
Fuzzy Heterogeneous Neurons for ImpreciseClassi�cation ProblemsJulio J. Vald�es Llu��s A. Belanche Ren�e Alqu�ezarSecci�o d'Intel�lig�encia Arti�cial.Dept. de Llenguatges i Sistemes Inform�atics.Universitat Polit�ecnica de Catalunya.c/Jordi Girona Salgado 1-308034 Barcelona, Spain.fvaldes, belanche, alquezarg@lsi.upc.esAbstractIn the classical neuron model, inputs are continuous real-valuedquantities. However, in many important domains from the real world,objects are described by a mixture of continuous and discrete variables,usually containing missing information and uncertainty. In this paper,a general class of neuron models accepting heterogeneous inputs inthe form of mixtures of continuous (crisp and/or fuzzy) and discretequantities admitting missing data is presented. From these, severalparticular models can be derived as instances and di�erent neuralarchitectures constructed with them. Such models deal in a naturalway with problems for which information is imprecise or even missing.Their possibilities in classi�cation and diagnostic problems are hereillustrated by experiments with data from a real world domain in the�eld of environmental studies. These experiments show that suchneurons can both learn and classify complex data very e�ectively inthe presence of uncertain information.Keywords: Heterogeneous Neural Networks; Fuzzy Logic; Genetic Algo-rithms; Uncertainty and Missing Data.1 IntroductionThe classical neuron model {where inputs are continuous real-valued quan-tities, and net input is computed as the scalar product of the input and the1
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weight vector{ was extended by the notion of an heterogeneous neuron in-troduced in [11]. Model instances of this concept provide neurons acceptingmixtures of real and discrete quantities (i.e. numerical and qualitative infor-mation) possibly also containing missing data. A second important featureof this class of models is that their internal stimulation is based on a simi-larity or proximity relation [1] between the input and the weight tuples. Inparticular, a family of models considering neuron outputs as a compositionof a similarity function with a sigmoid-like squashing function was shownto be a reasonable brick for constructing layered network architectures mix-ing heterogeneous with classical neurons. These networks were shown to becapable to learn from non-trivial data sets with an e�ectiveness compara-ble, and sometimes better, than that of classical methods. They exhibiteda remarkable robustness when information degrades due to the increasingpresence of missing data. As was stated in [11] when discussing the generalframework for heterogeneous neurons, future studies should consider moregeneral models constructed by taking into account mappings among widerclasses of sets as domains and images (i.e inputs and output). The purposeof this paper is to consider extensions in which fuzzy sets may occur as partof the input. This will introduce more exibility by accepting training pro-cesses using imprecise data, both in the input and the weights. This way,heterogeneous neurons of this kind may accept a mixture of real, qualitative,and fuzzy quantities, possibly with missing information. In what follows, aneuron of this type is presented and its learning capabilities are illustratedby a real world example: an environmental study {using geophysical dataprocessing{ aimed at detecting the presence of underground caves.2 The Heterogeneous Neuron Model Revisi-tedAn heterogeneous neuron was de�ned in [11] as a mapping h : Ĥn ! Rout � R,satisfying h(�) = 0 (� is the empty set). Here R denotes the reals andĤn is a cartesian product of an arbitrary number of source sets. Sourcesets may be extended reals R̂ = R [ fXg, and/or �nite sets of the formÔi = Oi [ fXg; M̂i =Mi [ fXg. Each of the Oi has a full order relation,while theMi have not. The special symbol X denotes the unknown element(missing information) and it behaves as an incomparable element w.r.t. anyordering relation. According to this de�nition, neuron inputs are possiblyempty arbitrary tuples , composed by n elements among which there mightbe reals, ordinals, nominals and missing data.A particular class of heterogeneous neurons can be devised by considering2



h as the composition of two mappings, h = f �s , such that s : Ĥn ! R0 � Rand f : R0 ! Rout � R. The mapping h can be considered as a n-ary func-tion parameterized by a tuple ~̂w � Ĥn representing neuron's weights, i.e.h(~̂x; ~̂w) = f(s(~̂x; ~̂w)). In particular, the function s represents a similarityand f a squashing non-linear function with its image in [0; 1]. Accordingly,the neuron is sensitive to the degree of similarity between its input, com-posed in general by a mixture of continuous and discrete quantities possiblywith missing data. More precisely, s is understood as a similarity index, orproximity relation (transitivity considerations are put aside). That is, a bi-nary, reexive and symmetric function s(x; y) with image on [0; 1] such thats(x; x) = 1 (strong reexivity). The semantics of s(x; y) > s(x; z) is thatobject y is more similar to object x than z. An instance of this model uses ass function Gower's similarity index [6]. This coe�cient has its values in thereal interval [0; 1] and for any two objects i; j given by tuples of cardinalityn, is given by the expressionsij = Pnk=1gijk �ijkPnk=1�ijkwhere:� gijk is a similarity score for objects i; j according to their value forvariable k. These scores are in the interval [0; 1] and are computedaccording to di�erent schemes for numeric and qualitative variables.In particular, for a continuous variable k and any two objects i; j thefollowing similarity score is used:gijk = 1� jvik � vjkjrange (v�k)Here, vik denotes the value of object i for variable k andrange (v�k) = maxi;j (jvik � vjkj)(see [6] for details on other kinds of variables).� �ijk is a binary function expressing whether both objects are compa-rable or not according to their values w.r.t. variable k. It is 1 if andonly if both objects have values di�erent from X for variable k, and 0otherwise.As for the activation function, a modi�ed version of the classical sigmoid isused, such that it maps the real interval [0; 1] on (0; 1).f(x; p) = ( �p(x�0:5)�a(p) � a(p) if x � 0:5�p(x�0:5)+a(p) + a(p) + 1 otherwise3



a(p) = �0:5 +p0:52 + 4 � p2where a(p) is an auxiliary function and p > 0 is a real-valued parametercontrolling the curvature.2.1 A Fuzzy ExtensionA step forward in generalizing the previous speci�c model is a relaxation ofreal valued inputs, by considering more exible situations, now toleratingimprecision. According to the conceptual setting of the family of neuronmodels studied based on similarity, it is natural to state a fuzzy extensionfollowing the same approach. Similarity relations from the point of view offuzzy theory have been de�ned elsewhere [8], [16]. In the present case, thesituation is not that of a fuzzy similarity or proximity relation de�ned on realvalues, but a relation between fuzzy entities. Let Fi be a family of normalizedfuzzy sets from the source set and ~A; ~B 2 Fi two fuzzy sets. The followingsimilarity relation is used:g( ~A; ~B) = maxx (� ~A\ ~B(x))where � ~A\ ~B(x) = min (� ~A(x); � ~B(x))Clearly it is reexive in the strong sense and also symmetric. This isa proximity relation and can be used to include extra fuzzy components inGower's similarity. Consider a collection of nf extended fuzzy sets of theform F̂i = Fi [fXg and their cartesian product F̂nf = F̂1�F̂2� : : :�F̂nf .The resulting input set will then be Ĥn =< R̂nr ; F̂nf ; Ôno ;M̂nm >, wherethe cartesian products for the other kinds of source sets (R̂i; Ôi;M̂i) are con-structed in a similar straightforward way from their respective cardinalitiesnr; no; nm, with R̂0 = F̂0 = Ô0 = M̂o = Ĥo = �, n = nr+nf +no+nm andn > 0.The training procedure for the resulting heterogeneous neuron {shownin Fig. 1{ is based on genetic algorithms ([7], [2]) and can be devised in anatural way by extending that used for heterogeneous neurons without fuzzyinputs or weights [11]. In this extension, each fuzzy weight is characterizedas a tuple of reals (instead of a single one) and this only needs a chromosomeenlargement, depending on the chosen functional representation for fuzzysets (trapezoidal, Gaussian or LR). 4



R̂nrF̂nfÔnoM̂nm h = f � s Rout 2 RFigure 1: A fuzzy heterogeneous neuron.3 An Example of Application in an ImpreciseDomainAn environmental investigation in the tropics dealing with the detection ofunderground caves using geophysical measurements made at the surface ofthe earth was used to experiment with the extended approach described inthe previous section. First, some words describing the problem are necessary.Karsti�cation is a peculiar geomorphological and hydrogeological pheno-menon produced mostly by rock solution as the dominant process. As aconsequence, earth's surface is covered by exotic irregular morphologies, likelapiaz, closed depressions (dolinas), sinks, potholes and the like, with thedevelopment of underground caves. This implies that the surface drainagenetwork is usually poorly developed or simply does not exist at all, while ver-tical in�ltration of rain waters forms an underground drainage system wherewater ows through �ssures, galleries and caves. The studied area is located30 km to the south of Havana City (Cuba) in the so called Havana-MatanzasKarstic Plain composed of porous, fractured and heavily karsti�ed limestonesof Middle Miocen age with abundance of a variety of clay minerals. Underthe high temperatures and humidity typical of tropical conditions, weather-ing processes develop an overburden composed by reddish insoluble materials(tera rossa) coming from solution processes on the limestones.Negative karst forms on the surface (the lapiaz, sinks, dolinas, etc.) arepartially or totally covered by an overburden of variable depth. These formsoften connect with caves in the underground, some of them big. Direct detec-tion is very di�cult or impossible and geophysical methods are necessary, asthey are for tasks like geological mapping and construction of cross sections.5



This is a very important problem from the point of view of civil engineering,geological engineering and environmental studies in general in this kind ofregions.In a selected square area (340 m side), geophysical methods complementedwith a detailed topographic survey [10] were used with the purpose of char-acterizing the shallower horizons of the geological section and their relationwith underlying karstic phenomena. Targets were zones of intense fractureand karsti�cation, �lled depressions, overburden pockets and the presence ofunderground caves. The set of geophysical methods included the spontaneouselectric potential of earth's surface, the gamma radioactive intensity and theelectromagnetic �eld in the VLF region of the spectrum [10]. In particular,two di�erent surveys of spontaneous electric potential were performed, in thedry and rainy season respectively, since strong negative anomalies are due toin�ltration potentials associated with electrochemical processes taking placeas water in�ltrates into the underground via �ssures and joints. These fourmeasurements, along with the surface topography, constitute the �ve vari-ables to be used by the neural models. The complexity of these measuredgeophysical �elds in the area is illustrated, as an example, by the distributionof gamma ray intensity and the surface topography. While radioactivity ishighly noisy, topography shows few features. Both are shown in Figs. 2, 3.
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Figure 2: Distribution of gamma ray intensity in the studied area.Geophysical survey methodologies consider independent sets of measure-ments in order to account for di�erent kind of errors and the natural variabil-ity of such kind of information. In order to be considered acceptable, eachsurvey must have an error no greater than 5% when comparing the originaland the independent measurements. This means that the reported values of6



all geophysical �elds (i.e, the available data), have an inherent uncertaintywhich must be considered. In the area, a gentle variation in geological con-ditions for both the bedrock and the overburden was suspected by geologistsand also a large underground cave with a single gallery was known to exist inthe central part of the area. The cave has about 300 meters long with crosssections ranging from less than one square meter in the narrowest part, tochambers having 40 meters wide and 30 meters high, reaching the surface inthe form of a gorge in the bottom of a depression.
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Figure 3: Surface topography of the studied area.An isolation of the di�erent geophysical �eld sources was necessary in or-der to focus the study on the contribution coming from underground targets,trying to minimize the inuence of both the larger geological structures, andthe local heterogeneities. According to the a priori geological ideas, eachgeophysical �eld was assumed to be described by the following additive two-dimensional model composed by trend, signal and random noise:f(x; y) = t(x; y) + s(x; y) + n(x; y)where f is the physical �eld, t is the trend, s the signal, and n the ran-dom noise component, respectively. In order to isolate an approximation ofthe signals produced by the underground target bodies, a linear trend termt0(x; y) = c0 + c1 x + c2 y was computed (by least squares) and subtractedfrom the original �eld. The residuals r(x; y) = f(x; y) � t0(x; y) were then�ltered by direct convolution with a low pass �nite-extent impulse responsetwo-dimensional �lter in order to attenuate the random noise component [5].Such convolution is given by: 7



s0(x; y) = NXk1=�N NXk2=�N h(k1; k2) r(x� k1; y � k2)where r(x; y) is the residual, s0(x; y) is the signal approximation and h(k1; k2)is the low-pass zero-phase shift digital �lter.4 ExperimentsIn order to study the behavior of these neural models, a comparison wasmade w.r.t. geological-geophysical accuracy of classi�cation. This kind ofknowledge, as well as results from previous non-supervised classi�cation tech-niques [15] had shown the existence of two multivariate populations withinthe studied area: one representing more karsti�ed zones with large intercon-nected underground cavities, and another in which karsti�cation is not sointense. Since the hypothesis of two hyperspherical classes in pattern spacewas tenable, and the purpose of this work is to assess the relative merits ofthe three considered neuron models (classical, heterogeneous and fuzzy hete-rogeneous) in the task at hand (imprecise classi�cation using data which arealso imprecise), a network consisting of a single neuron was the architectureselected. Clearly, other multilayer layouts are possible and should deserve fu-ture attention, but is a good reference for initial comparisons. This, togetherwith the small training set (relative to test), should make the problem muchmore di�cult than it really is, so the di�erences should be more evident.The experiments were conceived in two phases as follows. In phase one, acomparison is made between the classical real neuron with the heterogeneousone with real inputs and weights. In a second stage, the latter is comparedto the fuzzy heterogeneous neuron. Also, the experiments were designedfollowing geological criteria. From this point of view it is known that thenumber of observable caves in any karstic area is only a small fraction ofthe actually existing ones, making class structure itself imprecise, a situationusual in complex problems like those from environmental studies. Moreover,there are no sharp boundaries between rock volumes containing caves andthose containing less or none. One could say that the notion of \caveness"degrades smoothly, which is another reason to use fuzzy models.The training was supervised (in the usual mean squared error sense) bythe information given by the topographic map of a large cave present in thearea, so that those surface measurement points lying exactly above the knowncave were considered as class 1 patterns and those outside as belonging toclass 2 (the resulting cave is shown in �gure 4). This procedure for class8



Figure 4: The known cave borders: see text for an explanation of what isconsidered as cave and what is not. Dots indicate the (approximate) locationof the points used for training.assignment was too conservative but, otherwise, one would have been forcedto provide as output the exact caveness degree for each point. This value,besides being very di�cult to estimate, would have introduced a strong sub-jective bias. The computation of this degree is precisely the task we wantthe model to perform.Selected data from the northern half were used for training, whereas therest was used for testing the trained network (consisting of a single neurononly). More precisely, the training set was composed by the 31 points fromthe northern half located exactly above the known cave (representing class1), plus 32 others homogeneously distributed in the east-west sides. As testset we used the remaining 567 patterns from the whole area (it est, train =10%, test = 90%).4.1 Phase 1Here we have a classical real-valued neuron (in this study, having scalarproduct as net input and hyperbolic tangent as a squashing activation func-tion). The training procedure for this neuron is a combination of conjugategradient with simulated annealing [9], whereas the heterogeneous neuron istrained using a standard genetic algorithm with the following characteristics:binary-coded values, probability of crossover: 0:6, probability of mutation:0:01, number of individuals: 50, linear scaling with factor: 1:5, selection9
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Figure 5: Results of phase 1: �-cut sets for the classical neuron.mechanism: tournament.The results obtained by both models are shown in �gures 5 and 6, re-spectively, where caveness prediction is plotted in �ve equally spaced �-cutsets. Clearly, the distribution of the two-dimensional sets for the heteroge-neous neuron reects much better the distribution of the known cave thanthe classical neuron, for various reasons. First, the classical neuron fails todetect the southernmost part of the known cave, whereas the heterogeneouscounterpart does.
   0.833
   0.667
     0.5

   0.333
   0.167

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Figure 6: Results of phase 1: �-cut sets for the heterogeneous neuron.Second, the classical neuron predicts complete cave areas in the south-east and south-west zones, which are misleading. These are also signaled bythe heterogeneous neuron, but always with a degree of 0:5 or less. The onlyexception is a small area located in coordinates (7� 8; 12� 15), where other10



geophysical methods (seismic and DC-resistivity) not used in this study hadsignaled cave anomalies. And third, the general layout of the actual cave(north-south main axis, slightly bended and narrower in the middle part) isbetter reected by the heterogeneous neuron.4.2 Phase 2In a second stage, a fuzzy heterogeneous neuron was trained in the sameexperiment setting, but this time using fuzzy inputs. This means that allneuron weights were fuzzy sets (actually triangular fuzzy numbers), and bothtraining and test vectors represented by fuzzy numbers (the mode was givenby the corresponding observed value, and the spread a �5% of it). This isin accordance with the upper bound of the measurement errors reported forthe geophysical �eld surveys made. It should be noted that this criteria wasconservative, since some surveys actually have had less than 5% of error.
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Figure 7: Results of phase 2: �-cut sets for the fuzzy heterogeneous neuron.The results (shown in �gure 7) are again qualitatively satisfactory, in whatregards to the general layout of the cave. But now a quantitative factor comesinto the picture: the cave is much more neatly de�ned, a fact that shows intwo ways: �rst, the di�erent �-cut sets are closer, indicating a gradual (theyare clearly distinguishable) but �rm transition from 0 to 1 of 2 units in themap on average, equal to about 20m in the �eld, a very reasonable value.That is, this narrow belt w.r.t. the trace of the known cave represents thetransition zone between the rock volumes, more and lesser a�ected by bigunderground cavities. Second, the extensive anomalous zones predicted by11



the heterogeneous neuron in the eastern and south-western zones completelydisappear, with the exception of a small region in coordinates (25�30; 0�2),which should be speci�cally checked. What is more, the strongest regionwhere the presence of a secondary cave is signaled by the fuzzy heterogeneousneuron is precisely the one aforementioned and con�rmed to exist by othermeans. This a nice result, since allowing imprecise inputs and weights forall of the �ve variables does not degrade the overall performance. On thecontrary, the results can be said to be even more accurate. Notice thatall of the neurons are using the same small training set but, in practice,this situation is less favourable for the fuzzy neuron, which would need anenlarged training set to compensate for the imprecision.5 ConclusionsA theoretical framework for a class of heterogeneous fuzzy neuron models andconcrete instances and realizations of these have been set forth. These mod-els are characterized by their built-in treatment of information coming fromheterogeneous sources (perhaps missing) and make use of an explicit similar-ity measure between entities, speci�c for each source. Other realizations ofthese models have been presented elsewhere, in which their possibilities arefurther explored, ranging from classi�cation benchmarking [11], time-seriesprediction [12], [13] and system identi�cation [14]. In the work presented,experiments made with complex multivariate space-dependent data {comingfrom a real world problem in the domain of environmental studies{ haveshown that allowing imprecise inputs and using heterogeneous fuzzy neuronsbased on similarity yields models more accurate (because of their greaterexibility) than those from classical crisp real-valued models, in a problemfor which one is not so much interested in crude train/test set classi�cationerrors (which could well have been presented) but in its ability to modelthe imprecise structure of the domain. This represents only a preliminaryalthough promising class of models that is serving as an initial standpointwhich deserves further investigation.References[1] Chandon, J.L, Pinson, S: Analyse Typologique. Th�eorie et Applica-tions. Masson, (1981), 254.[2] Davis, L.D.: Handbook of Genetic Algorithms. Van Nostrand Reinhold,(1991). 12
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