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Abstract� A large number of practical problems involves elements that
are described as a mixture of qualitative and quantitative information�
and whose description is probably incomplete� The self�organizing map
is an e
ective tool for visualization of high�dimensional continuous data�
In this work� we extend the network and training algorithm to cope with
heterogeneous information� as well as missing values� The classi�cation
performance on a collection of benchmarking data sets is compared in
di
erent con�gurations� Various visualization methods are suggested to
aid users interpret post�training results�

� Introduction

Kohonen networks �also known as self�organizing maps� �	
 �� were born
to emulate the human brain characteristic of topological and geometrical
organization of information� The training algorithm aims at 
nding analogies
between similar incoming data in a non�supervised process�

The algorithm places the weight vectors such that geometrically close vectors
�in weight space� are also topologically close in the grid represented by the
network� In other words
 for similar incoming vectors �in input space�
 the
neurons responding more vigorously should also be similar �in terms of their
weight vectors� and located in nearby positions in the network grid�

The interest in using these networks is not limited to the discovery of
regularities or to tracking the input data density� Once the training process has
ended
 the result can be visualized� Furthermore
 it the class labels are available

they can be superimposed to the discovered regularities� Much information can
be extracted from such graphical plots
 although it has to be identi
ed with care�

��� Data heterogeneity

Real�world data come from many di�erent sources
 described by mixtures
of numeric and qualitative variables� These variables include continuous or
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discrete numerical processes
 symbolic information
 etc� In particular
 qualitative
variables might have a di�erent nature� Some are ordinal in the usual statistical
sense �i�e�
 with a discrete domain composed by k categories
 but totally ordered
w�r�t a given relation� or nominal �discrete but without an ordering relation��
The data also come with their own peculiarities �vagueness
 uncertainty

incompleteness�
 and thus may require completely di�erent treatments�

In the neural network paradigm
 this heterogeneity is traditionally handled

if at all
 by preparing the data using a number of coding methods
 so that all
variables are treated as real quantities� However
 this pre�processing is not part
of the original task and may have deep consequences in the structure of the
problem� These consequences range from a change in input distribution to an
increase in dimension
 which results in a growth in the number of weights the
network is forced to learn
 an added di�culty in their interpretation
 an increase
in training time
 and so on� The choice of representation �if any� should be
as faithful as possible
 in the sense that the relations between the represented
entities should correspond to meaningful relations on the original data items�

��� Euclidean geometry

The common assumption of arti
cial neural models about the Euclidean nature
of the input space leads naturally to the use of a scalar product or a distance
metric as the standard neuron models �usually followed by a non�linear activation
function�� In particular
 this space is taken to be Rn
 with the customary
de
nition of scalar product� This assumption not only means that the features of
the problem at hand can be expressed in terms of vectors of real quantities
 but
also that scalar product and Euclidean distance are adequate ways of measuring
the similarity between elements in the space�

In consequence
 in order to determine which neuron has a weight vector that
is more similar to the input
 there are two possibilities� choose the neuron which
maximizes the scalar product or choose that which minimizes the distance� These
methods may or may not be meaningful for a particular problem
 and in principle
are only appropriate for real�valued vectors� What to do in cases where input
patterns contain heterogeneous information� In this case
 a similarity index can
be used
 as a more �exible way to measure likeness�

��� Aims and structure

The aim of this work is to extend the main ideas of Kohonen networks in such
a way that they can work in generic heterogeneous spaces
 making the neurons
compute a similarity measure among the elements of the space� This is to be
done in stages
 which we call network con�gurations
 in order to appreciate
the e�ect of each decision� The resulting networks are studied regarding two
aspects� classi
cation accuracy and ability to express meaningful information in
a visual way� From the point of view of classi
cation accuracy it is shown how
the consideration of heterogeneous and�or incomplete information without the



need of a coding scheme results in signi
cantly better classi
ers� On the other
hand
 it is illustrated how a solution can be visually analyzed�

The paper is organized as follows� In section ��� we introduce the data
characteristics considered in this work� Sections ��� and �	� brie�y review the
Kohonen algorithm and the basics of a similarity measure� Section ��� describes
the proposed extension of the algorithm� The last two sections present practical
matters
 about classi
cation ability in benchmarking data sets �section ���� and
visualization of the results �section ����

� Data heterogeneity

We consider in this work the following types of variables
 for which corresponding
similarity measures are to be de
ned�

Nominal �categorical� � non�numerical variable on which no order relation
has been de
ned� It thus can be seen as having a set of values �
nite or not��

Ordinal � variable �numerical or not� for which a linear order relation has been
de
ned on a 
nite number of values
 where each value has a precise sense�

Continuous � numerical and crisp variable for which a linear order relation has
been de
ned on a continuum of values�

Linguistic � variable whose values are expressing uncertainty in the form of
vagueness �e�g� cool� fast� young��

The values of the last type can be obtained �where appropriate� by
converting an existing set of values �ordinal or continuous� into fuzzy quantities�
In all cases
 we assume some values may be missing in a particular data set�

� The Kohonen network and algorithm

The classical Kohonen network �	
�� assumes a set of laterally interacting
adaptive neurons
 usually arranged as a two�dimensional sheet �a rectangular
grid of neurons�� Each neuron r is represented by an n�dimensional prototype
vector wr
 where n is the dimension of the input space� On each training step t

a data sample x�t� is presented to the network and the unit ws most similar to
x�t� is identi
ed �the Best Matching Unit or BMU�� The adaptation step shifts
ws �and those wr corresponding to neighbouring units r to s� towards x�t��

wr�t��� � wr�t����t�hrs�t� �x�t��wr�t��� for all units r in the grid� ���

In this formula
 hrs�t� establishes the scope and amount of the changes

centered on the BMU s
 at time t� In other words
 it represents the �varying�
neighbourhood� The factor ��t� acts as a learning ratio
 controlling the size of the
adaptive steps towards the input vector at time t� Both are decreasing functions
of time� In this work
 we use the following commonly found formulas�
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In formula ���
 d�r� s� is the �topological� distance between units in the
network structure� In case this structure is a rectangular grid
 the standard
Euclidean distance d�r� s� � kr � sk can be used� Note also that formula ���
ensures that the BMU would be the same in the hypothetical case x�t��� � x�t��
The initial vectors wr��� are set to small random values�

As stated in �����
 in order to determine the BMU
 there are two basic
possibilities� pick the neuron with the greatest scalar product to the input vector

or pick that with the smallest �Euclidean� distance� The 
rst choice usually
involves vector normalization �both input and weight�� The Euclidean distance is
a more general criterion �which reduces to scalar product for normalized vectors�
and is usually adopted to compute similarity �closeness
 in this case� in input
space� In this work
 all real�valued variables are standardized �to zero�mean

unit standard deviation� so that all of them have a uniform in�uence in the
computation of distance�

� Similarity measures

��� De�nition

Let us represent input patterns belonging to a space X �� � �about which the only
assumption is the existence of an equality relation� as vectors xi of n components

where each component xij represents the value of a particular feature �descriptive
variable� aj for object i
 from a prede
ned set of features A � fa�� a�� � � � � ang

judged by the investigator as relevant to the problem� A similarity measure is
a unique number expressing how �like� two given objects are
 given only the
features in A ���� Let us denote by sij the similarity between xi and xj
 that is

s � X �X � R

� � f�g and sij � s�xi�xj��

De�nition �� A similarity measure in X ful�lls the following properties�

�� Non�negativity� sij � � 	xi�xj 
 X

�� Symmetry� sij � sji 	xi�xj 
 X

�� Boundedness� There is a maximum attained similarity 	that of an object with
itself
� �smax 
 R� � sij � smax 	xi�xj 
 X�

�� Minimality sij � smax � xi � xj 	xi�xj 
 X

�� Semantics� The meaning of sij � sik is that object i is more similar to object
j than is to object k�



��� Heterogeneous measures

In this section we de
ne similarity measures �with smax � �� for the types of
variables mentioned in �x��� Let x�y be two heterogeneous vectors�

	 For nominal variables�

s�xk� yk� �

�
� if xk � yk
� if xk �� yk

�	�

	 For ordinal variables�

s�xk� yk� �
�

� � jxk�ykj
rank�k�

���

where rank�k� is the number of values the variable k can take�
	 For continuous variables�

s�xk� yk� �
�

� � jxk � ykj
���

where xk� yk are standardized continuous variables�
	 For linguistic variables �where their values are fuzzy intervals of the LR�

type � �� the problem is a bit more complex� We started using trapezoids

but we found that better results were in general achieved with the following
bell�shaped function�

� �A�x� �
�

� � �a�x�m���
���

where m is the mean and a controls the fuzziness� Let F�X� be the �crisp� set
of all such fuzzy intervals in X� Given !A� !B 
 F���
 with � a real interval

and respective support sets � �A�� �B 
 �
 we de
ne ����

I� !A� !B� �

Z
� �A�� �B

� �A� �B�u�du" U � !A� !B� �

Z
� �A�� �B

� �A� �B�u�du �#�

and then

s�xk� yk� �
I�xk� yk�

U �xk� yk�
� �

��� Gower
s similarity index

A basic but very useful similarity�based neuron can be devised using a Gower�like
similarity index
 well�known in the literature on multivariate data analysis ����
For any two objects xi� xj of cardinality n
 this index is given by the expression�

sG�xi�xj� �

Pn

k�� sk�xik� xjk� 	ijkPn

k�� 	ijk
����



where sk is the partial similarity index according to variable k
 and 	ijk is a
binary function expressing whether the objects are comparable or not according
to variable k� Let X represent a missing value
 then�

	ijk �

�
� if xik ��X � xjk ��X
� otherwise

����

� Heterogeneous algorithm for the Kohonen network

The weight propagation in equation ��� can only be applied to real values� For
other variable types
 the following propagation formulas are used� Let wr�i�t�
represent the i�th component of weight vector wr�t��

	 For ordinal variables�

wr�i�t� �� � bwr�i�t� � ��t�hrs�t� �xi�t� �wr�i�t�� � ���c ����

	 For linguistic variables
 formula ��� is applied to both m and a in ����
	 For nominal variables
 a deeper explanation is needed� In all of the previous

cases
 there is a linear order �continuous or discrete�� Hence the notion of
�getting closer� to the input vector makes sense and the basic formula ���
can be applied� In absence of an order
 there is no shift
 but a change in value
�which can be regarded as a more general concept�� In addition
 though the
intuition behind the product ��t�hrs�t� must be kept
 its practical role has
to be di�erent� We take it as the probability of such a change�
In essence
 a random number 
 
 ��� �� with uniform probability is generated�
Then
 the updating rule is given by�

wr�i�t� �� �

�
xi�t� if ��t�hrs�t� � 


wr�i�t� otherwise
����

This scheme is intuitively pleasing but has a serious drawback� it ignores the
past� We hence propose an updating rule in which the probability of changing
the weight vector component increases proportionally to the number of times
this change was already attempted
 relative to the number of attempts of the
current value of the weight and the rest of possible values
 and in�uenced
by the distance d�r� s�
 where s is the BMU for x�t� �see the Appendix for
details��

� An experimental comparison

A number of experiments are carried out to illustrate the validity of the approach

using several benchmarking problems� These are selected as representatives
because of the diversity in the kind of problem and richness in data heterogeneity�



��� Problem description

A total of ten learning tasks are worked out
 taken from ��� and ���
 and altogether
representative of the kinds of variables typically found in real problems
 while
displaying di�erent degrees of missing information �from �$ to ��$�� Their main
characteristics are displayed in Table ��

Table �� Basic features of the data sets� Missing refers to the percentage of missing
values� R �real�� N �nominal�� I �ordinal� and L �linguistic��

Name Cases Heterogeneity Classes Class distribution Missing
Credit Card ��
 �R��N�
I�
L � ����������� 
����
Heart Disease 	
	 �R��N��I�
L � ����������� 
�

�
Horse Colic 	�� �R��N��I��L � ���������������	� �����
Solar Flares ��� 
R��N��I�
L � �
��������� 
�

�
Gene Sequences 	��� 
R��
N�
I�
L 	 ���������
� 
�

�
Mushroom ���� 
R���N�
I�
L � ����������� �����
Cylinder bands ��
 �
R���N�
I�
L � ����������� �����
Meta data ��� ��R��N��I�
L 	 	�����	�����	
��� 
�

�
Servo data ��� �R�
N��I�
L � ���	������� 
�

�
Annealing data ��� �R��
N�	I�
L � �������
�
������� �����


����������������

��� Di�erent network con�gurations

The extended algorithm has been tested in seven di�erent con
gurations� In all
cases
 formula ���� is used
 as follows�

�� Kohonen network
 treating all attributes as real�valued
 with the usual ��
out�of�k coding for nominal ones �with k the number of values� and an extra
attribute signaling a missing value for those attributes that can be missing�

�� As ��
 but coding nominals as �
�
����
�� As ��
 without the coding for missing values �thus treating them directly by

using formula �����
	� As �
 using formula ���� for ordinal attributes
 �considering all linguistic

attributes as ordinals� and ���� for nominals�
�� and ��
 as 	� but using two di�erent ways of enhancing ���� for nominals �see

the Appendix��
�� As ��
 considering linguistic attributes as indicated�

In all cases
 the interest is not in building a classi
er per se
 but in
assessing the relative di�erences between network con
gurations� Hence
 all the
information is used to train the network �without the class labels�� After this
process has ended
 the network is colored using the weighted global method �
see section ���� and its classi
cation accuracy computed� The results are shown
graphically in Fig� ����



Fig� �� Graphical impression of the results� The horizontal axis stands for the network
con�guration� The vertical axis shows classi�cation accuracy� Each plotted value is the
average of forty runs�

� Visualization methods

In order to help users understand the post�training result of the network we use
two di�erent visualization methods�


�� Weighted global BMU

At the end of the training process we assign a class to each neuron of the grid
�that is
 we color the grid�� For each neuron r
 we compute its receptive �eld F �r�

composed of all those input vectors for which its BMU is r� A basic criterion is
then to assign to r the majority class in F �r�� This criterion does not take into
account the relevance of each vector in F �r�� A simple way to do this is to weight
each vector in F �r� by its similarity to wr� Afterwards
 the class with greater
weighted similarity to wr is chosen to label r� If a neuron is never a BMU
 it is
not assigned to any class
 and is painted �neutral� �white in Fig� � �left��


�� U�matrix

As shown in �#� the U�matrix is useful to visualize similarity among contiguous
map units� The minimum similarity between each grid unit and its four adjacent
neighbours
 is computed
 and displayed using grey shade �Fig� � �center�� We
have also found very useful displaying the contour plot of the same U�matrix
�Fig� � �right�� and compare it to the weighted global BMU�

� Conclusions

An extension of Kohonen%s self�organizing network and the corresponding
training algorithm has been introduced that works in heterogeneous spaces �for



Fig� �� Visualization of the results in a two�class example� Left� Global BMU� Center�
U�matrix� Right� U�matrix contour plot�

both input and weight vectors�� The inner workings of a neuron are grounded on
a similarity measure
 which allows for more �exibility and a built�in treatment
of heterogeneous or incomplete data� It is also shown how to visualize the result
of the training process� Some results that have been obtained for illustrative
purposes in several benchmarking data sets indicate a superior performance of
the extended algorithm�
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A Appendix

During weight propagation
 for nominal variables
 a random number 
 
 ��� ��
with uniform probability is generated� Then
 wr�i�t � �� is updated to xi�t� if
p�t� � 

 with p�t� � ��t�hrs�t�
 otherwise it is left unchanged�



Let n� be the number of times wr�i�t� has been proposed to be the value of
wr�i up to time t
 n� the number of times xi�t� has been proposed
 and let n�
generally denote the number of times any other possible value of nominal variable
i has been proposed to be wr�i
 up to time t� If there are no more possible values
�that is
 if rank�i� � ��
 then n� is unde
ned� De
ne then�

f�t� �

����
���

n��
n�

s
rank�i���
rank�i�P

����� ����� ���
n��

if rank�i� � �

n��
n�

if rank�i� � �

��	�

In these conditions
 the new probability of change is de
ned as�

p��t� � ���t�hrs�t��
�

ln�e���f�t�� ����

Whereas a simpler possibility is�

p���t� � ���t�hrs�t��
�

f�t� ����

Network con
guration 	� uses p�t�
 con
guration �� uses p��t� and
con
guration �� uses p���t��


