time will be 
very huge especially it is considered as a main challenge at the scale of structure.    

An alternative solution is to act upon the rotations of elements by adding certain rolling 
resistance between them. In the next, we will detail the description of the Moment Transfer 
Law (MTL) which defines the model of rolling resistance of DE. 

3.2 Description of the MTL 
Several previous researches have introduced the MTL between elements in contact for 

granular medium [3, 10], and they showed its capability to well estimate the shear resistance 
of the granular material by reproducing an appropriate value of friction angle [2]. Otherwise 
in our case of cohesive material, The rolling resistance model used is similar to that proposed 
in [7, 12], but also adapted to the concrete behavior in order to take into account the MTL for 
links between two remote elements. The MTL introduced later has been implemented within 
the Europlexus code which is a code being jointly developed since 1999 by CEA (CEN 
Saclay, DMT) and EC (JRC Ispra, IPSC) under a collaboration contact. The code uses an 
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explicit algorithm and it is best adapted to rapid dynamic phenomena such as explosions, 
impacts, crashes etc. 

Relative rotation between two DE controls the phenomenon of rolling. In the case of 
identical elements, it is obtained by the differential rotation between the two elements. But it 
is not the case for a polydisperse distribution mesh where the size of elements should be taken 
into account. Then we consider two spheres A and B having radius respectively rA and rB at 
two instants t  and t+dt in the global reference G (Figure 6). 

 
Figure 6: Contact evolution between two DE for two time steps t and t+dt 

 The positions of material points MA and MB,  with respect to the new contact point C’ are 
given by the sum of translation and rotation vectors: 

��������������� � 	����	���������� 	� 	��������������� 	� 	 ��	����� � ������� � �� �� ������� � ����
��������������� � 	����	����������� 	�	���������������� � 	 ��	����� � ������� � �� �� ������� � ���� (4)

By supposing that the dispersion of radius is not so big, we can express the incremental 
displacement vector �����������, caused by the rolling process as following: 

���	��������� � 	����	������������ �	����������������	
2 	 (5)

The rolling phenomenon is due to the relative rotation of elements and is defined by the 
incremental rolling vector �����������. We define first the unitary vector ������������� oriented along �����������: 

������������� � 	 ������ 	� 	�����������	
������� 	� 	�����������	� (6)

The incremental rolling angular vector is given by: 

���������� � 	 �������������
� �������������	 (7)

Where r = min(rA, rB) 
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We define the angular vector of rolling by summing up the increments �����������. Using this vector 
we express later the resistant moment to reduce the rolling: 

������ = ∑���������� (8)

Then a constitutive law associated to the MTL should be defined and able to reproduce elastic 
and plastic behaviors. An elasto-plastic model is introduced for rolling moment (Figure 7a) 
where the elastic part is linear and described by the rolling stiffness Kr and the plastic one is 
defined by the plastic limit Mplas. In the plastic domain, an elastic recovery happens under 
unloading along a linear part with the same intial rolling stiffness Kr. 

 

 
(a)                                                                                             (b) 

         Figure 7: (a) Elasto-plastic model for rolling moment   (b) Beam model for cohesive link resistant moment 

Then was considered the general case of two remote DE where Dab is the distance between 
the centroids of 2 DE. The link is considered equivalent to a beam having circular section 
with a radius r = min (rA, rB). We define a contact point at the middle of the net distance 
between the two spheres (Figure 7b), and then each one has an updated radius as following: 

�
��� � 	 �� �	12	���� � ��� �	���
��� � 	 �� �	12	���� � ��� �	���

 (9)

By using the strength of materials rules, the bending moment around the z-axis is provided 
by: 

�� � 	�	���	��� � 	�	��� 	����� 	� 	
��� � ���
�� � �� 	 (10)

Where Izz is the quadratic inertia corresponding to the z-axis, and E the Young’s modulus. By 
analogy with the case of rolling, we can simply replace xA – xB by Dab and y’A – y’B by the 
relative rolling between the two spheres dθ = θA – θB. Then the rolling stiffness is proportional 
to the term   ��������. A factor βr can be introduced here to control the rolling resistance 
added as in reality with different types of constituent materials a concrete has different shear 

581



A. Omar, P. Marin, S. Potapov and L. Daudeville. 

 8

resistance, therefore numerically different rolling resistance can be added. Then the rolling 
stiffness can be expressed as (11): 

�� � 	�� 	����� 			 (11)

Also the plastic limit of rolling moment is proportional to the factor σI����	
where σ can be replaced by the local tensile strength T, and v by the radius r of the section. 
Therefore by adding a factor η to control the plastic limit, this one can be defined as (12): 

����� � 	η	 ����� 	 (12)

Notice that the torque effect on the beam link is not taken into account. 

3.3 Study of the identification of linear behavior with MTL 
First of all, a sufficiently refined mesh has been chosen for the identification process, and 

later a verification of the obtained parameter values has been carried out for finer meshes. A 
0.4m×0.2m×0.2m specimen has been used for simulating quasi-static compression tests. It 
contains 8630 DE with a mean radius of 0.6 cm and a compactness of 0.604. 

 

 
           (a)                                                                                        (b) 

Figure 8: (a) DE mesh of the sample (b) Radius distribution of the DE mesh 

Figure 8b shows that the most of the DE are of small size providing a higher compacity. 
After applying the linear identification process for different values of rolling resistance factor 
βr, we obtained the results shown in Table 1: 

Table 1: Linear identification sensibility to the rolling resistance factor βr 

βr α β γ 
1 to 40 4.4 3.3361 4.57 

Table 1 shows that the same values of linear parameters α,β et γ are valid for a wide range 
of values rolling resistance factor βr (1 to 40). We didn’t make verification for a larger range 
as the linear identification is expensive to be carried out. But in all cases we will show in the 
following that we don’t need for a value of βr higher than 40 to reproduce the real behavior of 
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concrete. Thus a verification of these values obtained for different mesh refinements (Table 2) 
has been performed in order to reproduce the chosen characteristics: Young’s modulus E=30 
GPa and Poisson’s ratio ν=0.21. 

Table 2: Different mesh refinements 

Mesh number Compactness Number of DE Rmean (cm) 
4 0.604 8630 0.6 
5 0.612 15890 0.49 
6 0.613 23334 0.43 
7 0.619 47140 0.34 

 

 
(a)                                                                              (b) 

Figure 9: Reproduction of ν (a) and E (b) for different mesh refinements 

      Figure 9 shows an appropriate reproduction of linear characteristics of concrete for 
different mesh refinements. The maximum error of estimation of E is about 4.3% and 1.05% 
for ν. Otherwise, several meshes with different specimen shapes has been carried out, and the 
reproduction of linear characteristics has been verified (Table 3). 

Table 3: Different specimens used for the study of reproducibility 

Specimen Nb Height (m) Width (m) Larger (m) E (GPa) ν 

1 0.6 0.3 0.3 31.1 0.2077 

2 0.4 0.4 0.4 31.3 0.2105 

3 0.25 0.25 0.25 29.1 0.2134 

4 0.32 0.5 0.5 30.8 0.198 

According to Table 3, the maximum error for estimating E is about 3.6% and 5.7% for ν. 
Thus we can say that the reproducibility is acceptable. 

583



A. Omar, P. Marin, S. Potapov and L. Daudeville. 

 10

3.4 Identification of the non linear behavior with MTL 
This procedure has been applied in order to identify local parameters of a regular concrete 

[9]. Numerous triaxial tests were performed on it, and here an unconfined compression test is 
presented for the identification of the DE model. The concrete has a Young’s modulus of 30 
GPa and Poisson’s ratio of 0.21. 

Before carrying out the identification process, the effect of LTM parameters on the 
macroscopic behavior of concrete should be investigated. 

 
(a) (b) 

Figure 10: Influence of MTL parameters on the compressive behavior of concrete 

By reading the curves in Figure 10a, it is clear that for each value of rolling resistance there 
is a certain plastic limit factor η giving the maximum compressive strength and ductility for 
the macroscopic behavior. Also by increasing the rolling stiffness, the compressive strength 
becomes higher and the behavior converges to the limit state where the rotations of the DE are 
blocked (Figure 10b). 

On the other side, the MTL has no big influence in traction. As shown in Figure 11, by 
using the MTL the tensile strength increases little bit and the behavior becomes more britlle. 

 
Figure 11: Influence of MTL on the tensile behavior 
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The compression strength of concrete is σ� � ������ obtained by an unconfined 
compression test. The tensile strength is σ� = 5 MPa given by a Brazilian test, then the ratio 
σ�/σ�  is about 13. This big value is mainly due to the high Poisson’s ratio. Therefore 
reproducing the experimental behavior in this case is not possible by mean of the initial DE 
model without MTL. Indeed, the value of the softening factor ξ must be increased, so the 
maximum tensile strain at rupture becomes high. 

The strategy of identification starts by fixing a value of the rolling stiffness factor ��. For a 
high ratio σ�/σ�, �� � �� is an appropriate value for the identification process because it 
ensures the required ductility and at the same time it increases well the numerical compressive 
strength. Regarding the plastic limit factor of rolling, an introductory value η = 600 can be 
adopted according to Figure 10a. Moreover, the identification process of the non linear 
behavior has been carried out by using MTL parameters β = 15 and η = 600. The local 
parameters found are shown in Table 4: 

Table 4: Local non linear parameters identified 

T (MPa) C (MPa) ξ �i �c 
3.8 15 14 5° 30° 

The results of tensile and compression tests are shown in Figure 12. 

(a) (b) 

Figure 12: (a) Compressive test  (b) tensile test 

4 CONCLUSION 
The MTL introduced is a gainful tool that can be used to well reproduce the macroscopic 

behavior of a cohesive material like concrete. It overcomes the britlle behavior that appears 
due to the spherical shape of DE, but also maintains the computational cost low which is 
useful for the challenge of time cost at the full structure scale modelisation. Also for a 
concrete with a high Poisson’s ratio where the ratio of compressive over tensile strengths is 
high, then using MTL reproduce well the high value of compressive strength while keeping 
the tensile strength without a big change. This model has been used for the quasi static 
macroscopic behavior, but also dynamic tests at the structure scale will be further presented. 
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