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Abstract. We present a comparison between a viscoplastic crystal plasticity finite element 
simulation of the extrusion process applied to a bcc polycrystal and the experimental 
evaluation of the preferred orientation (texture) in a tungsten wire by monochromatic 
synchrotron X-ray diffraction with an area detector. We perform a numerical simulation of 
sample texture evolution during large extrusion deformation with the elongation factor up to 
the value of fifty. By matching the predicted Orientation Distribution Functions (ODF) and 
the pole figures generated on the basis of the simulations to the experimental observations, the 
extrusion strain experienced by the sample during processing can be estimated. 
 
1 INTRODUCTION 

Deformation processing of metallic alloy systems continues to account for a significant 
fraction of all fabrication operations carried out in structural engineering. In addition, a 
number of novel processing routes have been developed in recent decades and years that open 
up new possibilities, such as solid-state joining of (dissimilar) metallic samples by linear 
friction welding or inertia friction welding; severe plastic deformation processing by equal 
channel angular extrusion or high pressure torsion to induce grain refinement (nano-
structuring) and amorphisation, etc. All these processes make direct use of the high 
deformability of metallic samples the leads to large overall strains being attained, and that are 
accompanied by large grain deformation and rotation. An important consequence of large 
strain processing is the alignment of the intragranular crystal lattices with certain global 
directions. This process is driven by the anisotropy of material’s mechanical properties at the 
level of individual grains, both in terms of elastic constants, and plastic strength. As a 
consequence, the overall mechanical properties of the polycrystal may also acquire a high 
degree of anisotropy, and may become reflected in the sample or component response to 
loading, fatigue durability, etc. 

The current study was aimed at combining numerical modeling of grain deformation and 
re-orientation (both in terms of grain shape, i.e. morphology, and lattice rotation) with 
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experimental evaluation of texture using diffraction of penetrating radiation (synchrotron X-
rays). We chose an extruded tungsten wire as an example for this investigation. 

2 EXPERIMENTAL SETUP AND TEXTURE INTERPRETATION 
The extruded Tungsten wire is with diameter of 0.1 mm. The diffraction pattern was taken 

at beamline I12 (JEEP), Diamond Light Source, Didcot, Oxfordshire, UK. The diffraction 
setup was typical Debye-Scheerer setup mainly consists of an area detector (Thales Pixium 
RF4343). The detector has an active area of 2880 × 2881 pixels, and the size of each pixel is 
148  × 148 μm2. Through two groups of slits, the beam size was adjusted to 100 × 100 μm2, 
which just covers the diameter of the sample. The beam energy was set to 100 KeV, and the 
sample to detector distance was 1178.41 mm. 

An example Debye-Scherrer diffraction pattern is shown in Fig 1.a. Due to the fact that the 
beam energy is relatively high, many Bragg diffraction rings are captured by the detector. The 
more Bragg peaks are probed, the more accurate is the calculated texture interpretation. Here, 
we only analyze the following four reflection rings: (110), (200), (211) and (310). They are 
the lowest order reflection peaks for BCC materials. Althought the (220) peak is of lower 
order than (310), it contains the same texture information as (110), so it has been ignored.  

We present two distinct methods to estimate orientation distribution function (full texture 
information) from a single multi-peak Debye-Scherrer pattern, and the details of the 
procedures can be found in [1]. The first method is based on the pole figure evaluation 
directly from the experimental data, and ODF estimation on this basis by MTEX [2]. The 
pattern was binned azimuthally into 72 portions with 5o azimuthal width. Then single peak 
(Gaussian) fitting was performed for the 72 line profiles to compute the integrated intensity 
for the (110), (100), (211) and (310) peaks. Finally, these integrated intensities were projected 
onto a circular area according to the equal area geometric projection used to form raw pole 
figures (as shown in Fig 1.b). The four raw pole figures were then imported into MTEX. In 
MTEX, any ODF is considered as the linear combination of radially symmetric “bell-shaped” 
functions in 3D Euler space. It employs a modified least square fitting algorithm to determine 
the coefficients of those “bell-shape” functions by matching raw pole figures with the 
projections of the ODF. Fig 2.a shows the projections (full pole figures) of the estimated ODF 
from the raw pole figures. The intensity that appears in the full pole figures refers to the 
probability to find a (hkl) plane normal at that pole and is called “multiples of a random 
distribution” (MRD). MRD is a normalized property of the integrated intensity in the raw pole 
figure, and the normalization is automatically done by MTEX. The pole figure maxima 
(PFM) in Fig 2.a match the ones in Fig 1.b well. A detailed analysis [1] has shown that 
although the raw pole figures appear only to cover a small area of the circle, it is nevertheless 
possible to determine the overall ODF for the diffraction volume with satisfactory accuracy. 

The second ODF determination approach consists of Rietveld full pattern analysis and the 
application of the extended-WIMV algorithm. The main idea of this approach is to fit the 2D 
diffraction pattern directly and by using the extended-WIMV algorithm to determine the 
volume of fraction of the discrete ODF components. Since this is a discrete approach, the 
calculated ODF turns to be not as smooth as that determined by the MTEX method. This is 
seen by the comparison between Fig 2. a and b. The 2D patterns in Fig 2. a and b match well, 
although the intensity looks slightly different. It is easy to associate those pole figures with a 
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be the result of dislocation slip on certain crystal planes. Since texture change of 
polycrystalline materials is often associated with large plastic deformation, large strain theory 
is used. The key constitutive equations used in the formulation are listed below. 
Kinematics: 

The total deformation gradient � can be decomposed into the elastic and plastic parts, 
 � = �� � �� (1) 
where the superscripts e and p stand for elastic and plastic deformation, respectively. 

The total velocity gradient is given by 
 � = ������) = �� ����)�� � �� �������)�����)�� = �� � ��   (2) 
The shear (slip) deformation that happens on slip systems indexed by � causes the plastic 
deformation gradient given by 
 �� = � � ����� � ��)     (3) 
where unit vectors �� and �� are the slip direction and normal to slip plane in the lab 
coordinates, respectively, and  �� is the Taylor cumulative shear strain on the � slip systems. 

The ��� � ���)��is then the sum of the slipping rate �� ��) over all the slip systems,  
 ��� � ���)�� =������� � ��)

�
 (4) 

     Plastic deformation does not change the slip direction and the normal direction to slip 
plane vectors, hence only the elastic part of the deformation gradient is considered to 
determine this phenomenon, 
 ��� = �� � �� 

��� = �� � ���)�� 
(5) 

where the star (*) stands for the parameter modified by elastic deformation. 
The velocity gradient � can be decomposed into a pure stretch (�) and pure skew part (�), 

 � = � � �     (6) 
    Both D and � can also be decomposed into the elastic and plastic parts, 
 � = �� � �� 

� = �� � ��
(7) 

     The elastic part and plastic parts of the velocity are, 
 �� = �� � �� = �� ����)�� 

�� = �� �������)�����)�� = �� � �� =�������� � ���)	
�

 

(8) 

    The  �� and �� are given by 
 �� = 1

2 ��
�� � ��� � ��� � ���) �� � 

�� = 1
2 ��

�� � ��� � ��� � ���) �� � 

(9) 

Power law and hardening:    
   The shear deformation here is approximated by power law [4] 
 �� � = ����������) �|�

�|
�� �

���
   (10)

where �� � is the shear rate on the � slip system, ��� is the initial shear rate on the � slip system, 
�� is the resolved shear stress on the � slip system, and �� is the slip resistance.  
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    The strain hardening is characterized by the evolution of the slip resistance �� with time, 
 ��� =�ℎ��

�
��� (11)

In [5], the self-hardening moduli were suggested to be represented by 
 ℎ�� = ℎ(�) = ℎ����ℎ� �

ℎ��
�� � ��� 

ℎ�� = �ℎ(�) 

(12)

where ℎ� is the initial hardening modulus, �� is the yield slip resistance and equals to the 
initial value of current strength  ��(0), �� is the initial (stage І) cristical resolved shear stress 
that is one of the starting input parameters of the model, � is a constant, and � is the Taylor 
cumulative shear strain on all slip systems, i.e. 
 � =�� |�� �|��

�

��
 

(13)

Texture update: 
Since only the elastic spin matrix causes change in the grain orientation, finite rotation theory 
is used to update the grains orientation at each increment. The rotation increment matrix is 
given by: 
 �� = (�� � ��) � ��� (14)
The resulting rotation at time �0 � �� is given by 
 ������ = ��� � �� (15)

3.2 Boundary conditions and the Representative Volume Element (RVE) 
Fig. 3 shows a typical extrusion manufacturing process. A thick wire with a diameter d1 is 

pushed through a hard die. The diameter of the wire is reduced to d0 after extrusion. This 
process is equivalent to either a uniaxial tension with Z axis being the tensile axis, or a biaxial 
compression in the X-Y plane.  
 The strain rate tensors for the two cases have a similar diagonal form. A cubic RVE was 
created in ABAQUS CAE consisting of 12×12×12=1728 C3D8R elements (8-noded linear 
cubic). Since each element had only one integration point, enhanced hourglass control was 
used to ensure numerical stability. Although it is possible to choose elements with more 
integration points, this would not give significant improvement in the accuracy of simulation, 
but would increase the computational expense massively. The above crystal plasticity 
constitutive equations were implemented as a user subroutine (UMAT) [6] within ABAQUS 
Standard simulation software. Each integration point was assigned a grain orientation using
three Euler angles in the Bunge conventions. Therefore, the RVE represented apolycrystalline 
aggregates with 1728 individual grains. 

Tungsten crystals have a body-centered-cubic (BCC) structure for which we only consider 
the {110} <111> slip system as the vehicle for plastic deformation. Elastic constants for 
tungsten were taken to be C11= 522390 MPa, C12=204730 MPa, C44=160830 MPa [7]. In 
eqaition (10), the initial shear rate (���) was set to 0.001 s-1, and m was given the value of 10. 
In equation (12), the initial hardening modulus (ℎ�) was set to 1000 MPa, and saturation 
stress (��) and initial critical resolved shear stress were set to 400 MPa and 200 MPa 
respectively. The constant � was chosen to be equal to 1.4. Fig. 4 shows the shape change of 
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increases. It would be ideal to find a minimal error position at a certain tensile strain that 
corresponds to the real strain applied to the sample during processing. However, the finite 
element modeling reaches the convergence limit for the one-step extrusion process 
simulation. Further improvement would be to consider a two-step extrusion process, i.e. 
deform the RVE to its limit in the first step and then assign the deformed ODF into a new 
cubic RVE to deform it in the second step. This way much higher values of the tensile strain 
can be attained. We note that very high values of tensile strain are expected for the real 
extrusion process, as indicated by the as-received sample diameter of 0.1 mm.  

4 CONCLUSIONS 
The results reported above represent our attempt to bring together, in a systematic way, the 
experimental and modelling approaches to texture analysis. On the one hand, we advocate the 
use of high energy monochromatic synchrotron X-ray diffraction as a means of fast and 
efficient ‘one-shot’ texture determination. On the other hand, we present the outline of the 
formulation and the results of CPFE numerical simulation of large deformations that typically 
take place during metal processing operations such as forging, extrusion, rolling, welding, etc. 
We describe how the data obtained from both approaches can be post-processed to derive 
ODF’s, and introduce an important measure for ODF mismatch that allows quantitative 
assessment of the “goodness” of fit between different measurements and simulations. 
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