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E. Oñate, D.R.J. Owen, D. Peric and B. Suárez (Eds)
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Abstract. This paper deals with the formulation of a micro-mechanically based dam-
age model for soft collagenous tissues. The model is motivated by (i) a sliding filament
model proposed in the literature [1] and (ii) by experimental observations from electron
microscopy (EM) images of human abdominal aorta specimens, see [2]. Specifically, we
derive a continuum damage model that takes into account statistically distributed pro-
teoglycan (PG) bridges. The damage model is embedded into the constitutive framework
proposed by Balzani et al. [3] and adjusted to cyclic uniaxial tension tests of a hu-
man carotid artery. Furthermore, the resulting damage distribution of the model after a
circumferential overstretch of a simplified arterial section is analyzed in a finite element
calculation.

1 INTRODUCTION

The softening behavior of soft collagenous tissues is relevant when the tissue is sub-
jected to supra-physiological loading situations. They occur, for example, during clinical
interventions such as balloon angioplasty, where an atherosclerotic artery is circumferen-
tially overstretched. Thereby, a softening of the tissue is observed, which is one of the
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main contributors to the success of the treatment since it leads to an increase of the ar-
terial lumen in the physiological loading domain. The softening is believed to result from
microscopic tissue ‘damage’. Thus, to model this phenomenon, the framework of contin-
uum damage mechanics, cf. Simo [4], is usually applied. In addition, phenomenological
approaches following the pseudo-elasticity concept (see Ogden & Roxburg [5]) have
been applied to soft collagenous tissues, see, for example, Weisbecker et al. [6]. An
important aspect of a model is to account for the tissue’s anisotropy, which results from
the alignment of collagen fibers, cf. [7], [8]. A practical approach, that avoids the in-
troduction of tensorial damage quantities, uses scalar-valued variables, see [9]. To reflect
remanent strains, that can be observed in soft collagenous tissues after overstretching,
Gasser & Holzapfel [10] modeled remaining deformations of the fibers. Whereas, in
the latter publication finite plasticity was considered, Ehret & Itskov [11] described
remanent fiber deformation in a continuum damage mechanics framework. Balzani et

al. [3] proposed a construction principle for damage models allowing the desciption of re-
manent strains and furthermore ensuring polyconvexity in the undamaged (physiological)
regime. Other authors such as Natali et al. [12] or Calvo et al. [13] considered damage
to occur in the collagen fibers as well as in the matrix material.

The above mentioned models are of phenomenological character. As a first microme-
chanical approach Rodŕıguez et al. [14] traced damage back to the subsequent rup-
ture of collagen fibers and considered their waviness to be stochastically distributed.
Gasser [15] formulated a phenomenological damage model motivated by the loss of in-
terfibrillar proteoglycan (PG) bridges. This idea is based on a sliding filament model
proposed by Scott [1] stating that the interconnecting PG bridges between collagen
fibrils store strains reversibly as long as a certain threshold is not exceeded.

In the present contribution, we derive a micromechanical approach for damage, which
is also motivated by [1]. Therefore, in a first step, we experimentally investigate human
arterial tissue from abdominal aortas on the fibrillar level by means of electron microscopy
(EM), for details see [2]. From these EM images it can be deduced, that dispersed micro-
scopic quantities may be indeed taken into account. Thus, a damage model is formulated
assuming a statistical distribution of proteoglycan orientation and it is incorporated into
the constitutive framework [3]. The model parameters are adjusted to cyclic uniaxial
tension data of human carotid artery specimens, and used in a numerical example within
a finite element framework. Remarks concerning the algorithmic implementation of the
model as well as alternative approaches for the incorporation of statistical distributions
and related adjustment results are provided in [16].

2 EXPERIMENTAL ANALYSIS

Due to the aforementioned assumption that damage in collagenous tissues takes place
at the fibril level, microstructural experiments were carried out at Graz University of
Technology. Thereby, human arterial specimens of the abdominal aorta were considered
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and investigated via electron microscopy (EM) imaging to visualize microstructural tissue
components. Therefore, a staining with Cupromeronic Blue (CB) was performed accord-
ing to [17]. For the EM imaging ultra-thin sections (200-300 nm) were taken by means of a
microtome equipped with a diamond knife. The resulting images show collagen fibrils and
PGs, see Fig. 1(a). Even though we only observe two-dimensional (2D) projections on the
EM imaging plane of originally three-dimensionally (3D) oriented PGs in space, it can be
seen that the PGs are not aligned in a unique direction between the collagen fibrils, but
they are rather dispersed. Furthermore, we investigated the distances between collagen
fibrils with the help of a custom programmed plugin for the ImageJ software (U.S. Na-
tional Institutes of Health, MD, USA), that identifies the cross-sections of collagen fibrils
and the interfibrillar distances (see [2] for more details). Due to their high variability, the
number of soft tissue samples was too small to serve as a solid data base for quantifying
statistical distributions of the investigated quantities. However, the obtained results show
that it is reasonable to take into account the distributed microscopical parameters for the
numerical modeling of soft collagenous tissues.

(a) (b)

Figure 1: Transmission electron microscopy images: (a) collagen fibrils and proteoglycans
(PGs) (three are highlighted by red circles). Scale bar: 200 nm; (b) highlighted cross-
sectioned collagen fibrils that were identified (green circles) by the custom programmed
ImageJ plugin. Scale bar: 200 nm.

3 MATHEMATICAL MODEL

3.1 CONTINUUM MECHANICAL MODELING

According to standard continuum mechanics, we consider the deformation gradient F

with J := det F > 0 and the right Cauchy-Green tensor C := F TF . For hyperelastic
materials a strain-energy function Ψ := Ψ(C) is defined per unit reference volume, and the
second Piola-Kirchhoff stress tensor can be obtained by S = 2∂CΨ. The physical Cauchy

3

135



Thomas Schmidt, Daniel Balzani, Andreas J. Schriefl and Gerhard A. Holzapfel

stresses are given by a push-forward operation as σ = J−1FSF T . When describing
fiber-reinforced materials, the dependence of the deformation on the fiber directions A(a)

is accounted for by the incorporation of structural tensors M(a) := A(a) ⊗ A(a), with
a = 1, . . . , na, for a given number of fiber families na. Therefore, the invariants I1 := trC,
I2 := tr[CofC] with Cof[C] = det[C]C−1, and I3 := detC of the right Cauchy-Green

tensor, and the mixed invariants J
(a)
4 := tr[CM(a)] and J

(a)
5 := tr[C2M(a)] are taken into

account for the formulation of the strain energy. Instead of J
(a)
5 , which is not polyconvex,

the alternative polyconvex functions

K
(a)
1 := tr[CofCM(a)] = J

(a)
5 − I1J

(a)
4 + I2,

K
(a)
2 := tr[C(I − M(a))] = I1 − J

(a)
4 ,

K
(a)
3 := tr[CofC(I − M(a))] = I1J

(a)
4 − J

(a)
5

(1)

can be used, see Schröder & Neff [18]. Soft collagenous tissues are often described
by a decomposition of the total strain energy according to

Ψ = Ψpen(detC) + Ψiso(C) +
na
∑

a=1

Ψti
(a)(C, M(a)). (2)

Herein, the term Ψpen penalizes deviations from isochoric deformations. For the contribu-
tion of the isotropic matrix material we use here Ψiso = c1(I1/I

1/3
3 −3) with the stress-like

parameter c1. A number of na = 2 transversely-isotropic energies Ψti
(a) is superimposed to

account for two fiber families as observed in arterial tissues. For the formulation of Ψti
(a)

the constitutive framework, as proposed in Balzani et al. [3], is used. This enables us
to describe remanent strains in the physiological loading domain after supra-physiological
loadings. Furthermore, polyconvexity is ensured in the physiological (undamaged) do-
main. According to the framework, a one-dimensional damage variable D(a) ∈ [0, 1] is
incorporated into an internal function as

Ψti
(a) := m[P(a)(C, D(a))] with P(a) = (1 − D(a))Ψ

ti,0
(a) − c. (3)

Herein, c equals the value of the effective transversely isotropic function Ψti,0
(a) in the

reference configuration. Polyconvex functions such as, for example, J4 or K3, can be used
as the effective (undamaged) function Ψti,0

(a) . The internal function P(a) is embedded in

an external function m[P (X)], which must be convex and monotonically increasing. The
second Piola-Kirchhoff stress tensor S resulting from (2) reads

S = 2
∂Ψ

∂C
= S

pen + S
iso +

na
∑

a=1

S
ti
(a), with S

pen = 2
∂Ψpen

∂C
, S

iso = 2
∂Ψiso

∂C
, (4)

and the transversely isotropic part is

S
ti
(a) = (1 − D(a))S

ti,0
(a) with S

ti,0
(a) = 2∂P m

∂Ψti,0
(a)

∂C
. (5)

4
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With the above described constitutive framework, the challenge that still arises is a suit-
able definition for Ψti,0

(a) and the damage variable D(a). While for the effective function
characterizing the physiological behavior some micromechanically motivated formulations
are provided in the literature, see, for example, [19], [20], there are a few damage functions
available that directly take into account the microscopic findings.

3.2 MICROMECHANICALLY-BASED DAMAGE FUNCTION

In order to derive a micromechanically-based damage function we follow the idea of
a sliding filament model, as proposed by Scott et al. [1]. The model states that PG
bridges store reversible strains in a certain domain, which is due to their composition of
two neighboring anionic glycosaminoglycan (AGAG) chains. In the case of an applied
stress the AGAG chains can bond differently and thus enable sliding of collagen fibrils
relatively to each other. Since the latter process is only possible in a certain domain,
there exists some threshold value for a sustainable PG stretch, which we denote here as
λsust

pg . In order to identify a domain of PG bridges, where this threshold is exceeded, the
fibril-proteoglycan microstructure in Fig. 2(a) is considered as a unit-cell. Therein, we
regard two half collagen fibrils and interconnecting PG bridges. The unit-cell undergoes
a deformation due to a fiber stretch λfib =

√
J4, such that the initial distance d0 between

collagen fibrils changes to d, and the PG orientation α changes. Since we assume here the
tissue to be incompressible the transverse stretch to the fiber direction is 1/

√
λfib and,

therefore, the distance of collagen fibrils in the deformed configuration is given by

d =
d0√
λfib

. (6)

With trigonometric arguments the following expression for the PG stretch can be derived
as the ratio of the undeformed (Lpg,0) and the deformed (Lpg) lengths, i.e.

λpg =
Lpg

Lpg,0
=

√

[cos α − L(λfib − 1) sin α]2 +
sin2 α

λfib
. (7)

Herein, we introduced the dimensionless internal length parameter L = (Lcf − Lov)/d0,
with the initial length Lcf of collagen fibrils, their initial overlap Lov and distance d0 to
each other.

Motivated by our experimental findings, see Fig. 1(a), we assume here the angle α to
be statistically distributed. With the help of the parameter λsust

pg a regime of failed PG
bridges is given by λpg − λsust

pg ≥ 0. Thus, a lower and an upper regime bound αl and αu

can be evaluated as solutions of
λpg − λsust

pg = 0, (8)

see Fig. 2(b). The damage variable D is defined as the fraction of failing PG bridges.

5
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Figure 2: (a) Geometrical quantities defining the fibril-proteoglycan microstructure in the
reference and current configurations; (b) lower and upper bounds (αl, αu) for a domain of
ruptured PG bridges under consideration of a statistically distributed PG orientation α;
pictures are taken from Schmidt et al. [16].

Therefore, it is evaluated as the integral of the respective probability density function
(PDF) ϑ of α over αl and αu, i.e.

D(λfib) =

αu(λfib)
∫

αl(λfib)

ϑ(α)dα = ϑ̂(αu) − ϑ̂(αl) with

∫

α

ϑ(α)dα = 1. (9)

According to the above definition 0 ≤ D ≤ 1 holds, while ϑ̂ denotes the cumulative
distribution function (CDF). Due to the limitation 0 < α < π, see Fig. 2(a), a beta
distribution is taken with the open interval 0 < ᾱ < 1 and ᾱ = α/π. Thus, the CDF is
given by

ϑ̂beta(ᾱ) =
1

B(a, b)

ᾱ
∫

0

α̃a−1(1 − α̃)b−1dα̃ with 0 < ᾱ < 1, (10)

and a, b denote parameters of the beta distribution, and B denotes the beta function.

4 ADJUSTMENT TO EXPERIMENTAL DATA

In this section the derived micromechanical damage function is combined with two dif-
ferent transversely-isotropic strain-energy functions, as introduced by Balzani et al. [20],
i.e.

Ψti
BNSHe

=
k1

2k2

{

exp

[

k2

〈

(1 − D(a))K
(a)
3 − 2

〉2
]

− 1

}

, (11)

Ψti
BNSHp

= α1�(1 − D(a))K
(a)
3 − 2�α2, (12)

6
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Table 1: Material parameters and error measure r for the models ΨBNSHe
and ΨBNSHp

for
the media of a human carotid artery under consideration of a beta distributed PG orien-
tation; see relation (2) with the use of (11) and the microscopical parameters according
to Section 3.2, cf. [16].

c1 [kPa] k1|α1 [kPa] k2 [-] α2 [-] βf [◦] λsust
pg [-] L [-] a [-] b [-] r [-]

ΨBNSHe
9.58 894.38 87.0 – 39.40 1.0158 3.8 9.8 18.9 0.067

ΨBNSHp
9.75 1003.8 – 2.06 39.39 1.0068 4.7 5.4 13.7 0.073

with the stress-like parameters k1 > 0 and α1 > 0, and the dimensionless parameters
k2 > 0 and α2 > 0. The total strain-energy functions are denoted accordingly as ΨBNSHe

and ΨBNSHp
. The respective material response is adjusted to uniaxial cyclic tension data

of a human carotid artery, as in Balzani et al. [3]. Therein, the following least-square
function is minimized

r̄(α) =

nexp
�

k=1

�

�

�

�

1

nmp

ncyc
�

i=1

nmp,i
�

j=1

r(α), r(α) =





σexp(λ(i,j)) − σcomp(λ(i,j), α)

max
j

(σexp)





2

(13)

with respect to the vector α of material parameters. The stretch in the tension direction is
denoted by λ. The deviation between the experimental stress σexp and the computed stress
σcomp is normalized by the maximum experimental stress in the respective extension cycle
i. The squares of these expressions are summed up over ncyc extension cycles with nmp,i

measured points j each. The overall sum is divided by the overall number of measured
points nmp and the square root is computed. The resulting error measures are summarized
for nexp = 2 experiments, namely a cyclic uniaxial tension test in the circumferential
direction and one in the axial direction of the artery. Note, that α also contains the angle
βf between the fiber direction and the circumferential direction of the artery as well as
the microscopical parameters from Section 3.2 due to the aforementioned lack of a data
basis.

Within the optimization, the stretches in the transverse directions are determined by an
iterative procedure under the assumption of incompressibility such that a uniaxial stress
state is obtained. The resulting stress response with the adjusted material parameters
is given in Fig. 3. As can be seen, a good correlation with the experimental data can
be obtained with both transversely-isotropic functions, whereas ΨBNSHe

performs slightly
better.

5 NUMERICAL EXAMPLE

In this section the applicability of the proposed damage model in a finite element
calculation is shown. Therefore, the circumferential overstretch of a simplified section of an

7
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Figure 3: Cyclic uniaxial tension tests of the media of a human carotid artery: (a)
experimental data and results of the constitutive model ΨBNSHe

; (b) experimental data
and results of the constitutive model ΨBNSHp

, cf. [16]. The PG orientation is assumed to
be beta distributed. The associated material parmeters are given in Table 1.

atherosclerotic artery is numerically simulated. Five different tissue layers are considered:
fibrous cap, lipid pool, (diseased) fibrotic media, (non-diseased) media, and adventitia,
see Fig. 4(a). The model is discretized with 7963 quadratic tetrahedral elements. For the
non-diseased media the model ΨBNSHp

with the obtained parameters from Table 1 is used.
For the other layers, except for the lipid pool, the same adjustment routine, as described in
the previous section, was performed (see [3] for the specific experiments). Due to missing
experimental data in the supra-physiological domain for the fibrous cap and the fibrotic
media, only the hyperelastic parameters of these layers were adjusted to experimental data
and the same damage parameters as for the media were taken. Specifically, the model
ΨBNSHe

is used for the fibrotic media and the model ΨBNSHp
is applied to the fibrous cap

and the adventitia. The lipid pool is considered to be butter-like and incompressible,
and is, therefore, modeled as a neo-Hookean material with a significantly lower stiffness
than the other components. Damage is not assumed to occur in the lipid pool. Table 2
summarizes all material parameters and the obtained error measure r from the adjustment
procedure.

The penalty term Ψpen = ǫ1

(

Iǫ2
3 + I−ǫ2

3 − 2
)

is used to control the volumetric behavior.
For the adventitia, the non-diseased media, the fibrotic media and the fibrous cap ǫ1 =
50.0 kPa and ǫ2 = 20.0 were set, whereas for the lipid pool we used ǫ1 = 20.0 kPa and
ǫ2 = 10.0. These penalty parameters ensured that the quasi-incompressibility constraint
detF = 1±1% was fulfilled at any integration point during the computation. An internal
pressure is applied to the arterial lumen. A first loading branch increases up to 24.0 kPa
(=̂180.0 mmHg) which was regarded here as the very upper limit of the physiological
blood pressure. Furthermore, during this first loading branch, an axial strain of 2%
is applied in order to incorporate residual axial stretches. This was neglected in the
circumferential direction since the associated circumferential stresses are assumed to be

8
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Table 2: Hyperelastic and damage parameters of four tissue components. Parameters for
the non-diseased media are taken from Table 1, cf. [16].

c1 [kPa] k1|α1 [kPa] k2|α2 [-] βf [◦] λsust
pg [-] L [-] a [-] b [-] r [-]

Adventitia 5.7 8159.4 3.5 45.59 1.1235 9.746 8.11 24.33 0.1213

Fibrotic media 20.9 479.36 293.3 25.18 1.0068 4.711 5.42 13.67 0.0177

Fibrous cap 27.3 1222.4 2.0 50.93 1.0068 4.711 5.42 13.67 0.0367

Lipid pool 50.0 – – – – – – – –

fibrotic media
media

lipid pool

adventitia fibrous cap
D(1)/ maxD(1)

(a) (b)

Figure 4: (a) Three-dimensional finite element model of a thin section of a diseased artery
with five different tissue layers discretized with 7963 quadratic tetrahedral elements; (b)
distribution of the normalized damage variable D(1)/maxD(1) of the first fiber family in
the arterial section at an internal pressure of 82 kPa; cf. [16].

significantly lower compared to the ones occurring due to the overstretch. In a further
loading branch the internal pressure increases to 82.0 kPa (=̂615.0 mmHg) yielding an
overstretch of the artery. In Fig. 4(b) the normalized damage variable D(1)/maxD(1) with
maxD(1) = 0.108 is depicted at p = 82.0 kPa. High damage values due to the overstretch
can be observed in the media and the fibrous cap, whereas rather low damage occurs in
the adventitia. These results are compatible with the ones reported in Balzani et al. [3].

6 CONCLUSIONS

In this contribution a micromechanical approach for damage in soft collagenous tissues
was derived. The approach considers statistically distributed orientations of proteoglycan

9
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bridges and a subsequent loss of those due to overstretch. A comparison with cyclic
experimental data of a human carotid artery in the supra-physiological loading domain
showed good agreement such that we may conclude that a subsequent loss of proteoglycan
bridges is an important contributor to softening of collagenous tissues. Furthermore, with
the help of the derived model, the circumferential overstretch of a simplified atherosclerotic
artery, as it occurs during balloon angioplasty, was numerically simulated. A pronounced
damage was observed in the healthy media and in the fibrous cap after that overstretch.
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[18] Schröder, J. and Neff, P. Invariant formulation of hyperelastic transverse isotropy
based on polyconvex free energy functions. Int. J. Solids Struct., 40:401–445, 2003.

11

143



Thomas Schmidt, Daniel Balzani, Andreas J. Schriefl and Gerhard A. Holzapfel

[19] Holzapfel, G.A., Gasser, T. and Ogden, R.W. A new constitutive framework for
arterial wall mechanics and a comparative study of material models. J. Elas., 61:1–
48, 2000.
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