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Abstract. In this work, a homogenization strategy for a micromorphic–type inelastic
material is presented. In the spirit of FE2, a representative volume element is attached to
each macroscopic quadrature point. Due to the inherent length scale of the micromorphic
continuum, size effects for inelastic behavior are obtained on RVE–level. A focus is placed
on the computation of the homogenized algorithmic tangent. It is determined via sensi-
tivity analyses with respect to the boundary conditions imposed on the RVE. Following
this procedure, costly single–scale computations with dense meshes can be replaced by a
robust homogenization approach with optimal convergence rates.

1 INTRODUCTION

Since the beginning of micromechanical analyses by Voigt [1] over a century ago, many
analytical approaches to homogenization of inhomogeneous materials were developed (see
[2] for an overview). Within the recent decades, increasing computational power lead to
a multitude of computational multiscale methods, enabling predictions of the behavior
of microscopically heterogeneous materials. Among these methods, the computational
homogenization called FE2 by Miehe et al. [3], [4], Féyel [5] and Féyel and Chaboche [6]
has proven especially handy for Finite–Element analyses.

Boundary value problems are computed on RVE–level and the stress response as well as
the constitutive tangent are homogenized over the volume and are used in the quadrature
point on the macrolevel. In this procedure, the tangent computation is a particularly
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challenging point because of the history dependence in the case of an inelastic material.
The evolution equations for the inelastic quantities are numerically integrated in time
(see [7]). This results in an algorithmic tangent replacing the constitutive tangent on
the RVE–level. To achieve optimal macroscopic convergence rates in the homogenization
framework, the algorithmic tangent on RVE–level has to be homogenized correctly. In
the present solution procedure, we homogenize the algorithmic tangent by a sensitivity
analysis regarding the boundary conditions imposed on the RVE as described in the work
of Korelc [8] based on the work of Michaleris et al. [9].

On the RVE–level, we want to model a material exhibiting size effects. For this,
a formulation including an inner length scale is necessary. Among various gradient–
based theories (see [10] for an overview), the micromorphic model documented in Eringen
[11] is able to predict size effects. This model was applied to inelastic deformations
by Forest [12] and extended to finite deformations by Clasen and Hirschberger [13]: An
additional scalar field describing a plastic microdeformation which renders size effects (and
mesh regularization in the case of softening) is introduced and treated as a micromorphic
degree of freedom. This type of material induces higher–order stresses contributing to
the internal work. Thus, the classical Hill–Mandel criterion [14] ensuring an energetically
consistent meso–to–macro transition is extended in the sense of Hirschberger et al. [15]
to a micromorphic–type mesostructure in the RVE.

As a result, a numerical homogenization framework with an optimal convergence rate
for a finite–deformation elasto–plastic material exhibiting size effects on RVE–level (and
consequently in the mechanical overall–response) is obtained.

2 CONTINUUM MECHANICAL MULTISCALE FRAMEWORK

To set the stage for the homogenization procedure, the continuum mechanics of micro-
morphic–type plasticity used on the mesoscale is reviewed. Afterwards, the governing
equations for the macroscale are described. Further on, proper boundary conditions on
RVE–level for an energetically consistent meso–to–macro transition are developed.

2.1 Mesoscale

In this section, the general framework for micromorphic–type elasto–plasticity is de-
rived. Hyperelasto–plastic material behavior on the mesolevel is accompanied by an addi-
tional regularizing degree of freedom governed by its own partial differential equation. In
the terminology of micromorphic continua, this degree of freedom is referred to as plastic
micro–deformation.

The micromorphic elasto–plastic formulation is similar to standard plasticity. The
deformation gradient F is split into an elastic part F e and a plastic part F p:

F =
∂x

∂X
= F e · F p (1)

J = detF (2)
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With this, the elastic left Cauchy–Green–tensor be can be calculated as follows:

be = F e · (F e)T = F · (Cp)−1 · F T (3)

The difference to the standard model is the presence of an additional scalar field ᾱ
representing the plastic micro–deformation. This field is comparable to the equivalent
plastic strain on the mesoscale. In the following section, not only ᾱ, but also its gradient
with respect to the reference configuration ∇ᾱ are used.

With the kinematics at hand, we introduce the kinetics starting with the formulation
of a free energy density function Ψ . This function depends on the set of state variables
{be, ᾱ,∇ᾱ}. Due to the inelastic material behavior, the strain energy density also depends
on the internal variables {ξ}.

Ψ = Ψ(be, ᾱ,∇ᾱ; ξ) (4)

Now, the internal stress power is compared to the total rate of the free energy density,
which gives an inequality for the internal dissipation D:

D = τ : l + a ˙̄α + b · ∇ ˙̄α− Ψ̇ ≥ 0 (5)

The internal stress power has three contributions: τ is the Kirchhoff stress tensor cor-
responding to the the spatial velocity gradient l. a and b are called couple stress and
double stress respectively corresponding to the rate of the plastic micro–deformation and
its gradient.

Inserting the rate of the free energy density Ψ̇ into the dissipation inequality, the defi-
nitions for the stresses τ , a and b are obtained:

τ = 2
∂Ψ

∂be
· be (6)

a =
∂Ψ

∂ᾱ
(7)

b =
∂Ψ

∂∇ᾱ
(8)

Additionally, the power–conjugate driving force for the evolution of the internal variables
can be determined:

h =
∂Ψ

∂ξ
(9)

Then, the dissipation inequality reduces to

D = τ :

(

−1

2
Lνb

e · (be)−1

)

− h · ξ̇ ≥ 0 (10)

To determine the stresses, a constitutive formulation on the mesoscale is required. For
a simple and convenient description of the material model, the free energy density is split
into two parts:

Ψ = Ψmeso + Ψmicro (11)

3
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For the mesoscopic part Ψmeso depending on {be; ξ}, a neo–Hookean free energy density
is used:

Ψmeso =
µ

2
(Tr(be)− 3)− µ ln J +

λ

4

(

J2 − 2 ln J − 1
)

+
1

2
Kα2 (12)

It is obvious, that the first three terms describe the stored elastic energy depending on
the Lamé–constants µ and λ. The fourth term is responsible for the hardening, where
we restrict ourselves to linear isotropic hardening described by the accumulated plastic
strain α and the hardening modulus K.

As proposed by Forest [12], the regularizing part of the free energy density Ψmicro

depending on {ᾱ,∇ᾱ;α} and the material parameters H and A is chosen as

Ψmicro =
1

2
H (α− ᾱ)2 +

1

2
A∇ᾱ · ∇ᾱ (13)

Once the strain energy density is known, the stresses can be determined according to eqs.
(6)–(8).

The inelastic part of the deformation is described by a J2–plasticity model assuming
maximum plastic dissipation. Thus, the yield condition Φ for the onset of plasticity can
be written as

Φ = τvM − (τy + h) ≤ 0 (14)

with the von–Mises–stress τvM , the initial yield stress τy and the hardening function h
which is scalar in the case of isotropic hardening as the only entry in ξ is the equivalent
plastic strain α. This means that

h =
∂Ψ

∂α
= Kα +H(α− ᾱ) (15)

At this point, the additional micro–deformation ᾱ enters the mesoscale.
As associative elasto–plasticity is considered, the yield condition is now used as the

plastic potential in the flow rule which includes the plastic multiplier γ̇:

−1

2
Lνb

e · (be)−1 = γ̇
∂Φ

∂τ
(16)

This evolution equation is solved with the exponential mapping of Simo [7]. Also, an
evolution equation for the equivalent plastic strain can be determined:

α̇ = γ̇ (17)

The Kirchhoff–stresses τ as well as the couple- and double–stresses a and b have
to fulfill their respective equilibrium equations. For the mesolevel, this is the standard
balance of linear momentum. In terms of the first Piola–Kirchhoff–stresses P = τ ·F−T ,
this balance can be written as

Div(P ) = 0 (18)

4

283



Heiko Clasen, C. Britta Hirschberger, Jože Korelc and Peter Wriggers

where quasistatic loading is assumed and body forces are neglected. This equilibrium
equation is accompanied by proper boundary conditions for the displacement boundary
∂Ωu and the traction boundary ∂Ωt. In general, these can be written as

u = upre on ∂Ωu (19)

tpre0 = P ·N on ∂Ωt (20)

where upre are the prescribed displacements, tpre0 are the prescribed tractions in the ref-
erence configuration and N is the outward normal in the reference configuration.

For the microdeformation, the balance of microforces leads to the following equation:

Div(b) = a (21)

According to the choice of Ψmicro the following partial differential equation can be obtained:

ᾱ− A

H
∇2ᾱ = α (22)

For this equation, no prescribed Dirichlet boundary conditions on the boundary ∂Ωᾱ are
assumed. For the Neumann boundary ∂Ωb, normality conditions in the following form
are assumed:

b ·N = 0 on ∂Ωb (23)

2.2 Macroscale

On the macrolevel, the kinematics of standard nonlinear continuum mechanics are
used:

F̂ =
∂x̂

∂X̂
(24)

Contrary to the mesolevel, no a–priori constitutive assumption is made on this level.
Instead, the homogenized stress P̂ obtained by

P̂ =
1

V

∫
PdΩ (25)

is used. The tangent Â, defined by

Â =
DP̂

DF̂
(26)

has to be evaluated numerically as it depends on the history–variables and the algorithm
for numerical time–integration to determine those variables. The determination of this
tangent will be described in section 3. Once this tangent is known, the macroequilibrium
DivP̂ = 0 can be solved by the minimization of a pseudo–potential Ψmacro:∫

ΨmacrodΩ̂ =

∫
P̂ : F̂dΩ̂ → min (27)

5
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2.3 Meso–to–macro transition

A meso–to–macro transition can only be physically meaningful, if the virtual work on
the mesolevel equals the virtual work on the macrolevel. This criterion is known as the
Hill–Mandel criterion (see [14]). Due to the micromorphic–type continuum, this criterion
has to be extended, such that not only P but also the contributions of the stresses a and
b are taken into account [15]. In the underlying case, this criterion can be written as
follows:

P̂ : δF̂ =
1

V

∫
(P : δF + aδᾱ + b · δ∇ᾱ)dΩ (28)

In general, different types of boundary conditions can be applied to ensure relation
(28). In this work, periodic boundary conditions are chosen. The placement in the

current configuration x can be expressed by the average deformation gradient F̂ and a
fluctuation x̃ in the following way:

x = F̂ ·X + x̃ (29)

The microfluctuation can be seen figure 1, where the linear displacement boundary condi-

Figure 1: Boundary conditions on RVE–level

tions x = F̂ ·X are shown additionally to the periodic boundary conditions. For a better
understanding, the boundary of the RVE is split into two parts: ∂Ω+ and ∂Ω− which
describe the ”positive” and the ”negative” part of the boundary respectively. Using the
denomination in figure 1, the edges indicated with the numbers 1 and 2 are considered as
the positive boundary, whereas the edges 3 and 4 are the negative boundary. To ensure
periodicity, the following constraint must be fulfilled by the fluctuation field:

x̃+ = x̃− (30)

Together with antiperiodic tractions

t0
+ = −t0

− (31)
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it can be shown, that the virtual work criterion is fulfilled. From equation (28) it can be
deduced that

P̂ : δF̂ =
1

V

∫
P : δFdΩ +

1

V

∫
(aδᾱ + b · δ∇ᾱ)dΩ (32)

By applying the Gauss-theorem, we find that the second integral on the right–hand–
side vanishes due to the choice of the normality Neumann boundary conditions on the
micro–level:

1

V

∫
(aδᾱ + b · δ∇ᾱ)dΩ = 0 (33)

Thus, the equation which has to be fulfilled to ensure an energetically consistent homog-
enization is

P̂ : δF̂ =
1

V

∫
P : δFdΩ (34)

The proof that periodic boundary conditions fulfill this equation can be found in the
literature, e.g. [16].

Within the Finite–Element analysis, the deformation gradient F̂ obtained from the
macrolevel is applied on the corner nodes 1, 2 and 3 (see figure 1). To ensure periodicity,
constraint elements are added on the boundary to couple the displacement u as well as
the plastic microdeformation ᾱ on the edges 1–3 and 2–4 respectively via the augmented
Lagrange method.

3 NUMERICAL MULTISCALE FRAMEWORK

The choice of boundary conditions allows to determine the exact homogenized material
tangent used on the macrolevel by sensitivity analyses accompanying the computation of
the primary degrees of freedom. The homogenized material tangent Â with

Â =
DP̂

DF̂
=

1

V

∫
DP

DF̂
dΩ (35)

is necessary to solve the macroequilibrium DivP̂ = 0 by minimization of the macroscopic
potential (see (27)). For this, the residual on element level of a Newton–Raphson iteration
loop is determined by:

R̂e =

∫
P̂ :

∂F̂

∂p̂e

dΩ̂ (36)

with the vector of degrees of freedom on element level p̂e. The element tangent matrix is
then obtained by computing

K̂e =
DRe(P̂ (F̂ ), F̂ (p̂e), p̂e)

Dp̂e

=
∂R̂e

∂p̂e

+
∂R̂e

∂P̂
· DP̂
DF̂

· ∂F̂
∂p̂e

=
∂R̂e

∂p̂e

+
∂R̂e

∂P̂
· Â · ∂F̂

∂p̂e

(37)
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For the computation of the correct material tangent ̂A, it is crucial to determine the
derivative DP /D̂F (see eq. (35)):

DP (̂F (pe,hg),pe,hg)

D̂F
=

∂P

∂ ̂F
+

∂P

∂pe

· Dpe

D̂F
+

∂P

∂hg

· Dhg

D̂F
(38)

In this equation, the quantities pe and hg denote the vector of degrees of freedom within
a finite element and the vector of history variables of the quadrature points in the element
respectively. According to [8] and [9], the dependencies occuring in the equation above
are determined via sensitivity analyses.

In a converged state, the finite element fulfills the following equations for the indepen-
dent residual of the degrees of freedom n+1Re and the dependent residual n+1Q of the
history variables:

n+1Re(
n+1pe,

n+1hg(
n+1pe),

npe,
nhg) = 0 (39)

n+1Q(n+1pe,
n+1hg(

n+1pe),
npe,

nhg) = 0 (40)

In the follwing, the superscript n+1 will be dropped for brevity. To determine the depen-
dency Dpe/D̂F , the total derivative of the residual Re with respect to ̂F is computed:

∂Re

∂pe

Dpe

D̂F
+

∂Re

∂hg

Dhg

D̂F
+

∂Re

∂npe

Dnpe

D̂F
+

∂Re

∂nhg

Dnhg

D̂F
+

∂Re

∂ ̂F
= 0 (41)

From this equation, the derivative Dpe/D̂F can be obtained, once an expression for the

dependent sensitivity Dhg/D̂F is found, since the sensitivies of the quantities at the
previous time step are stored just like history variables and are therefore known. Please
note, that this solution procedure requires design velocity fields for the sensitivities at the
beginning of the analysis.

An equation determining the derivative Dhg/D̂F is obtained by the total derivative of

the dependent residual Q with respect to ̂F :

∂Q

∂pe

Dpe

D̂F
+

∂Q

∂hg

Dhg

D̂F
+

∂Q

∂npe

Dnpe

D̂F
+

∂Q

∂nhg

Dnhg

D̂F
+

∂Q

∂ ̂F
= 0 (42)

A rearrangement of this equation leads to

Dhg

D̂F
= −

(

∂Q

∂hg

)−1 (
∂Q

∂pe

Dpe

D̂F
+

∂Q

∂npe

Dnpe

D̂F
+

∂Q

∂nhg

Dnhg

D̂F
+

∂Q

∂ ̂F

)

(43)

In this equation, the derivative ∂Q/∂hg is already known, as it is the tangent of the local
Newton–Raphson procedure to determine the history variables. The following abbrevia-
tion is introduced to shorten expressions:

Zg = −
(

∂Q

∂hg

)−1 (
∂Q

∂npe

Dnpe

D̂F
+

∂Q

∂nhg

Dnhg

D̂F
+

∂Q

∂ ̂F

)

(44)
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Then, it follows that
Dhg

D̂F
= Zg −

(

∂Q

∂hg

)−1
∂Q

∂pe

Dpe

D̂F
(45)

Now, this intermediate result is inserted into eq. (41), which gives us the definition of

Dpe/D̂F :

(

∂Re

∂pe

− ∂Re

∂hg

(

∂Q

∂hg

)−1
∂Q

∂pe

)

Dpe

D̂F
= −

(

∂Re

∂hg

Zg +
∂Re

∂npe

Dnpe

D̂F
+

∂Re

∂nhg

Dnhg

D̂F
+

∂Re

∂ ̂F

)

(46)
The term in brackets on the left–hand–side of the equation can be recognized as the
element stiffness matrix from the primal analysis (see [8]). Abbreviating the right–hand–
side with the expression −R̃e, the equation is rewritten and gives

Ke
Dpe

D̂F
= −R̃e (47)

A standard assembly routine as it is used in the primal analysis leads to a global equation
system which renders the sensitivities Dpe/D̂F for the respective elements. The results
can be inserted into eq. (43) to determine the dependent sensitivity.

The eqs. (38)–(47) were used to formulate an automatic differentiation based procedure
for the actual evaluation of the intermediate variable Zg and the dependent sensitivity
pseudo–load vector R̃e as described in [8]. The general symbolic tool AceGen [17] for
automatic differentiation and automatic code generation was then used to implement the
procedure.

This way, all the derivatives to determine the correct algorithmic tangent on the
macrolevel ̂A can be computed and the standard Newton–Raphson–scheme on the macro–
level is applied with the correct tangent matrix. Thus, boundary value problems can be
solved efficiently within a multiscale Finite–Element–framework, as shown in the next
section.

4 NUMERICAL EXAMPLE

In this section, the bending of a beam consisting of inhomogeneous RVEs is investi-
gated. The geometry and loading is illustrated in figure 2 (nodes on the left edge are fixed
in position, nodes on the right edge are displaced vertically, measures are given in mm).
The material data used for the computations are listed in table 1.

The vertical displacement and the distribution of the equivalent stress in the most
upper and left RVE for an RVE–size of 0.01 mm x 0.01 mm are shown in figure 3.

Size effects can be observed when the size of the RVE is changed with respect to the
size of the macrostructure and all material parameters are kept constant. In figure 4, the
the Piola–stress P11 plotted over the logarithmic of the RVE–size is depicted as well as
the force–displacement curves for varying RVE–sizes, where S is the length of one side of

9
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x
1

x
2

Figure 2: Bending of a beam with mesostructure

Table 1: Material parameters

µ λ K τy A H
3571,4 MPa 14285,7 MPa 10 MPa 5 MPa 0.01 N 1000 MPa

Figure 3: Displacement and stress distributions

the RVE. It is obvious, that the response is stiffer with decreasing RVE–size. This effect
is also obtained by other homogenization schemes (see [18]).
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F
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ce
/N

Figure 4: Size effects by variation of RVE–size

A second way to trigger size–effects is to change only A and to keep everything else
constant. The results of the computations for different values of A are plotted in figure 5.
It can be seen that a higher value of A leads to a stiffer response, which is in accordance
to the results of single–scale computations of continua with inherent length scales.
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Figure 5: Size effects by variation of micro–stiffness A

5 CONCLUSION

In our work, we have described a two-scale computational homogenization method for
finite elasto–plastic deformations. On the meso–level, a micromorphic–type model with
an inherent length scale was used to model gradient–dependent material behavior capa-
ble of predicting size effects. It was shown, that the meso–to–macro transition fulfills the
virtual work criterion and is thus physically meaningful. The algorithmic tangent of the
time integration algorithm for the plastic evolution equations was homogenized exactly
by means of sensitivity analyses. For this, the boundary conditions imposed on the RVE
were used as sensitivity parameters. This nested solution procedure ensures quadratic
convergence rates not only on RVE–level but also within the Newton–Raphson solution
scheme on the macro–level.

This versatile and promising procedure can be easily extended to other history– and
size–dependent problems such as micromorphic damage or tensorial micromorphic plas-
ticity.
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