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Abstract

In the classical neuron model, inputs are continuous real-valued
quantities. However, in many important domains from the real world,
objects are described by a mixture of continuous and discrete variables,
usually containing missing information and uncertainty. In this paper,
a general class of neuron models accepting heterogeneous inputs in
the form of mixtures of continuous (crisp and/or fuzzy) and discrete
quantities admitting missing data is presented. From these, several
particular models can be derived as instances and different neural
architectures constructed with them. Such models deal in a natural
way with problems for which information is imprecise or even missing.
Their possibilities in classification and diagnostic problems are here
illustrated by experiments with data from a real world domain in the
field of environmental studies. These experiments show that such
neurons can both learn and classify complex data very effectively in
the presence of uncertain information.

Keywords: Heterogeneous Neural Networks; Fuzzy lLogic; Genetic Algo-
rithms; Uncertainty and Missing Data.

1 Introduction

The classical neuron model where inputs are continuous real-valued quan-
tities, and net input is computed as the scalar product of the input and the



weight vector was extended by the notion of an heterogeneous neuron in-
troduced in [11]. Model instances of this concept provide neurons accepting
mixtures of real and discrete quantities (i.e. numerical and qualitative infor-
mation) possibly also containing missing data. A second important feature
of this class of models is that their internal stimulation is based on a simi-
larity or proximity relation [1] between the input and the weight tuples. In
particular, a family of models considering neuron outputs as a composition
of a similarity function with a sigmoid-like squashing function was shown
to be a reasonable brick for constructing layered network architectures mix-
ing heterogeneous with classical neurons. These networks were shown to be
capable to learn from non-trivial data sets with an effectiveness compara-
ble, and sometimes better, than that of classical methods. They exhibited
a remarkable robustness when information degrades due to the increasing
presence of missing data. As was stated in [11] when discussing the general
framework for heterogeneous neurons, future studies should consider more
general models constructed by taking into account mappings among wider
classes of sets as domains and images (i.e inputs and output). The purpose
of this paper is to consider extensions in which fuzzy sets may occur as part
of the input. This will introduce more flexibility by accepting training pro-
cesses using imprecise data, both in the input and the weights. This way,
heterogeneous neurons of this kind may accept a mixture of real, qualitative,
and fuzzy quantities, possibly with missing information. In what follows, a
neuron of this type is presented and its learning capabilities are illustrated
by a real world example: an environmental study using geophysical data
processing aimed at detecting the presence of underground caves.

2 The Heterogeneous Neuron Model Revisi-
ted

An heterogeneous neuron was defined in [11] as a mapping h : H Rowt € R,
satisfying h(¢) = 0 (¢ is the empty set). Here R denotes the reals and
H™ is a cartesian product of an arbitrary number of source sets. Source
sets may be extended reals R = R U {X}, and/or finite sets of the form
(’57; =0, U{X}, ./\;17; = M; U {X}. Each of the O; has a full order relation,
while the M; have not. The special symbol X denotes the unknown element
(missing information) and it behaves as an incomparable element w.r.t. any
ordering relation. According to this definition, neuron inputs are possibly
empty arbitrary tuples , composed by n elements among which there might
be reals, ordinals, nominals and missing data.

A particular class of heterogeneous neurons can be devised by considering



h as the composition of two mappings, h = fos , such that s: H 5 R CR
and [ : R’ — R,,; € R. The mapping h can be considered as a n-ary func-
tion parameterized by a tuple W oe H” representing neuron’s weights, i.e.
h(.%7 1;_5) = f(@(”;'_’, 1;_5)) In particular, the function s represents a similarity
and [ a squashing non-linear function with its image in [0, 1]. Accordingly,
the neuron is sensitive to the degree of similarity between its input, com-
posed in general by a mixture of continuous and discrete quantities possibly
with missing data. More precisely, s is understood as a similarity indez, or
proximity relation (transitivity considerations are put aside). That is, a bi-
nary, reflexive and symmetric function s(z,y) with image on [0, 1] such that
s(z,x) = 1 (strong reflexivity). The semantics of s(x,y) > s(x,z) is that
object y is more similar to object 2 than z. An instance of this model uses as
s function Gower’s similarity index [6]. This coefficient has its values in the
real interval [0, 1] and for any two objects 7, 7 given by tuples of cardinality

n, is given by the expression
e
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where:

® g;ir 1s a similarity score for obhjects 7, 5 according to their value for
variable k. These scores are in the interval [0,1] and are computed
according to different schemes for numeric and qualitative variables.
In particular, for a continuous variable & and any two objects 7, 7 the
following similarity score is used:
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Here, v;;, denotes the value of object 72 for variable k& and

range (v.5) = max ([vix — vji)
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(see [6] for details on other kinds of variables).

® 0;;; is a binary function expressing whether both objects are compa-
rable or not according to their values w.r.t. variable k. Tt is 1 if and
only if both objects have values different from X" for variable k, and 0
otherwise.

As for the activation function, a modified version of the classical sigmoid is
used, such that it maps the real interval [0,1] on (0, 1).

o ) if 2 <0.5
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where a(p) is an auxiliary function and p > 0 is a real-valued parameter
controlling the curvature.

2.1 A Fuzzy Extension

A step forward in generalizing the previous specific model is a relaxation of
real valued inputs, by considering more flexible situations, now tolerating
imprecision. According to the conceptual setting of the family of neuron
models studied based on similarity, it is natural to state a fuzzy extension
following the same approach. Similarity relations from the point of view of
fuzzy theory have been defined elsewhere [8], [16]. In the present case, the
situation is not that of a fuzzy similarity or proximity relation defined on real
values, but a relation between fuzzy entities. Let F; be a family of normalized
fuzzy sets from the source set and A, B € F; two fuzzy sets. The following
similarity relation is used:

where
ing(r) =min (ui(x), pg(r))

Clearly it is reflexive in the strong sense and also symmetric. This is
a proximity relation and can be used to include extra fuzzy components in
Gower’s similarity. Consider a collection of n; extended fuzzy sets of the

form j—j = F; U{X} and their cartesian product Fri = ﬁ1 X ﬁg XX Fy

The resulting input set will then be Hr =< 7%”*,‘7:_”1‘,@””,./\;1”’" >, where
the cartesian products for the other kinds of source sets (7%7;, (’A)i, ./\;17) are con-
structed in a similar straightforward way from their respective cardinalities
Ny Moy Moy, With RO=FO =0 = M° = H° = ¢, n=mn,+ns+n,+n, and
n > 0.

The training procedure for the resulting heterogeneous neuron shown
in Fig. 1 is based on genetic algorithms ([7], [2]) and can be devised in a
natural way by extending that used for heterogeneous neurons without fuzzy
inputs or weights [11]. In this extension, each fuzzy weight is characterized
as a tuple of reals (instead of a single one) and this only needs a chromosome
enlargement, depending on the chosen functional representation for fuzzy
sets (trapezoidal, Gaussian or LR).
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Figure 1: A fuzzy heterogeneous neuron.

3 An Example of Application in an Imprecise
Domain

An environmental investigation in the tropics dealing with the detection of
underground caves using geophysical measurements made at the surface of
the earth was used to experiment with the extended approach described in
the previous section. First, some words describing the problem are necessary.

Karstification is a peculiar geomorphological and hydrogeological pheno-
menon produced mostly by rock solution as the dominant process. As a
consequence, earth’s surface is covered by exotic irregular morphologies, like
lapiaz, closed depressions (dolinas), sinks, potholes and the like, with the
development of underground caves. This implies that the surface drainage
network is usually poorly developed or simply does not exist at all, while ver-
tical infiltration of rain waters forms an underground drainage system where
water flows through fissures, galleries and caves. The studied area is located
30 km to the south of Havana City (Cuba) in the so called Havana-Matanzas
Karstic Plain composed of porous, fractured and heavily karstified limestones
of Middle Miocen age with abundance of a variety of clay minerals. Under
the high temperatures and humidity typical of tropical conditions, weather-
ing processes develop an overburden composed by reddish insoluble materials
(tera rossa) coming from solution processes on the limestones.

Negative karst forms on the surface (the lapiaz, sinks, dolinas, etc.) are
partially or totally covered by an overburden of variable depth. These forms
often connect with caves in the underground, some of them big. Direct detec-
tion is very difficult or impossible and geophysical methods are necessary, as
they are for tasks like geological mapping and construction of cross sections.



This is a very important problem from the point of view of civil engineering,
geological engineering and environmental studies in general in this kind of
regions.

In a selected square area (340 m side), geophysical methods complemented
with a detailed topographic survey [10] were used with the purpose of char-
acterizing the shallower horizons of the geological section and their relation
with underlying karstic phenomena. Targets were zones of intense fracture
and karstification, filled depressions, overburden pockets and the presence of
underground caves. The set of geophysical methods included the spontaneous
electric potential of earth’s surface, the gamma radioactive intensity and the
electromagnetic field in the VLF region of the spectrum [10]. In particular,
two different surveys of spontaneous electric potential were performed, in the
dry and rainy season respectively, since strong negative anomalies are due to
infiltration potentials associated with electrochemical processes taking place
as water infiltrates into the underground via fissures and joints. These four
measurements, along with the surface topography, constitute the five vari-
ables to be used by the neural models. The complexity of these measured
geophysical fields in the area is illustrated, as an example, by the distribution
of gamma ray intensity and the surface topography. While radioactivity is
highly noisy, topography shows few features. Both are shown in Figs. 2, 3.
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Figure 2: Distribution of gamma ray intensity in the studied area.

Geophysical survey methodologies consider independent sets of measure-
ments in order to account for different kind of errors and the natural variabil-
ity of such kind of information. In order to be considered acceptable, each
survey must have an error no greater than 5% when comparing the original
and the independent measurements. This means that the reported values of



all geophysical fields (i.e, the available data), have an inherent uncertainty
which must be considered. In the area, a gentle variation in geological con-
ditions for both the bedrock and the overburden was suspected by geologists
and also a large underground cave with a single gallery was known to exist in
the central part of the area. The cave has about 300 meters long with cross
sections ranging from less than one square meter in the narrowest part, to
chambers having 40 meters wide and 30 meters high, reaching the surface in
the form of a gorge in the bottom of a depression.
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Figure 3: Surface topography of the studied area.

An isolation of the different geophysical field sources was necessary in or-
der to focus the study on the contribution coming from underground targets,
trying to minimize the influence of both the larger geological structures, and
the local heterogeneities. According to the a priori geological ideas, each
geophysical field was assumed to be described by the following additive two-
dimensional model composed by trend, signal and random noise:

flr,y) = Hr,y) + s(v,y) +n(v,y)

where f is the physical field, ¢ is the trend, s the signal, and n the ran-
dom noise component, respectively. In order to isolate an approximation of
the signals produced by the underground target bodies, a linear trend term
t'(x,y) = co + 17 + c2y was computed (by least squares) and subtracted
from the original field. The residuals r(z,y) = f(x,y) — #/(x,y) were then
filtered by direct convolution with a low pass finite-extent impulse response
two-dimensional filter in order to attenuate the random noise component [5].
Such convolution is given by:
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where r(x,y) is the residual, s'(2, y) is the signal approximation and h(kq, k2)
is the low-pass zero-phase shift digital filter.

4 Experiments

In order to study the behavior of these neural models, a comparison was
made w.r.t. geological-geophysical accuracy of classification. This kind of
knowledge, as well as results from previous non-supervised classification tech-
niques [15] had shown the existence of two multivariate populations within
the studied area: one representing more karstified zones with large intercon-
nected underground cavities, and another in which karstification is not so
intense. Since the hypothesis of two hyperspherical classes in pattern space
was tenable, and the purpose of this work is to assess the relative merits of
the three considered neuron models (classical, heterogeneous and fuzzy hete-
rogeneous) in the task at hand (imprecise classification using data which are
also imprecise), a network consisting of a single neuron was the architecture
selected. Clearly, other multilayer layouts are possible and should deserve fu-
ture attention, but is a good reference for initial comparisons. This, together
with the small training set (relative to test), should make the problem much
more difficult than it really is, so the differences should be more evident.

The experiments were conceived in two phases as follows. In phase one, a
comparison is made between the classical real neuron with the heterogeneous
one with real inputs and weights. In a second stage, the latter is compared
to the fuzzy heterogeneous neuron. Also, the experiments were designed
following geological criteria. From this point of view it is known that the
number of observable caves in any karstic area is only a small fraction of
the actually existing ones, making class structure itself imprecise, a situation
usual in complex problems like those from environmental studies. Moreover,
there are no sharp boundaries between rock volumes containing caves and
those containing less or none. One could say that the notion of “caveness”
degrades smoothly, which is another reason to use fuzzy models.

The training was supervised (in the usual mean squared error sense) by
the information given by the topographic map of a large cave present in the
area, so that those surface measurement points lying exactly above the known
cave were considered as class 1 patterns and those outside as belonging to
class 2 (the resulting cave is shown in figure 4). This procedure for class



Figure 4: The known cave borders: see text for an explanation of what is
considered as cave and what is not. Dots indicate the (approximate) location
of the points used for training.

assignment was too conservative but, otherwise, one would have been forced
to provide as output the exact caveness degree for each point. This value,
besides being very difficult to estimate, would have introduced a strong sub-
jective bias. The computation of this degree is precisely the task we want
the model to perform.

Selected data from the northern half were used for training, whereas the
rest was used for testing the trained network (consisting of a single neuron
only). More precisely, the training set was composed by the 31 points from
the northern half located exactly above the known cave (representing class
1), plus 32 others homogeneously distributed in the east-west sides. As test
set we used the remaining 567 patterns from the whole area (it est, train =

10%, test = 90%).

4.1 Phase 1

Here we have a classical real-valued neuron (in this study, having scalar
product as net input and hyperbolic tangent as a squashing activation func-
tion). The training procedure for this neuron is a combination of conjugate
gradient with simulated annealing [9], whereas the heterogeneous neuron is
trained using a standard genetic algorithm with the following characteristics:
binary-coded values, probability of crossover: 0.6, probability of mutation:
0.01, number of individuals: 50, linear scaling with factor: 1.5, selection
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Figure 5: Results of phase 1: a-cut sets for the classical neuron.

mechanism: tournament.

The results obtained by both models are shown in figures 5 and 6, re-
spectively, where caveness prediction is plotted in five equally spaced a-cut
sets. Clearly, the distribution of the two-dimensional sets for the heteroge-
neous neuron reflects much better the distribution of the known cave than
the classical neuron, for various reasons. First, the classical neuron fails to
detect the southernmost part of the known cave, whereas the heterogeneous
counterpart does.
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Figure 6: Results of phase 1: a-cut sets for the heterogeneous neuron.

Second, the classical neuron predicts complete cave areas in the south-
east and south-west zones, which are misleading. These are also signaled by
the heterogeneous neuron, but always with a degree of 0.5 or less. The only
exception is a small area located in coordinates (7 — 8,12 — 15), where other
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geophysical methods (seismic and DC-resistivity) not used in this study had
signaled cave anomalies. And third, the general layout of the actual cave
(north-south main axis, slightly bended and narrower in the middle part) is
better reflected by the heterogeneous neuron.

4.2 Phase 2

In a second stage, a fuzzy heterogeneous neuron was trained in the same
experiment setting, but this time using fuzzy inputs. This means that all
neuron weights were fuzzy sets (actually triangular fuzzy numbers), and both
training and test vectors represented by fuzzy numbers (the mode was given
by the corresponding observed value, and the spread a +5% of it). This is
in accordance with the upper bound of the measurement errors reported for
the geophysical field surveys made. It should be noted that this criteria was
conservative, since some surveys actually have had less than 5% of error.
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Figure 7: Results of phase 2: a-cut sets for the fuzzy heterogeneous neuron.

The results (shown in figure 7) are again qualitatively satisfactory, in what
regards to the general layout of the cave. But now a quantitative factor comes
into the picture: the cave is much more neatly defined, a fact that shows in
two ways: first, the different a-cut sets are closer, indicating a gradual (they
are clearly distinguishable) but firm transition from 0 to 1 of 2 units in the
map on average, equal to about 20m in the field, a very reasonable value.
That is, this narrow belt w.r.t. the trace of the known cave represents the
transition zone between the rock volumes, more and lesser affected by big
underground cavities. Second, the extensive anomalous zones predicted by

11



the heterogeneous neuron in the eastern and south-western zones completely
disappear, with the exception of a small region in coordinates (25—30,0-—2),
which should be specifically checked. What is more, the strongest region
where the presence of a secondary cave is signaled by the fuzzy heterogeneous
neuron is precisely the one aforementioned and confirmed to exist by other
means. This a nice result, since allowing imprecise inputs and weights for
all of the five variables does not degrade the overall performance. On the
contrary, the results can be said to be even more accurate. Notice that
all of the neurons are using the same small training set but, in practice,
this situation is less favourable for the fuzzy neuron, which would need an
enlarged training set to compensate for the imprecision.

5 Conclusions

A theoretical framework for a class of heterogeneous fuzzy neuron models and
concrete instances and realizations of these have been set forth. These mod-
els are characterized by their built-in treatment of information coming from
heterogeneous sources (perhaps missing) and make use of an explicit similar-
ity measure between entities, specific for each source. Other realizations of
these models have been presented elsewhere, in which their possibilities are
further explored, ranging from classification benchmarking [11], time-series
prediction [12], [13] and system identification [14]. In the work presented,
experiments made with complex multivariate space-dependent data coming
from a real world problem in the domain of environmental studies have
shown that allowing imprecise inputs and using heterogeneous fuzzy neurons
based on similarity yields models more accurate (because of their greater
flexibility) than those from classical crisp real-valued models, in a problem
for which one is not so much interested in crude train/test set classification
errors (which could well have been presented) but in its ability to model
the imprecise structure of the domain. This represents only a preliminary
although promising class of models that is serving as an initial standpoint
which deserves further investigation.
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