
IS - Numerical Modelling of Concrete Structures					   

3D numerical model of a confined fracture test in concrete 						    

XII International Conference on Computational Plasticity. Fundamentals and Applications 
COMPLAS XII 

E. Oñate, D.R.J. Owen, D. Peric and B. Suárez (Eds) 

3D NUMERICAL MODEL OF A CONFINED FRACTURE TESTS IN 
CONCRETE

O. MONTENEGRO1, D. SFER2, C.M. LÓPEZ1 AND I.CAROL1

1Department of Geotechnical Engineering and Geo-Sciences 
ETSECCPB (School of Civil Engineering)-UPC (Technical Univ. of Catalonia), 08034 Barcelona 

2Universidad Nacional de Tucumán, Argentina 
E-mail: oscar.montenegro@upc.edu, sfer@herrera.unt.edu.ar, carlos.maria.lopez@upc.edu,

ignacio.carol@upc.edu

Keywords: Fracture test, fracture energy, zero-thickness interface elements.

Abstract. The paper deals with the numerical simulation of a confined fracture test in 
concrete. The test is part of the experimental work carried out at ETSECCPB-UPC in order to 
elucidate the existence of a second mode of fracture under shear and high compression, and 
evaluate the associated fracture energy. The specimen is a short cylinder with also cylindrical 
coaxial notches similar the one proposed by Luong (1990), which is introduced in a large-
capacity triaxial cell, protected with membranes and subject to different levels of confining 
pressure prior to vertical loading. In the experiments, the main crack follows the pre-
established cylindrical notch path, which is in itself a significant achievement. The load-
displacement curves for various confining pressures also seem to follow the expected trend 
according to the underlying conceptual model. The FE model developed includes zero-
thickness interface elements with fracture-based constitutive laws, which are pre-inserted 
along the cylindrical ligament and the potential radial crack plane. The results reproduce 
reasonably well the overall force-displacement curves of the test for various confinement 
levels, and make it possible to identify the fracture parameters including the fracture energies 
in modes I and IIa.

1 INTRODUCTION 
Mode I fracture in concrete, including the corresponding energy parameter GF

I are 
concepts nowadays well established with a number of papers published in the literature. 
However, mixed mode fracture involving shear and, especially, confined mixed mode fracture 
under shear-compression, has received much more limited attention. In 1990 Carol and Prat 
introduced and later developed [1,2] the concept of asymptotic shear–compression mixed 
mode or mode IIa, in which very high compression  across the fracture plane prevents any 
dilatancy and forces the crack to propagate sensibly straight, cutting through aggregates and 
matrix. In later conference papers [3,4] a specific experimental program conceived to 
elucidate the existence of such mode IIa and calibrate the corresponding fracture energy, 
GF

IIa, were described.
In the current paper, those results are summarized, and attention is focused on on-going 

numerical studies aiming at the full interpretation of those experimental results. 
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Figure 6: Experimental curves for 2, 4 and 8 MPa confining pressure.
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Figure 7: Evolution of dissipated energy on the fracture planes, for confining pressures  of 8, 4 y 2 MPa (from 
top to bottom), and at three stages of the corresponding load-displacement curves of Figure 6: peak loads (left), 

intermediate point in descending branch (center), and residual state (right). 
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The figure shows that, for the three cases considered, at the final (residual) state, the 
normalized energy spent over the ligament Wcr/Gf

I approaches the maximum value Gf
IIa/Gf

I in 
the input data (80). This means that, effectively, the entire ligament is in residual state. Over 
the entire shear process, the state over the whole ligament seems to develop quite uniformly. 

With regard to the radial crack, it is apparent that for the case of higher confinement, in 
which the dilatancy is lower, only a small portion of this crack is activated, while for lower 
confinement almost the entire crack is opening. In Figure 8, the state of the radial crack is 
represented in more detail, with a different scale of colors (maximum value Wcr/Gf

I =1, since 
due to symmetry this cracks opens in pure tension). The lower scale values make it also 
possible to discriminate among different opening levels in the various areas of the crack 
plane. Note the negative sign in the lower scale limits, that in the convention used means 
arrested crack (while the absolute value indicates the amount of energy spent at that point 
during the loading phases before the current unloading). In the figure, the upper part of 
specimen clearly shows a more pronounced tensile opening, while the general level of 
dissipation is much lower than the circumferential ligament, barely reaching the mode I 
fracture energy Gf

I which is anyway the limit value of that can be spent in pure tension before 
the crack is totally open. 

       
Figure 8: Dissipated energy contours on the radial crack plane in the residual state, for the three confinement 

levels of 2 (right), 4 (center) and 8 (left) MPa. 

5 CONCLUDING REMARKS  
Numerical modeling of a confined fracture test for concrete specimens has been presented. 
The numerical model, representing fracture via zero-thickness interface elements, leads to 
realistic results, showing the capabilities of this approach to model fracture under a variety of 
situations. The numerical results obtained turn out useful in this case to understand the stress 
state occurring in the specimen, and crucial to calibrate the corresponding fracture energy 
parameter. As important outcomes of the overall study, it is confirmed that a shear-
compression crack can be indeed obtained along the pre-determined fracture surface, and that 
the application of increasing confining pressure seems to leads to the desired mode IIa crack 
with no dilatancy and associated parameter Gf

IIa, as previously predicted in a theoretical 
context [2]. 
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