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Abstract. Present work proposes a novel numerical scheme to calculate stress and velocity 
fields of metal flow in axisymmetric extrusion process in steady state. Extrusion of aluminium 
is one main metal forming process largely applied in manufacturing bars and products with 
complex cross section shape. The upper-bound, slab, slip-line methods and more recently the 
numerical methods such as the Finite Element Method have been commonly applied in 
aluminium extrusion analysis. However, recently in the academy, the Finite Volume Method 
has been developed for metal flow analysis: literature suggests that extrusion of metals can be 
modelled by the flow formulation. Hence, metal flow can be mathematically modelled such us 
an incompressible non linear viscous fluid, owing to volume constancy and varying viscosity 
in metal forming. The governing equations were discretized by the Finite Volume Method, 
using the Explicit MacCormack Method in structured and collocated mesh. The MacCormack 
Method is commonly used to simulate compressible fluid flow by the finite volume method. 
However, metal plastic flow and incompressible fluid flow do not present state equations for 
the evolution of pressure, and therefore, a velocity-pressure coupling method is necessary to 
obtain a consistent velocity and pressure fields. The SIMPLE Method was applied to attain 
pressure-velocity coupling. This new numerical scheme was applied to forward hot extrusion 
process of an aluminium alloy. The metal extrusion velocity fields achieved fast convergence 
and a good agreement with experimental results. The MacCormack Method applied to metal 
extrusion produced consistent results without the need of artificial viscosity as employed by 
the compressible flow simulation approaches. Therefore, present numerical results also 
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suggest that MacCormack method together with SIMPLE method can be applied in the 
solution of metal forming processes in addition to the traditional application for compressible 
fluid flow. 

 
 
1 INTRODUCTION 

With the globalization of economy, market dynamics and growing environmental 
requirements for sustainable development, the industrial competition has increased and forced 
the reengineering of all activities at factories and academy in order to reduce the production 
costs, part weight, energy content, efficient resource use and increase material recyclability.  

In the actual engineering practice inside the industries there is the formation of work teams 
to study and improve the technological processes with the aim at advancing the product 
quality, durability, sustainability and equipment productivity, as well as to reduce production 
and maintenance costs. In a broad sense, the industries (automotive, aerospace, stamping, 
steel, etc.) should continue to attain these objectives in addition to introduce High Strength 
Low Alloy steels - HSLAS, Advanced High Strength steels - AHSS, to increase the use of 
lightweight aluminium alloys and magnesium alloys, to produce precision parts with zero-
defects, to advance the use of near net shape processes and design for recycling.  

Consequently, nowadays in engineering practice, industrial fabrication processes are being 
investigated and modelled increasingly by the use of software and computers. Numerical and 
analytical modelling of fabrication processes has great potential to increase process velocity 
and quality, as well as to reduce costs, through the following factors: 

- reduction of the iterations numbers in the experimental method of try-and-error, 
- allows a quick construction of modelling or prototype, 
- provides a knowledge of the essential physical mechanisms necessary to control the 

process in real time, 
- improves the visualization of the process. 
These factors have given recently support and momentum to research and development of 

mathematical techniques, experimental methods and software for numerical simulations of 
industrial processes. The main features of the modelling activities carried out in research and 
development of industrial processes will be summarized briefly below.  

In addition to the numerical technique to solve the basic equations, fabrication processes 
involves some combinations of the following types of material behaviour: 

- fluid flow  (metal casting, polymer injection, etc.), 
- heat transfer (solidification of molten metal, hot forming of metals, cutting, hot pressing 

and sintering of metal powders, heat treatment of steel), 
- plastic deformations (metal forming, metal cutting), 
- microstructural and properties evolution (metal casting, welding, cold and hot forming, 

heat treatment). 
Therefore, mathematical modelling of thermo-mechanical process requires an appropriate 

mathematical formulation to the following conditions: 
a-  material behaviour during the focused process (elastic and plastic straining, fluid flow 

and heat  transfer), 
b-  appropriate boundary conditions to the problem (stress, strain and velocity at free or 

contact surface, friction between piece-die interface or between chip and tool, etc.). 
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Analytical modelling or numerical simulations allows the calculations of field variables 
such as the equivalent yield stress and strain, strain and stress components, strain rate, 
velocity, temperature, from which one can predict the following outcomes: 

- geometrical distortions of product and die, residual stresses, 
- microstructural parameters to predict yield stress, plastic anisotropy, toughness, etc., 

such as: grain size and orientation, precipitate state,  
- defects in micro-structure: porosity, cracks, surface finish. 
Summarising, the mathematical techniques and the experimental methods available for 

solving fabrication process modelling can be classified into the followings approaches: 
- Material simulation (plasticine, lead, aluminium: stripe pattern grid technique) , 
- Physical simulation of process (simple tension test, plastic torsion test, Gleeb test) , 
- Analytical methods (slab method, upper bound method, slip line field method) , 
- Numerical simulations with mesh (finite element, finite difference, finite volume). 

 
1.1 Brief History of Metal Extrusion Analysis 

In the metal forming industry, by forging, rolling, extrusion and drawing, various kinds of 
important metal products are fabricated. These processes, axi-symmetrical and plane strain 
deformations have been investigated using the upper-bound, slab, slip-line and more recently 
the numerical methods due to increase in computational power [1, 2, 3, 4]. The outcomes of 
these mathematical modelling analyses have been applied to practice with success. 

In hot extrusion processes, the knowledge of metal flow behavior through die and 
variables such as the forces acting on tool, flow lines, velocity field, deformations, stresses, 
friction and temperature can help to predict failure and geometrical distortions in components 
or products produced. One approach to determine such information are employing numerical 
methods, that are fast and accurate and by this manner, helping to reduce the development 
time and cost of tooling and optimization operation conditions that could appear in the 
experimental tryout process. There are three principal defects to be avoided in metal 
extrusion: surface cracking, extrusion defect, and internal cracking or internal burst. 

Numerous materials can be extruded to a wide variety of cross-sectional shapes and 
dimensions. Considerable research effort in metal forming of products with complex cross 
section such as plane bars, circular cross section bars, hollow bars, T and H-shape cross 
section bars have been also carried out experimentally and theoretically due to its relevance to 
tool design, understanding of metal flow and to obtain information on geometric changes, 
imposed straining, stresses, friction and load distributions. To achieve these process insights, 
material simulation by plasticine, visioplastic strain analysis by split billets, stripe pattern grid 
technique and numerical simulations have been employed extensively [2, 3, 4, 5, 6].  

Direct cold extrusion process of aluminum alloy was studied experimentally in 1955 by 
Thomsen and Frisch [7], using the classical “scratched grid pattern technique” in split billets 
to obtain velocity, strain fields and flow lines. However, it was very difficult to visualize the   
flat die corner region with large deformation and shear zones or at the upper layers where the 
grid lines have tendency to get erased and, thus, some errors were done in the analysis of the 
experimental results. The literature on the mechanics of extrusion process by slab method and 
slip line field method is large and up to 1960 have been summarized in the book by Johnson 
and Kudo [8]. Lately, in the eighties, it can be seen in the books by Johnson et al. [3, 4].  
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In metal forming process analysis, two different classical mathematical approaches can be 
employed: the flow approach and the solid approach [9]. In the flow approach formulation, 
an Eulerian reference coordinate system with fixed mesh in space is employed, the discretized 
elements are fixed in space and not in the material, and the material is considered non-linear 
viscous fluid or visco-plastic incompressible fluid. Thus, the numerical grid is constant and 
keeps its initial geometrical features during numerical simulation. The flow formulation is 
effective to calculate material internal variables but is not for moving boundaries [9]. 

In the solid formulation, a Lagrangian reference coordinate system attached to the moving 
workpiece or material is used: the discretized elements remain attached to the workpiece and 
deforms with it. Hence, mesh moves and distorts with material deformation or plastic flow. 
Material is considered elastic-plastic or viscoplastic solid [9]. The solid approach is very 
popular and has been effective for large plastic deformation analysis of metal forming by the 
finite element method. However, has the drawback of occurrence of mesh severe distortion at 
some critical points which causes error in the calculations of field variables. The solution for 
this problem is to restart the analysis and use a remeshing technique to increase the accuracy, 
but with higher computation time [10]. 

In 1968, Altan and Kobayashi [11] presented a numerical technique for temperature 
distribution in metal extrusion, using the finite difference method and un-coupled thermo-
plastic approach. In the eighties, Sellars at al. [12, 13] proposed a finite difference method for 
temperature distribution in metal rolling, employing also un-coupled thermo-plastic approach 
with metallurgical changes during the process. 

However, a first attempts to employ the flow formulation with coupled thermo-plastic 
approach in metal forming were the works by Jain [14] and Dawson and Thompson [15] in 
the seventies. Also in this decade, the finite element method applied to metal forming was 
first introduced by Zienkiewicz in 1974 [16, 17]. Although shown to be appropriate, mesh 
distortion and numerical oscillation occurred in the computed solution which could be 
avoided by mesh refinement but with expensive computer time, as proposed by Zienkiewicz 
[10]. FEM is nowadays very popular and widely employed to metal forming process analysis 
by commercial codes such as ABAQUS and DEFORM. 

On the other hand, the finite volume method, FVM, has been developed since the 
seventies and applied mainly to computational fluid dynamic, CFD. However, in the nineties, 
there was an increase of interests to use FVM in solid mechanics, initially for problems 
involving fluid-structure interactions. In recent years, the FVM has been proposed for solid 
structure elastic stress analysis to calculate stress, strain and displacements [18, 19, 20, 21, 
22]. Bressan at al. [23] have also presented a numerical approach for calculating transient 
thermal stress due to a plate thermal shock, using the FVM. 

In the nineties at Imperial College of London, a free code package named OpenFoam was 
developed by Jasak’s [24, 25] for computational fluid dynamic, using the FVM. However, 
nowadays it is also being used to solve solids mechanic and metal forming problems [26, 27]. 

The aim of present work is to propose a new numerical scheme to calculate stress and 
velocity fields of metal flow in the axisymmetric extrusion process in steady state. The 
governing equations were discretized by the Finite Volume Method, using the Explicit 
MacCormack Method in structured and collocated mesh [28]. Metal plastic flow does not 
present state equations for the evolution of pressure, therefore, a velocity-pressure coupling 
method was necessary to obtain a consistent velocity and pressure fields. The SIMPLE 
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Method [28] was applied to attain pressure-velocity coupling. Present numerical FVM method 
was applied to direct hot extrusion through a conical die of an aluminium alloy and compared 
with experimental results, employing the stripe pattern grid technique [6]. 

2   MATHEMATICAL MODELLING BY FVM 

2.1 Governing Equations  
The mathematical modelling of metal plastic flow in direct extrusion process will be 

treated by FVM, using the flow formulation with a fixed Eulerian reference coordinate 
system: metal plastic flow will be considered similar to a non-linear viscous fluid flow. 
Tannehill et al. [28] suggests that viscous fluid flow can be numerically simulated by FVM, 
satisfying the mass, momentum and energy conservation equations and boundary conditions.  

According to the work presented by Martins et al. [29], the governing conservation 
equations in cylindrical coordinates system (r,θ,z) for axisymmetric case, can be written in 
compact matrix structure in the following form:  
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where ρ  is density, rrσ , θθσ  and zzσ  normal components and rzσ  is shear component of 
Cauchy stress tensor σ , T is temperature, c is specific heat, rq&  and zq&  are components of flux 
heat vector q& , rv  and zv  are velocity vector components, σ  is the effective stress and ε&  is 
the effective strain rate, t is time. 
 
2.2 Plasticity Constitutive Equations  
 

Present metal plasticity constitutive equation for axisymmetric plastic flow consider 
material to be incompressible, isotropic and rigid-viscous-plastic. The relation between the 
stress tensor and strain rate tensor can be written in the following form:  

εησ &2+−= mσ                                                                             (3) 

where σ is the Cauchy stress tensor, ε&  is the strain rate tensor, mσ  is hydrostatic pressure and 
η  is the metal equivalent viscosity. Hydrostatic pressure inside the solid is calculated by 

( ) 3/zzrrm σ+σ+σ=σ θθ , where σrr , σθθ and σzz are principal stresses of the stress tensor. 
Metal flow equivalent viscosity η  is calculated from the Associated Plastic Flow Rule [29]: 

                      
ε
ση
&3

1
=                                                                                        (4) 
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the effective strain rate ε& must not assume values less than 10-3 to avoid numerical instability. 
 
2.3 Finite Volume Method  
 

Integrating Eq. (1) over the control volume given by Fig. 1a, employing Gauss' Theorem, 
results in the following equation: 
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where s is the outward surface vector and mnV  is control volume area. 
Explicit MacCormack scheme was applied in the Eq. (5). This scheme use explicit Euler 

scheme on time. Considering outward surface vector correction on the control volume given 
by Fig. 1b, thus, Eq. (6) represents the predictor step, Eq. (7) represents the corrector step and 
Eq. (8) represents the current step. MacCormack scheme is a pseudo-transient process, where 
∆t is a virtual time increment to obtain the final converged solution. 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a)                                                                 (b) 
 

Figure 1. Representation of quadrilateral control volume: (a) with outward vector. (b) outward vector correction.  
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where, t  is current time, 1+t  is next time step, t∆  is a virtual time step, 1+t
mnQ is predictor step, 
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mnQ  is corrector step and 1+t
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must be discretized in correct way to ensure the main feature of MacCormack method: 
numerical method of second order accuracy in time and space [28]. 

The SIMPLE Method was applied to obtain coupling of velocity-pressure variables in the 
numerical scheme developed in this work [29]. The SIMPLE Method carries out the coupling 
by corrections in both variables, i.e., velocity and pressure.  

The boundary conditions were imposed over the control volume external faces, using the 
scheme called "Ghost Volume". In these ghost volumes it can be applied boundary condition 
of "Dirichlet Kind" and "Neumann kind". According to Jasak [25] the boundary conditions for 
physical consistency applied for metal flow in direct extrusion analysis should be such as: 

 Inlet: the velocity field should be prescribed and pressure should have zero gradient. 
 Outlet: the velocity should have zero gradient and pressure should be prescribed. 
 Symmetry line: should be prescribed zero gradients for normal surface gradient and 

parallel surface components should use domain values. 
 Solid Wall: at solid wall interface between material and die, consider friction model. 

     The friction model used was Friction Factor represented by mknt =τ , where ntτ  is the 
tangential friction stress, k is yield shear stress and m is friction factor. Considering isotropic 
material, von Mises yield criteria and shear strain rate ntγ& , the shear friction stress is given by: 
 

ntnt 3
2

γ
ε
σ

=τ &
&

                                                                                        (9) 

 
3   EXPERIMENTAL PROCEDURE 
 

Experimental results of aluminum direct hot extrusion were obtained by the technique 
known as “stripe pattern grid technique” introduced by Valberg [6]. Contrast pins were 
inserted axially and radially in the longitudinal symmetry plane of the aluminum billet as seen 
in Fig. 3. This method presented some experimental difficulties related to the manufacturing 
of the split die, necessary to remove the extruded billet without damaging it, and to prepare 
the surfaces to be analyzed, since the billet has to be cut off along its longitudinal section and 
then polished and etched to reveal the flow pattern. In addition, if the flow is to be evaluated 
at various extrusion stages, many billets have to be prepared, deformed and analyzed.  
                                              

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  Sketch of experimental extrusion tooling and conditions used in present work. 

•  Inlet Diameter: 60 mm 
•  Outlet Diameter: 20 mm 
•  Die semi-angle: 32.2° 
•  Area Reduction: 89% 
•  Die Temperature: 200°C 
•  Billet Material: Al 6351-O 
•  Billet Temperature: 450°C 

container 

punch 

guide tube 

split dies 
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In Fig. 2, the tooling set up employed in the experimental tests is shown. The extrusion die 
have the following dimensions: inlet diameter of 60 mm; outlet diameter of 20 mm; work 
angle of 32.3o corresponding to an area reduction of 89%.  

Billets with 58 mm in diameter and 40 mm long were cut off from an aluminum 6351 T5 
bar and machined to receive the contrast pins with 5 mm in diameter made of aluminum 2011: 
three longitudinal and four radial pins, as shown in Fig. 3. After machining the billet, the 
workpieces were solubilized at 515 oC for 60 minutes and air cooled. Strain ε and strain rate 
ε&  hardening behaviour of material was obtained by Hansel-Spittel law [30,31], Eq. (10), from 
tensile tests at temperature T= 450oC. The fitted parameters of Eq. (10) are shown in Table 1. 

( )( ) Tm
i

m
i

mTm
i

mm
i

mTm
i

63i75i4291 e1eTAe εεε+ε=σ εε &&                                      (10) 

Extrusion tests were carried out in a hydraulic press with ram speed of 10 mm/s. Before the 
tests, the dies were lubricated with a mixture with mineral oil, graphite and molybdenum 
disulphide. The workpieces were heated at 450 oC for 30 minutes and the tools were heated at  
200 oC to minimize the heat transfer and workpiece cooling.  

Extruded workpieces were removed from the container, air cooled and cut off at the 
medium longitudinal plane, then milled, polished and etched with a reagent (solution of 85 ml 
H20, 15 ml HF and 15 ml HNO3) to reveal the patterns shown in Fig. 3. 
 

Table 1 – Hansel-Spittel law parameters obtained to model the flow stress of aluminum alloys.  

Material  A m1 m2 m3 m4 
AA 2011 

(pin) 667.98713 -0.00485 -0.03347 0.08079 -0.00228 

AA 6351 
(matrix) 953.65542 -0.00524 -0.01407 0.10998 -0.00913 

 

4   RESULTS AND DISCUSSION 
Metal flow pattern at longitudinal middle section of one extruded workpiece by the stripe 

pattern grid technique is shown in Fig. 3. The velocity isolines of metal flow in direct hot 
extrusion were calculated from this stripe pattern geometry similarly to the classical technique 
of split billet before extrusion: the initial contrast pin had constant homogeneous diameter and 
were equally spaced inside the middle longitudinal section of billet. After the extrusion 
deformation process, the pins were deformed following the metal flow behaviour. 

On the other hand, the numerical simulation by the present FVM method was performed 
employing a mesh of 1110 volumes seen in Fig. 4 together with the material properties and 
process conditions presented in Table  2. In the numerical code, axisymmetric direct extrusion 
process, friction factor model, rigid-perfect plastic material and steady state were used in the 
modelling. The friction factor considered at die wall was m = 0.5 and zero friction was 
considered at the container wall. Time step was 10-15 and total iterations was about 50,000. 

Figure 6 shows the calculated experimental and the numerical simulation results of axial 
velocities contours (isolines) of constant values. The comparisons are in reasonable 
agreement. In Fig. 7, the obtained radial velocity isolines from present computational code for 
direct extrusion of aluminum are presented: the values and distribution are as expected. 

179



Jose D. Bressan, Marcelo M. Martins and Sergio T. Button. 

 9

 

 
 

Figure 3. Stripe pattern grid at longitudinal section of extruded aluminum billet. 
 

Tabela 2 - Parameters of material, extrusion process and simulation used in extrusion of aluminum 6351. 
 

Parameters Values 
Density (ρ ) 2710 (kg.m-3) 
Yield stress ( Yσ ) 255 (MPa) 
Area reduction  89 % 
Inlet extrusion velocity (Vo)    10 (mm.s-1) 
Quantity of control volumes 1110 
Time step (∆t) 10-15 (s) 
Die semi-angle (θ) 32.3° 
Friction factor parameter (m) 0.5 
Material model: rigid-perfectly-plastic 

 
 
 

 
Figure 4. Computational mesh employed in the numerical simulation of Al 6351. 

 
 

 r 

z 
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Figura 6.  Comparison between the experimental isolines of constant axial velocities vz (m/s) and the isolines 
               of axial velocities (m/s) from present numerical simulation code for direct extrusion of aluminum. 

 
 
 

 
 
Figure 7. Radial velocity vr isolines obtained from present computational code for direct extrusion of aluminum. 
 
5  CONCLUSIONS 
 

From the experimental results of constant velocity contours obtained by strip pattern grid 
technique of direct hot extrusion of aluminum billet and the numerical results from present 
FVM approach, the following conclusions can be drawn, 

 Present numerical scheme is explicit, hence, it is a conditionally stable method.  In 
order to satisfies the CFL condition it was necessary to use a minimum step time of 
10-15. This is an extremely low value and, thus, the convergence time was influenced. 

 It was necessary about 50,000 iterations to attain numerical convergence. 
 Present FVM approach for metal flow did not employed the artificial viscosity for 

convergence and stability as required by incompressible viscous fluid. 

 

Experimental  Presente work 
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 Present FVM approach together with metal flow formulation has produced good and 
encouraging results for metal flow in direct extrusion process. 

 MacCormack method can also be extended for modeling and analysis of metal flow, as 
suggested by present work, besides the classical application to incompressible fluid 
flow analysis. 
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