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Abstract. This paper addresses the multi-scale modeling of ductile fracture in mi-
crostructures characterized by a dispersion of hard and brittle heterogeneities in a softer
ductile matrix. An adaptive multi-level model is developed with different inter-scale trans-
fer operators and interfaces. Micro-mechanical analysis in regions of dominant damage is
performed to capture the important micro-mechanical damage modes that are responsible
for deterring the overall failure properties of these alloys. Regions of macroscopic homo-
geneity are otherwise modeled with constitutive relations derived from homogenization of
evolving variables in representative volume elements. These two length scales of analysis,
in conjunction with an intermediate swing level, form a three-level coupled multi-scale
model to capture ductile crack propagation. The capabilities of the proposed model are
demonstrated for a cast aluminum alloy.

1 INTRODUCTION

Over the past decades, several multi-scale models have been developed for predicting
the overall mechanical behavior of multi-phase materials. Homogenization methods use
asymptotic expansion to derive the macroscopic behavior of heterogeneous materials from
representative volume element (RVE) boundary value problems. Linear (first-order ho-
mogenization) or higher-order kinematic variables are incrementally applied on the RVE
boundary and the macroscopic stresses and state variables updated. While these methods
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are successful for problems involving moderate gradients in macroscopic field variables,
they fail to capture the localization of deformation and the micro-structural strain soft-
ening often associated with damage. Recently, more sophisticated methods have been
developed to overcome this limitation. They are based on the partition of the RVE into
two sub-domains, delineating the regions in which the material responses are stable and
unstable. The homogenization method for the unstable sub-domain is specific to the type
of damage considered and its accuracy strongly depends on the assumptions made in
defining the equivalent discontinuity transferred to the macro-scale.

This paper proposes an alternative method in which micro-mechanical analysis is per-
formed in regions of dominant damage, hence eliminating the need for homogenization
in sub-domains with an unstable material response. An adaptive multi-level model for
multi-scale analysis of ductile fracture in heterogeneous aluminum alloys has been de-
veloped by Ghosh and co-workers [1, 2, 3, 4, 5, 6, 7]. In this model, micro-mechanical
analysis is performed in regions of intense damage with LE-VCFEM for ductile fracture
[1, 2, 3], while macroscopic sub-domains are modeled with constitutive relations derived
from homogenization [4, 5, 6]. These two levels of analysis in conjunction with an inter-
mediate swing level form a three-level coupled multi-scale model to capture ductile crack
propagation in multiple phase materials [7].

An overall description of the multi-level model developed in [1, 2, 3, 4, 5, 6, 7] for multi-
scale analysis of ductile fracture is first presented in Section 2. Adaptivity criteria used for
evolution of the multi-level model are detailed in Section 3, while the numerical scheme
used to couple the different levels is addressed in Section 4. Finally, the capabilities of the
proposed model are briefly illustrated in Section 5 for a cast aluminum microstructure.

2 LEVELS IN THE MULTI-SCALE MODEL

The multi-phase material computational domain Ωhet is adaptively decomposed into
a set of non-intersecting sub-domains, denoted by level-0, level-1, level-2, and level-tr,
i.e. Ωhet = Ωl0 ∪ Ωl1 ∪ Ωl2 ∪ Ωtr. The different levels of computational hierarchy are
depicted in Figure 1 and follow the nomenclature adopted in [8] for multi-scale analysis of
microstructurally debonding composites. Concurrent multi-scale analysis requires that all
levels be coupled for simultaneous solving of variables in the different sub-domains. The
algorithmic treatments corresponding to each level, in order of emergence, are discussed
briefly in the following.

2.1 Computational sub-domain level-0 (Ωl0)

In sub-domain Ωl0, macroscopic computations are executed using traditional finite
element method (FEM) algorithms. In order to capture the effect of the microstructure
and its evolution, the continuum constitutive models used in the analysis are obtained by
homogenizing the material response in a microstructural RVE.

A micrograph of cast aluminum alloy W319, studied in this paper, and the corre-
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Figure 1: Schematic of a coupled concurrent multi-level model showing: (left) level-0 region of macroscopic
continuum analysis with adaptive mesh refinement and (right) blow-up of critical region surrounding a
crack containing level-1 and level-2 regions of analyses.

sponding RVE are shown in Figure 2. The microstructure of this alloy is character-
ized by a dispersion of brittle silicon (Si) inclusions in an age-hardened aluminum ma-
trix. Rate-independent and rate-dependent homogenization-based continuum plasticity-
damage (HCPD) models have been developed for macroscopic analysis of diffuse defor-
mation and damage in porous ductile materials containing brittle inclusions. A complete
description of those macroscopic models can be found in [4, 5, 6].

2.2 Computational sub-domain level-1 (Ωl1)

Computational sub-domain Ωl1 is used to identify the regions requiring switching over
from macroscopic to microscopic computations. Macroscopic analysis is valid in Ωl1, but
the intensity of field variables and their gradients indicates an eminent departure from
homogeneity.

Two analyses are required for this sub-domain. A macroscopic analysis based on the
HCPD model is first performed and the macroscopic fields are updated. Then follows a
LE-VCFEM [1, 2, 3] based micro-mechanical analysis of the microstructural RVE with
periodicity boundary conditions and applied strain tensor obtained from the macroscopic
analysis [6]. A criterion based on the microstructural response of the RVE is then used
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(a) (b)

Figure 2: (a) Micrograph of a cast aluminum alloy W319 (192µm x 192µm) and (b) RVE of the mi-
crostructure in (a) (48µm x 48µm) (Micrograph: Courtesy Ford Research Laboratory).

to indicate transition from level-1 to level-2 elements.

2.3 Computational sub-domain level-2 (Ωl2)

Microscopic sub-domain Ωl2 emerges from level-1 elements for which detailed micro-
mechanical analysis is needed. This sub-domain incorporates the morphology of the un-
derlying microstructure and is solved with LE-VCFEM for ductile fracture [1, 2, 3]. This
method uses information on microstructural morphology and the computational efforts
required for the micro-mechanical analysis are significantly reduced.

2.4 Transition interface layer (Ωtr)

Elements in Ωtr are level-2 elements that have compatibility and traction continuity
constraints imposed on their interface with the macroscopic sub-domain Ωl0 ∪ Ωl1. They
are located beyond the level-2 regions and are introduced to regularize kinetic and kine-
matic incompatibilities at the interface using a relaxed displacement constraint method.
Numerical implementation of this method using Lagrange multipliers technique is ad-
dressed in Section 4.

3 MESH REFINEMENT AND LEVEL CHANGE CRITERIA

Implementation of the multi-level model requires appropriate criteria for mesh refine-
ment and level changes [7]. These criteria are briefly discussed next.

3.1 Mesh refinement in Ωl0

Discretization errors in Ωl0 are minimized by an h-adaptation mesh refinement strategy.
The adaptation criterion is formulated in terms of traction jumps across adjacent element
boundaries. An element e in Ωl0 is subdivided into smaller elements if the following

4

315



Daniel Paquet and Somnath Ghosh

condition is satisfied:

Etj
e ≥ C1E

tj
max with Etj

e =

√∫
∂Ωe

([[tx]]2 + [[ty]]2)d∂Ω∫
∂Ωe

d∂Ω
(1)

where Etj
max is the highest value of all Etj

e for all level-0 elements in Ωl0 and C1 < 1 is a
prescribed factor chosen from numerical experiments. In criterion (1), tx and ty are the
boundary traction components in x and y directions and [[·]] is the jump operator across
the element boundary ∂Ωe.

3.2 Criterion for switching from level-0 to level-1 elements

Departure from homogenizability in ductile materials occurs in regions characterized by
a localization of damage due to void nucleation and growth. Hence, a criterion combining
macroscopic void volume fraction f̄ and its gradients is used for conditioning the transition
from level-0 to level-1 elements:

Egdf
e f ⋆

e ≥ C2E
gdf
maxf

⋆
max with Egdf

e =

√
∂f ⋆

e

∂x

2

+
∂f ⋆

e

∂y

2

(2)

where f ⋆ = f̄−f̄0
f̄0

is the normalized void volume fraction with respect to the initial void

volume fraction f̄0, and f ⋆
max and Egdf

max are the maximum values of all f ⋆
e and Egdf

e respec-
tively. The factor C2 < 1 is determined from numerical experiments.

3.3 Criterion for switching from level-1 to level-2 elements

Transition from level-1 to level-2 is activated for elements in Ωl1 for which RVE peri-
odicity is violated. Since periodic displacement boundary conditions are applied on the
RVE (cf. Section 2.2), violation of traction anti-periodicity on the RVE boundary is used
to trigger the transition. An element e in Ωl1 is switched to Ωl2 if the following criterion
is met:

TRapt
e ≥ C3 with TRapt

e =

����∑NSGPR
i=1

∫
Γi

(��ti+x + ti−x
��i+ ��ti+y + ti−y

��j
)

dΓ
����

maxe
����∑NSEG

i=1

∫
Γi

(��tix
��i+ ��tiy

��j
)

dΓ
����

(3)

where TRapt
e is a measure of the lack of anti-periodicity of boundary tractions and C3 <

1. NSGPR is the number of boundary segment-pairs on the boundary of each RVE
(e.g. Figure 2(b)) and NSEG is the total number of segments on the RVE boundary.
Superscripts + and - in equation (3) correspond to the tractions on the segment pairs with
anti-periodicity conditions. The numerator is a measure of the residual traction violating
the anti-periodicity condition. The denominator on the other hand corresponds to the
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maximum value of the absolute sum of all traction measures in all the RVEs of level-1
elements. TRapt

e = 0 indicates a perfect anti-periodicity of boundary tractions.
The microstructural information within each newly created level-2 element is updated

using the history of the macroscopic displacement solution on the macroscopic element
boundary. A relaxation step is also performed to recover local equilibrium after connecting
the newly created level-2 element to the multi-scale mesh.

4 COUPLING MULTIPLE LEVELS FOR MULTI-SCALE ANALYSIS

Multi-scale analysis requires that all levels be coupled and solved simultaneously in sub-
domains Ωl0, Ωl1, Ωl2, and Ωtr. The global stiffness matrix and load vectors are derived
for the entire computational domain Ωhet = Ωl0 ∪ Ωl1 ∪ Ωl2 ∪ Ωtr. The corresponding
domain boundary is partitioned as Γhet = Γl0 ∪ Γl1 ∪ Γl2 ∪ Γtr, where Γl0 = Γhet ∩ ∂Ωl0,
Γl1 = Γhet∩∂Ωl1, Γl2 = Γhet∩∂Ωl2, and Γtr = Γhet∩∂Ωtr. The interface between these two
modeling scales is denoted Γint = (∂Ωl0 ∪ ∂Ωl1)∩ (∂Ωl2 ∪ ∂Ωtr). Displacement continuity
and traction reciprocity at the interface between the macro-scale sub-domain Ωl0 ∪ Ωl1

and micro-scale sub-domain Ωl2 ∪ Ωtr are enforced (in a weak sense) with the relaxed
displacement constraint method [7].

4.1 Weak form for the multi-level multi-scale model

The principle of virtual work for Ωhet at the end of the increment n + 1, associated
with a virtual displacement field δui, is expressed as follows [7]:

δΠn+1
het = δΠn+1

Ωl0
+ δΠn+1

Ωl1
+ δΠn+1

Ωl2
+ δΠn+1

Ωtr
+ δΠn+1

Γint
= 0 (4)

where the individual contributions from each sub-domain are defined as follows:
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δΠn+1
Ωtr

=

∫

Ωtr

(σtr
ij +∆σtr

ij )
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tr
i dΓ

δΠn+1
Γint

= δ

∫

Γint

(λ
l0/l1
i +∆λ

l0/l1
i )(vi +∆vi − u

l0/l1
i −∆u

l0/l1
i )dΓ

+ δ

∫

Γint

(λtr
i +∆λtr

i )(vi +∆vi − utr
i −∆utr

i )dΓ

Superscripts l0, l1, l2, and tr in equation (4) relate the variables to their respective
sub-domain. Variables in δΠn+1

het are evaluated at the end of the increment n + 1, i.e.
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(·)n+1 = (·)n + (∆·)n+1. Superscripts n and n+ 1 are dropped in equation (4) for sake of
clarity.

The last term in equation (4) couples macro-scale stresses Σ
l0/l1
ij , tractions t

l0/l1
i and

displacements u
l0/l1
i with their micro-scale counter parts σ

l2/tr
ij , t

l2/tr
i and u

l2/tr
i . For this,

the displacement field vi is interpolated on each segment of the interface Γint using a suit-
able polynomial function, independent of the interpolations on ∂Ωl0, ∂Ωl1, ∂Ωl2, and ∂Ωtr.
Lagrange multipliers λ

l0/l1
i and λtr

i are then introduced in δΠn+1
Γint

to enforce displacement
continuity and traction reciprocity at the interface (in a week sense). Hence, setting the

coefficients of δλ
l0/l1
i and δλtr

i to zero leads to the following Euler equations:

u
l0/l1
i +∆u

l0/l1
i = vi +∆vi

utr
i +∆utr

i = vi +∆vi
on Γint (5)

These correspond to displacement continuity across Γint. Traction reciprocity across Γint

results from setting the coefficients of δvi, δu
l0/l1
i , and δutr

i to zero:

λ
l0/l1
i +∆λ

l0/l1
i = −(λtr

i +∆λtr
i )

λ
l0/l1
i +∆λ

l0/l1
i = (Σ

l0/l1
ij +∆Σ

l0/l1
ij )n

l0/l1
j

λtr
i +∆λtr

i = (σtr
ij +∆σtr

ij )n
tr
j

on Γint (6)

where nj is the unit normal vector and λ
l0/l1
i and λtr

i correspond to the interfacial traction
(in a week sense) on ∂Ωl0/l1 ∩ Γint and ∂Ωtr ∩ Γint respectively. The other Euler rela-

tions obtained by setting the coefficients of δu
l0/l1
i and δu

l2/tr
i to zero are the equilibrium

equations in each sub-domains and different traction reciprocity conditions between the
sub-domains.

4.2 Finite element discretization

Macro-scale displacements u
l0/l1
i in each level-0 and level-1 elements are interpolated

with standard shape functions as:

{ul0/l1} = [Nl0/l1]{ql0/l1} = [NI
l0/l1 NO

l0/l1]

{
qI
l0/l1

qO
l0/l1

}
(7)

where the nodal displacements are partitioned into two sets, viz. the nodes qI
l0/l1 lying

on the interface Γint and the other degrees of freedom qO
l0/l1.

At the interface Γint, displacements vi and Lagrange multipliers λ
l0/l1
i and λtr

i are
interpolated from nodal values using suitable shape functions:

{v} = [Lint]{qint} (8)

{λl0/l1} = [Lλl0/l1 ]{Λl0/l1} (9)
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{λtr} = [Lλtr ]{Λtr} (10)

Spurious stress concentrations at the interface are avoided with a proper choice of shape
functions in equations (8)-(10) [7].

An iterative solver is used to solve the nonlinear equations obtained by setting the
residual R in equation (4) to zero. Setting up the stiffness matrix ∂R

∂qi
, where qi comprises

all the degrees of freedom in equations (7)-(10), requires consistent linearization by taking
directional derivatives of equation (4) along incremental displacement vectors ∆u and ∆v,
and the Lagrange multipliers ∆λ. Especially, the stiffness sub-matrix and load sub-vector
associated with level-2 and level-tr elements are obtained from LE-VCFEM calculations
followed by a static condensation to retain the boundary terms only. More details on the
numerical implementation of the multi-level multi-scale model can be found in [7].

5 APPLICATION TO A CAST ALUMINUM MICROSTRUCTURE

This numerical example studies the microstructural response of a cast aluminum alloy
when submitted to an applied homogeneous traction. Details on the computational do-
main and on the modeling parameters are given, and the numerical results discussed. A
complete description of the numerical problem can be found in [7].

5.1 Computational domain

The microstructure analyzed in this example was extracted from a micrograph of a cast
aluminum alloy W319 used in the automotive industry (cf. Figure 2(a)). The dimensions
of the rectangular computational domain are 384µm× 1536µm in the horizontal (x) and
vertical (y) directions respectively. This tensile specimen is discretized into 8× 32 = 256
macro-scale elements, each of which has dimensions 48µm× 48µm. Prescribed boundary
conditions are: (i) uy = U at y = 1536µm, (ii) uy = 0 at y = 0, and (iii) ux = 0 at
(x, y) = (0, 0).

Prior to the multi-scale analysis, the results of the sensitivity analysis in [1, 2] are
used to identify the macros-scale elements, among the 256, that are prone to ductile
fracture. These critical regions are characterized by higher values of inclusion volume
fraction and inclusion clustering. Based on the results, six critical regions are identified
for which LE-VCFEM micro-mechanical analysis will be performed from the beginning of
the multi-scale simulation. Once the critical regions Ωl2 identified, the remaining elements
are merged to form a macroscopic sub-domain Ωl0. This leads to the initial mesh for the
multi-scale analysis shown in Figure 3(a).

5.2 Modeling parameters

The inclusion and matrix constitutive relations and material parameters used for LE-
VCFEM micro-mechanical analysis are reported in [7]. An RVE size LRV E = 48µm
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was derived from a statistical analysis of the microstructure [6] and the RVE used for
calibrating the macroscopic material parameters is shown in Figure 2(b). Details on the
HCPD model constitutive relations and the procedure developed for the calibration of
material parameters are given in [7, 4, 5, 6].

The parameters in equations (2) and (3) used for level change conditioning are C2 = 0.2
and C3 = 0.1. Adaptive mesh refinement is not considered because the macro-scale
elements have the same dimensions as the size of the RVE.

5.3 Numerical results

Upon loading, inclusion cracking and matrix deformation generate non-uniformities
in the microscopic sub-domain Ωl2. Macroscopic deformation and damage localize in
neighboring level-0 elements and transition to Ωl1 sub-domain is activated when loss
of macroscopic homogeneity is detected. The microscopic sub-domain Ωl2 subsequently
propagates in regions of Ωl1 for which RVE periodicity is violated. This adaptive evolution
of the multi-level mesh, following the formation and growth of a macroscopic ductile crack,
is shown in Figure 3.

Three of the initial microscopic sub-domains propagate and merge to form a dominant
macroscopic damage zone (Figure 3(a)-(f)). The microscopic sub-domain Ωl2 then sta-
bilizes until localization of damage within a level-2 microstructure leads to its complete
failure. At total failure, the level-2 element is replaced or ”sealed” by a macroscopic
element (black elements in Figure 3) with near-zero constant stresses.

Element sealing occurs for the first time at an applied displacement U = 13.2µm.
A contour plot of microscopic void volume fraction after failure of the level-2 element
is given in Figure 4(a), showing a distinct ductile crack in its microstructure. Plot of
microscopic stress σyy at the onset of local failure and the underlying microstructure of
the Ωl2 sub-domain are also shown in Figure 4.

This failure process continues until the macro-crack becomes extremely unstable and
final failure of the structure occurs.

6 CONCLUSIONS

- The concurrent multi-level model presented in this paper was developed to capture
damage phenomena such as deformation localization and strain softening.

- LE-VCFEM based micro-mechanical analyses are performed in regions with unsta-
ble material response, eliminating the need for homogenization in those regions.

- Homogenization-based plasticity-damage (HCPD) models are used in regions of
macroscopic homogenizability. These models are derived from homogenization of
evolving variables in microstructural RVE and incorporate important microstruc-
tural morphology information.
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- A third level of analysis is added as an intermediate swing level to form a three-
level coupled multi-scale model to capture ductile crack propagation. Transition
from macroscopic to microscopic analysis is established by a criterion quantifying
the lack of anti-periodicity of RVE boundary tractions.

- The proposed multi-scale model successfully captures detailed microscopic fracture
in a large material microstructure with minimal computational resources by an adap-
tive propagation of microstructural sub-domains, following microstructural damage
evolution from initiation to final failure.
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k)

Figure 3: Evolution of the adaptive multi-level mesh during the multi-scale analysis: (a) U = 0, (b)
U = 7.4µm, (c) U = 7.6µm, (d) U = 7.8µm, (e) U = 10.1µm, (f) U = 10.3µm, (g) U = 13.0µm, (h)
U = 13.2µm, (i) U = 13.3µm, (j) U = 13.5µm, and (k) U = 13.7µm. (Legend: level-0 (turquoise), level-1
(blue), level-2/tr (red), sealed elements (black)).
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(a) (b) (c)

Figure 4: (a) Contour plot of void volume fraction f showing the final crack path after complete failure
of the first level-2 element sealed during the multi-scale simulation, (b) contour plot of microscopic
stress component σyy (GPa) for the entire computational domain of the tensile specimen at an applied
displacement U = 13.0µm, and (c) underlying microstructure of the level-2 elements of the adaptive
multi-level mesh.
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