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Abstract. A new combined strategy to describe failure of quasi-brittle materials is
presented thus allowing the complete description of the process, from initiation of damage
to crack propagation.

For the early stages of the process, and in order to overcome the well-known problems
characterising local descriptions of damage (e.g. mesh-dependence), a gradient-enhanced
model based on smoothed displacements is employed. In order to deal with material sepa-
ration, this continuous description is coupled to a cohesive crack when damage parameter
exceeds a critical value.

Some difficulties may arise when dealing with the transition from regularised damage
models to evolving cracks: crack initiation, crack-path direction, energetic equivalence...
In this work, a discrete cohesive crack is introduced when the damage parameter exceeds
a critical value. On the one hand, and to determine the crack-path direction, the medial
axis of the already damaged profile is computed. That is, a geometric tool widely used in
the computer graphics field is used here to track the crack surface. Since this technique
is exclusively based on the shape of the regularised damage profile, no mesh sensitivity
is observed when determining the crack direction. On the other hand, and to define the
cohesive law, an energy balance is imposed thus ensuring that the fracture energy not yet
dissipated in the damage zone is transferred to the crack.

1 INTRODUCTION

In order to simulate failure of quasi-brittle materials —concrete, for example— two
different points of view can be used: damage and fracture mechanics.
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On the one hand, continuous models for failure analysis —damage or softening plasticity—
can be used to describe the early stages of the failure process. They are based on a
strain-softening phenomenon which leads to an ill-posed problem when the peak in the
stress-strain curve is reached. As a consequence, numerical simulations present a patho-
logical mesh sensitivity thus leading to physically unrealistic results. To overcome this
physically unrealistic behaviour, different remedies can be found in the literature. One
of these possible solutions consists of using a gradient-type formulation [1, 2]. However,
despite this regularisation, non-local continuum failure models cannot deal with displace-
ment discontinuities and thus cannot handle cracks.

Furthermore, dealing with material separation and explicitly modelling the crack ge-
ometry is suitable for many applications. For instance, in hydraulic fracturing processes
—such as magma-driven dykes and fracturing of oil and gas reservoirs— the hydraulic
pressure depends on the shape of the crack and in rock fracture mechanics, the explicit
simulation of cracks allows to model the permeability for fluid movement.

On the other hand, discontinuous models incorporate discontinuous displacement fields,
thus leading to the necessity of dealing with formation and growth of cracks. To charac-
terise these propagating discontinuities, different techniques, mainly based on the cohesive
crack concept [3], have been developed. From a numerical viewpoint, as reviewed in [4],
special techniques have to be used to deal with propagating cracks, such as the eXtended
Finite Element Method (X-FEM) [5,6]. However, as discussed in [7], discontinuous models
cannot be used for modelling the first stages of failure, since they are not able to describe
neither damage inception nor its diffuse propagation.

As suggested by the above discussion, combining these two theories —damage and
fracture— is a way to achieve a better characterisation of the whole failure process.
Different contributions in this direction can be found in the literature, see [7–12].

In this paper, a new combined approach is presented. First, an implicit gradient-
enhanced continuum model based on smoothed displacements is used to simulate the
initial stages of failure. Then, it is coupled to a discontinuous model to capture crack
initiation and its propagation. Special emphasis is placed on the transition process. On
the one hand, and in order to conserve the energy dissipation through the change of
models, an appropriate cohesive law must be defined. On the other hand, the direction of
the crack path should be determined. Here, a new strategy is proposed: the discontinuity
is propagated following the direction dictated by the medial axis of the damaged domain.
That is, a geometric tool, widely used in the computer graphics field, is used here to locate
cracks.

1.1 Outline

An outline of this paper follows. The proposed continuous-discontinuous model is
presented in Section 2. Firstly, in Section 2.1, the continuous gradient-type formulation
is presented. Secondly, in Section 2.2, the coupling to the discontinuous problem fields
is described. Section 3 deals with two important issues concerning the transition from
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the continuum to the discrete strategy: the definition of the cohesive law —Section 3.1—
and the determination of the crack path —Section 3.2—. The capabilities of this new
technique to locate cracks are illustrated by means of different tests in Section 4. The
concluding remarks of Section 5 close the paper.

2 MODEL FORMULATION

2.1 Continuous damage model with smoothed displacements

To simulate the first stages of a failure process, we propose to use an implicit gradient-
enhanced continuum model based on smoothed displacements. The idea of this model
was presented and illustrated by means of a one-dimensional example in [13]. For the sake
of simplicity, here, only scalar damage models are considered. Nevertheless, as discussed
in [14], smoothed displacements can be easily extended to a general framework.

In this model, two different displacements are used: (a) the standard or local displace-
ment field uuu and (b) the gradient-enriched displacement field ũuu, which is the solution of
the partial differential equation

ũuu (xxx)− �2∇2ũuu (xxx) = uuu (xxx) (1)

where the diffusion parameter � has the dimension of length.
Hence, the key idea of this alternative formulation is to use this regularised displace-

ment field to drive damage evolution, see Table 1 for details.

Table 1: Gradient damage model based on smoothed displacements.

Constitutive equation σσσ (xxx) = (1−D (xxx))CCC : εεε (xxx)

Strains εεε (xxx) = ∇suuu (xxx)

Smoothed displacements ũuu (xxx)− �2∇2ũuu (xxx) = uuu (xxx)

Smoothed strains ε̃εε (xxx) = ∇sũuu (xxx)

Smoothed state variable Y (xxx) = Y (ε̃εε (xxx))

Damage evolution D (xxx) = D(Y )

This alternative formulation requires additional boundary conditions for the smoothed
displacement field ũuu. Prescribing boundary conditions at the level of displacements (rather
than the internal variable) seems easier to interpret. As discussed in [15], we propose here
to use combined boundary conditions —Dirichlet boundary conditions for the normal
component of the displacement field and non-homogeneous Neumann boundary conditions
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for the tangential components—,

ũuu · nnn = uuu · nnn
∇ (ũuu · ttt1) · nnn = ∇ (uuu · ttt1) · nnn
∇ (ũuu · ttt2) · nnn = ∇ (uuu · ttt2) · nnn







on ∂Ω (2)

where nnn denotes the outward unit normal to Ω and ttt1, ttt2 are tangent vectors such that
{nnn, ttt1, ttt2} form an orthonormal basis for R3.

2.2 Continuous-discontinuous damage model with smoothed displacements

To simulate the last stages of a failure process, we propose to couple the implicit
gradient-enhanced model based on smoothed displacements with propagating cracks.

In this final stage of the process, the bulk Ω is bounded by Γ = Γu ∪ Γt ∪ Γd, as shown
in Figure 1. Prescribed displacements are imposed on Γu, while tractions are imposed on
Γt. The boundary Γd consists of the boundary of the crack.

Figure 1: Notations for a body with a crack subjected to loads and imposed displacements.

The key idea of this combined strategy is to characterise the problem fields —both
local and non-local displacements— by means of the X-FEM. Indeed, and with X-FEM,
uuu and ũuu can be decomposed as

uuu (xxx) = uuu1 (xxx) + ψ (xxx)uuu2 (xxx) (3a)

ũuu (xxx) = ũuu1 (xxx) + ψ (xxx) ũuu2 (xxx) (3b)

where uuui, ũuui (i = 1, 2) are continuous fields and ψ is the sign function centred at the
discontinuity Γd (equals to 1 at one side of the discontinuity and equals to −1 at the
other one). Note that, the continuous parts uuu1 and ũuu1 correspond to the displacement
field without any crack, while the additional discontinuous fields ψuuu2 and ψũuu2 model the
crack.

In the continuous-discontinuous model with smoothed displacements, the regularisa-
tion PDE (1) is employed to incorporate non-locality. Therefore, appropriate boundary
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conditions for ũuu must be defined. Here, combined boundary conditions

ũuui · nnn = uuui · nnn
∇

(
ũuui · ttt1

)
· nnn = ∇ (uuui · ttt1) · nnn

∇
(
ũuui · ttt2

)
· nnn = ∇ (uuui · ttt2) · nnn





on Γ (4)

where i = 1, 2, are prescribed for the continuous displacement fields ũuu1 and ũuu2.

3 TRANSITION

The combination of the two traditional approaches —damage and fracture mechanics—
enables to obtain a better description of the whole failure process but introduces several
difficulties.

3.1 Cohesive model

When introducing a discontinuity in the bulk, the properties of the cohesive crack
should be defined. The strategy here used is based on the idea that the energy that
would be dissipated by a continuum approach is conserved if a combined strategy is used,
see [10, 16].

Consider first the continuous approach and a damaged band λD. Then, in this zone of
the structure, the dissipated energy can be expressed as

ΨC =

∫

λD

ψC dΩ =

∫

λD

∫ tf

0

σσσC · ε̇εεC dt dΩ (5)

where the subscript C stands for Continuous strategy and ε̇εεC is the strain rate tensor.
Consider now the combined approach. In λD, the dissipated energy can be decomposed

into two contributions

ΨCD = Ψbulk
CD +Ψcrack

CD =

∫

λD

∫ tf

0

σσσCD · ε̇εεCD dtΩ +Ψcrack
CD (6)

where the subscript CD stands for Continuous-Discontinuous strategy, Ψbulk
CD is the dissi-

pated energy of the bulk and Ψcrack
CD is the fracture energy.

Therefore, imposing energy balance ΨC = ΨCD, the fracture energy

Ψcrack
CD = ΨC −Ψbulk

CD (7)

is computed and can be transferred to the crack at the moment of the transition.
To estimate the fracture energy, different techniques can be employed. In [10], an

analytical estimation of Ψcrack
CD , and thus, of the crack stiffness, is computed. Nevertheless,

with this procedure, the fracture energy is overestimated. Indeed, by means of these
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(a) (b)

Figure 2: Energy not yet dissipated in the damage band which is transmitted to the cohesive crack and
is dissipated by the continuous-discontinuous model, considering that by the continuous strategy, (a) all
the points of λD download following the softening branch and (b) points of λD download following both
softening and elastic branches.

assumptions, in all points across the damage band λD, the energy ΨC −Ψbulk
CD depicted in

Figure 2(a) is transferred to the crack. However, in some of these points, the continuous
strategy would dissipate less energy, see Figure 2(b).

As suggested by this discussion, we propose to employ a new strategy which takes
into account, for each point across the damage band λD, the unloading behaviour (both
softening and secant) of the continuous bulk. Since the continuous unloading branch is
only known up to the activation of the continuous-discontinuous strategy, we propose
to approximate it by the tangent to the transition point. By means of this strategy,
the dissipated energy Ψcrack

CD is more accurately estimated, although it cannot be exactly
computed.

3.2 Direction of crack growth

One important issue concerning the transition from the continuous to the discontinuous
approach is the location of a crack and the definition of the direction along which it
propagates. Regarding combined approaches, fracture mechanics cannot be employed,
since the critical imperfection from which cracking initiates is unknown. Therefore, other
criteria should be used.

Traditionally, determining the direction of crack growth is tackled from a mechanical
point of view. Here, an alternative way of defining the direction of crack growth is
presented. The key idea of this alternative method is to collapse a damaged zone —
which can be understood as a crack of thickness equal to the damaged band— into a
zero-thickness crack that propagates through the middle of the regularised bulk. This
idea —going through the middle of a given domain— can be directly formalised by means
of the medial axis concept, a geometric tool widely used in image analysis, see [17].
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4 NUMERICAL EXAMPLES

To illustrate the capabilities of this combined approach, two different examples are
carried out.

4.1 Three-point bending test

To begin with, a three-point bending test is considered, see Figure 3. The geometric
and material parameters are summarised in Table 2. Here, the simplified Mazars damage
model [18]

Y =

√√√√ 3∑
i=1

(max(0, εi))
2 (8)

with εi (i = 1, 2, 3) the principal strains is considered. The exponential damage evolution
law

D(Y ) = 1− Y0

Y
exp−β(Y−Y0) (9)

is taken into account.

Figure 3: Three-point bending test: problem statement.

Figure 4 shows the obtained results in terms of damage profiles and deformation pat-
terns (amplified by a factor of 100) for some increasing imposed forces F . Firstly, the
continuous gradient enhanced damage model with smoothed displacements is used, see
Figures 4(a)-4(b); as soon as damage exceeds a critical value, a propagating crack is in-
troduced, see Figures 4(c)-4(f). The simplified medial surface allows to locate the crack
where expected.
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Table 2: Three-point bending test: geometrical and material parameters.

Meaning Symbol Value

Length of the beam L 3 mm
Height of the beam h 1 mm
Young’s modulus E 30 000 MPa
Damage threshold Y0 10−4

Slope of the stress-strain relation β 121.93
Poisson’s ratio ν 0.00
Characteristic length � 0.01 mm

4.2 Four-point bending beam

As a second example, the four-point bending beam numerically analysed in [19] is
reproduced, see Figure 5. In view of the central symmetry of the problem, only one half
of the specimen has been discretised. The material parameters are summarised in Table
3.

Here, the truncated Rankine damage model,

τ =
3

∑

i=1

max(0, τi) (10)

with τi (i = 1, 2, 3) the principal effective stresses with an exponential damage evolution
law

D(τ) = 1− τ0
τ
exp

− 2H
τ0

(τ−τ0) (11)

is considered.

Table 3: Four-point bending beam: material parameters.

Meaning Symbol Value

Young’s modulus E 30 GPa
Damage threshold τ0 2 MPa
Fracture energy G 100 J/m2

Poisson’s ratio ν 0.2
Characteristic length � 0.3 cm
Softening parameter H 8.1× 10−3
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(a) (b) (c)

(d) (e) (f)

Figure 4: Three-point bending test, CD approach: for increasing imposed force F , damage profiles and
deformed meshes (× 100).

Figure 5: Four-point bending beam: problem statement (measures in centimetres).

For some increasing imposed displacements δ, damage profiles and deformation pat-
terns (amplified by a factor of 100) are shown in Figure 6. As seen, the continuous
gradient enhanced damage model with smoothed displacements is used for the first stages
of the process, Figures 6(a)-6(b). As soon as a critical situation is achieved, a crack that
propagates through the middle of the regularised bulk is introduced, see Figures 6(c)-6(f).
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(a) (b) (c)

(d) (e) (f)

Figure 6: Four-point bending test, CD approach: for increasing imposed displacements δ, damage profiles
and deformed meshes (× 100).

5 CONCLUDING REMARKS

A combined formulation to simulate quasi-brittle failure is proposed. It couples a
gradient-enriched formulation with an extended finite element approach. The main fea-
tures of this new continuous-discontinuous strategy are summarised here:

• To simulate the first stages of the process, an implicit gradient-enhanced continuous
model based on smoothed displacements is used.

• Once the transition criterion is fulfilled, a propagating crack is introduced. In order
to characterise the discontinuity, the eXtended Finite Element Method is used.

• Special emphasis should be placed on the transition process.

– Regarding the definition of the cohesive law, an energy balance is prescribed.
Hence, the energy that would be dissipated by a continuum approach is con-
served.

– Regarding the direction of the crack-growth a geometric criterion is proposed.
Here, the evolving crack propagates following the direction dictated by the
medial axis of the damage profile. Since the damaged bulk is regularised and
X-FEM is used, the crack path is completely independent of the finite element
mesh.
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