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Abstract The output of an association rule miner is often huge in practice. This is
why several concise lossless representations have been proposed, such as the “es-
sential” or “representative” rules. We revisit the algorithm given by Kryszkiewicz

(Int. Symp. Intelligent Data Analysis 2001, Springer-Verlag LNCS 2189, 350-359)

for mining representative rules. We show that its output is sometimes incomplete,
due to an oversight in its mathematical validation. We propose alternative complete
generators and we extend the approach to an existing closure-aware basis similar to,
and often smaller than, the representative rules, namely the48asis

1 Introduction

Association rule mining is among the most popular conceptual tools in the field
of Data Mining. We are interested in the process of discovering and representing
regularities between sets of items in large scale transactional data. Syntactically, the
association rule representation has the form of an implicakon; Y; however,
whereas in Logic such an expression is true if and onfyhiblds wheneveX does,
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an association rule is a partial implication, in the sensg¢ iths enough ifY holds
most of the times Xoes.

To endow association rules with a definite semantics, we teethke precise
how this intuition of “most of the times” is formalized. Theeare many proposals
for this formalization. One of the frequently used measuofestensity of this kind
of partial implication is itconfidencethe ratio between the number of transactions
in which X andY are seen together and the number of transactions that nofitai
In most application cases, the search space is additiorestyicted to association
rules that meet a minimalupportcriterion, thus avoiding the generation of rules
from items that appear very seldom together in the datasenél definitions of
support and confidence are given in Secfioh 2.1).

Many association rule miners exists, Apriori (see [Agraetal., 1996]) being
one of the most widely discussed and used. The major proliianed by all mining
algorithms is that, in practice, even for reasonable supguit confidence thresh-
olds, the output is often huge. Therefore, several concissldss representations
of the whole set of association rules have been proposedeTepresentations are
based on different notions of “redundancy”. In one of thasele is redundantifitis
possible to compute exactly its confidence and support fribr@ranformation such
as the confidences and supports of othEarmativerules (se€ [Kryszkiewicz, 2002,
[Cuxenburger, 1991, Hamrouni et al., 2008, Pasquier et@05D; this is a quite de-
manding property. We settle for a weaker version proposeeéweral works; infor-
mally, in that version, a rule iedundantvith respect to another one if its confidence
and support are always greateraimydataset. To avoid this redundancy, exactly one
notion has been identified in several sources, namelyeesentative rulesand
a closure-aware variant both of the redundancy notion artdeofedundancy-free
basis is given in[Balcazar, 2010a] (precise definitiond maferences are given be-
low).

We focus in this paper on the main results|of [KryszkiewidX)®], where a pur-
portedly faster algorithm to construct representativesus given, and show by an
example that that algorithm is not guaranteed to alwaysuiufy representative
rules, because it is based on a property that does not holdnargl; namely, the
characterization of the frequent closed sets that admitardposition into repre-
sentative rules misses some such sets. We propose an @&ercamplete char-
acterization, leading us to the proposal of a first altemeagigorithm that is guar-
anteed to output all the representative rules: we pre-ctenfar each closed set,
some parameters that depend on the confidence and suppmstidids, and then
use the above mentioned new characterization to genetatpatsentative rules.
Compared to the potentially incomplete algorithm[in [Krigigzvicz, 2001], this al-
gorithm, guaranteed to be complete, has a main drawbadKryszkiewicz, 2001,
the internal local parameters only depend on the suppasiioid, but in our al-
gorithm these parameters depend also on confidence. Therefich time a new
confidence threshold is introduced by the user, the alguorfias to redo all com-
putations. Thus, we provide a second algorithm, composadmfarts: the first
one is a pre-processing phase, dependent only on suppevhiah a subdivision
of the interval(0, 1] is associated to each closed itemset, and the second part use
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this partition to determine, for a given value of the conficethreshold, which are
those sets that can generate representative rules.

Then, we extend the process to a similar basis which proita the more pow-
erful redundancy notions available for full-confidence litgitions to often obtain
smaller bases in many applications.

There are a couple of subtle differences between one of the definitions of
association rule (the one we employ) and the oné in [Krysukie 2001]. First,
we do allow having rules with empty antecedent (clearlypéithem have confi-
dence equal to the normalized support of the consequentiedwer, we do not
require the inequalities to be strict when imposing a givagmpert and confidence
threshold. This is just a small detail that comes handy wheruser is interested
in obtaining the set of all representative rules of configehcHowever, we have
carefully tuned all our argumentations in such a way thasetdifferences are not
relevant; for instance, we have chosen a counterexampletrzidates Property 9
of [Kryszkiewicz, 2001] independently of which of the twofihitions is used.

The article is structured as follows. In Sectidh 2 we intreglthe basic no-
tions and notations that will be used throughout the papdr@art of the con-
tents of [Kryszkiewicz, 2001]; and we show that the algaritprovided there is
not guaranteed to always provide the whole set of represemtales. In Sectiohl3
we define new parameters and discuss their usefulness imagi@gethe set of all
representative rules, providing also efficient algoritiforsthis task. We describe
in Sectior# a parallel development for an alternative hadten smaller than the
representative rules. Sectibh 5 contains a comparisonrcdgproach with the one
in [Kryszkiewicz, 2001] on some datasets. Concluding ré&and further research
topics are presented in Sect{dn 6.

2 Preliminaries

A given set of available item% is assumed; subsets of it are called itemsets. We
will denote itemsets by capital letters from the end of thghabet, and use juxta-
position to denote union, as KY. The inclusion sign as iX C Y denotes proper
subset, whereas improper inclusion is denatedY . For a given dataset, consist-

ing of n transactions, each of which is an itemset labeled with auenfcpnsaction
identifier, we define theupport supX) of an itemsetX as the ratio between the
cardinality of the set of transactions that contdiand the total number of transac-
tionsn. An itemsetX is calledfrequentf its support is greater than or equal to some
user-defined threshotde (0, 1]. We denote by = {X C % | sugX) > 1} the set

of all frequent itemsets.

Given a seX C %, theclosureX of Xis the maximal set (with respect to the set
inclusion)Y C % such thatX C Y andsupgX) = supY). Itis easy to see tha is
uniquely defined. We say that a $étC % is closedif X = X.

Closure operators are characterized by the three propeftextensivityX C X;

idempotencyX = X; and monotonicityX C Y if X C Y. Moreover, intersections of
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closed sets are closed. The empty set is closed if and ontyitfem appears in each
and every transaction.

A minimal generatoiis a setX for which all proper subsets have closures dif-
ferent from the closure ok (equivalently,X is a minimal generator if and only if
supY) > supX) forallY C X).

Also, FC; = {X € F; ] X = X} represents the set of all frequent closed sets,
andFG; = {X € F¢ | VY C X,suf(Y) > supX)} is the set of all frequent minimal
generators. Note th&C; constitutes a concise lossless representation of frequent
itemsets, since knowing the support of all setdi@; is enough to retrieve the
support of all sets iffr;.

Example 1Let 2 be the dataset represented in Tdlle 1 where the univreé
attributes is{a,b,c,d, e, f}, and consider the threshotd= 0.15. Clearly, all sub-
sets of% are frequentFC; = {0,a,b,c,ab,ac,ad,bc abcdeabcdef andFG; =
{0,a,b,c,d,e, f,ab,ac,bc,bd, cd,abc} (we abuse the notation and denote sets by
the juxtaposition of their constituent elements).

Table 1 Dataset7
abcdef
111111
11111¢q
11000(
10100(
0110004
100100(

2.1 Association Rules and Representative Rules

GivenX in F¢, the following two notions were introduced in [Kryszkiewj@2001]
(with longer names):

mxs (X) = max{supZ) | Z € FC;,Z > X} U{0}),
mns (X) = min({sup(Y) | Y € FG,Y C X} U{}).

That is,mxs (X) represents the maximum support of all proper frequent dlose
supersets oX, andmns (X) is the minimum support of minimal generators that are
proper subsets of. The extra 0 ane are added in order to make sure thats (X)
andmng (X) are defined even for the cases in whi¢ias no proper supersets that
are frequent and closed, or when it does not have proper tsuthsg are minimal
generators. It is easy to check thaks (X) < supgX) < mns(X). Moreover, in
[Kryszkiewicz, 2001] it is shown that:
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Proposition 1. Givent € (0,1] and an itemset X F;, X is closed if and only if
supX) > mxs(X) and X is a minimal generator if and only if s{) < mng (X).

The association rules considered in this work are implicetiof the formX —
Y, whereX,)Y C%Z,Y # 0 andXNY = 0. In [Kryszkiewicz, 2001], rules with
X = 0 are disallowed, but we do permit them as in practice sutdsroften play
a useful role related to coverings, described below. dhefidenceof X — Y is
conf(X = Y) = supXY)/supX), and itssupportis sugfX — Y) = supXY). The
problem of mining association rules consists in generagihgules that meet the
minimum support and confidence threshold criteria, i. e nggnate the following
set:ARry = {X =Y | sugX = Y) > 1,conf(X = Y) > y}.

Since the whole set of association rules is quite big in veald applica-
tions, a number of formalizations of the notion mfdundancyamong associ-
ation rules have been introduced (see [Aggarwal and Yu,|2Baicazar, 2010a,
[Kryszkiewicz, 1998H, Pasquier et al., 2005, Phan-Luon@120uxenburger, 1991,
[Zaki, 2004,[ Cristofor and Simovici, 2002], the survéy [Kzkewicz, 2002], and
Section 6 of [[Ceglar and Roddick, 2006]). In one common apgho thecover
setC(X — Y) of a rule X — Y is defined byC(X — Y) = {X' = Y' | X C
X"andX'Y’ C XY}. Such rulesX’” — Y’ are redundant with respect ¥ — Y in
the following sense (seé [Aggarwaland Yu, 2001, KryszkeawL998b] and also
[Kryszkiewicz, 19984, Balcazar, 2010a, Phan-Luong, $001

Proposition 2. Letr,r’ be association rules. Theh& C(r) implies sugr’) > sugr)
and confr’) > conf(r).

In fact, this implication is a full characterization, that if r’ has always at least
the same confidence and at least the same supporthes it must belong to the
cover set. Avoiding such redundancies leads to th&Be}, of representative asso-
ciation rules A ruler in ARy is said to baepresentativeor essentiglif it is not
contained in the cover set of any other ruleiR; y, i. e.

RRy={r€AR, |VI"€ AR, (reC(r') =r=r1")}.
Proposition 3. The following properties hold:

e RRy={X—=YecAR, | -3IX' =Y € ARy, (X=X, XY C X'Y')or (X' C
X, XY =X'Y")}
o if X = Z\X with XC Zisin RR  then Ze FC; and X € FG;.

Therefore, any algorithm that aims at the discovery of ghresentative rules
should consider only rules of the forh— Z\X with X € Z, Z € FC; andX € FG;.
Clearly, not all sets ifrC; can be decomposed in such a way, and one should look
only into those that do.

Example 2Consider the dataset in Examfle 1. The aétis both frequent and
closed, but none of the rules— d, d — a or 0 — ad are representative given the
thresholdst = 0.15 andy = 0.33:a— d is in the cover set oA — bd, d — ais in
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the cover set off — aband 0— ad is in the cover set of @ abd. Also, it is easy to
check that, at = 0.15 andy = 0.4, one can obtain representative rules exactly out
of the following closed setsb, ac, ad, bc, abcde andabcde

So, if we denote byl the set of all frequent closed itemsets from which at
least one representative rule can be generated, one moagiptoach to represen-
tative rule mining is to synthesize first the &t ,, and then, for each eleme#t
in Rl y, to find non-empty subsed such thaiX — Z\X is representative. This is
precisely the idea behind Algorith@enRRin [Kryszkiewicz, 2001]. The problem
there is that the characterization of the Béf, given by Property 9 of the same
paper (on page 355) is incorrect, possibly leaving out sofrthen sets that can
lead to representative rules. Namely, it is stated Riat, = {X € FC; | sup(X) >
y*mng (X) > mxs(X)}; right-to-leftinclusion indeed holds, but equality doex n
hold in general, as one can see from the following countengia.

Example 3Consider the itemseX = abcdein Example[l, and assume= 0.15
andy = 0.4. Let us verify thabcdec RI; ,\{X € FC; ‘ supX) > yxmng(X) >
mxs (X)}. Clearly, the ruldo — acdeis in AR; , having support 2/6 and confidence
0.5. Moreover, by extending the right-hand side or movirggitamb to the right-
hand side we get only the rulés— acdef, 0 — abcdeand 0— abcde fof confi-
dence 1/4, 2/6 and 1/6, respectively. Hence, we can contiatle — acdec RR; ;.
On the other handnxs (X) = 1/6 andmng(X) = 2/6, soyxmng(X) =0.8/6 is
strictly smaller tharmxs (X). In this case, AlgorithmGenRRdoes not work cor-
rectly since it does not list the ruke— acdeas being representative.

An alternative counterexample is given in the proof of Lenffiizelow.

3 Characterizing Representative Rules

The goal of pruning off sets that do not give representatives; by keeping only
Rl y, cannot be reached using the bounds given, as we have séémstset com-
prises allX in FC; with sup(X) > y+mns (X) > mxs (X) but may also include other
frequent closed sets that do not satisfy the conditign mng (X) > mxs (X). We
consider two alternatives.

3.1 Closed Sets Instead of Minimal Generators

For closedX, mns(X) is almost the same thing as the minimal support among all
proper subsets of, or again among all proper closed subsetX gdll these notions
coincide wherX is its own minimal generator, otherwise they only differ da¢he
minimal generators oX. Therefore it makes sense to try and exclude the minimal
generators oK from consideration. This way, we get another parameter,
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bmns (X) = min({supY) | Y € FC,Y C X} U{e0}).
The value ofomns is never smaller thamns as we shall shortly see. Thus,
there will be more sets that meet the conditjorbmns (X) > mxs (X).

Proposition 4. The following properties hold.

e bmns(X) =min({supY) | Y € FG.,Y C X} U{=}),
e mnsg(X) < bmns(X),
e if X € FC; NFG; then mng(X) = bmns (X),

Proof.We omit the proof of the first two claims because they aregititéorward.
So, letX be a frequent closed set that is also a minimal generatot. # 0,
then mng(X) = bmng(X) = . Otherwise, letY € FG; be such thaty ¢ X
and mng (X) = supY). Clearly,Y € FC; andY C X = X. SinceX € FG; and
Y C X, supY) > supX) and hencesup(Y) > sup(X), and therefor&/ c X. We
getsupY) > bmns(X) andmns (X) > bmng(X). Combining it with the fact that
mng (X) < bmng(X) always holds, we conclude thaing (X) = bmng(X). O
Unfortunately, the new parameter can still leave out sort®is®ly .

Lemma 1.Rlgy Z {X € FC; | sugX) > yxbmng(X) > mxs (X)}.

Proof.Let 7 = {a,b,c} and Z be the dataset containing the following 13 trans-
actions:it; = --- =tg = abgtg = ab,tjg = t11 = t;o = a,t13 = b; assumer = 0.07
andy = 0.7. One can check that, althougb € RI; y (sincea — b € RR; ), both
bmns (ab) = 10/13 andmns (ab) = 10/13; buty « mng (ab) = y«bmns(ab) =
7/13<8/13=mxsg(ab). O

The next construction shows that by usimgns instead ofmns we can even
leave out some sets Rl , that would not have been left out otherwise.

Lemma 2.Rl;y N {X € FC; | supX) > yxmng(X) > mxg(X)} € {X € FC; |
sugX) > yxbmng(X) > mxs(X)}.

Proof.Let # = {a,b,c,d,e} and Z be a dataset containing 35 transactidns:
t, = abcdet; =t; =t = abcdtg--- =tyg = aandty; = ---t35 = b. Pick 7 = 0.05
and y = 0.75. Note thatab — cd € RR;y, and thereforeabcd € Rl;. Now,
mng (abcd) = 5/35,bmns (abcd) = 20/35, supabcd) = 5/35 andmxs (abcd) =
2/35. Althoughy+mns (abcd) = 3.5/35= 0.1 belongs to the intervg2/35,5/35),
y*bmnsg(abcd) = 15/35 does not. O

3.2 Minimal Generators of Bounded Support

In order to give a complete characterization for theRde,, let us first introduce the
following notation: for a seX in FCr, mxgsg ,(X) is the maximal support of those
minimal generators that are included{rand are not more frequent thang(X)/y:

mxgs ,(X) = max({supY) | Y e FG;,Y C X,yxsufY) < supX)} U{0}).
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Note thatmxgs ,(X) is either O, or it is greater than or equalso(X). We prove
two propositions that explain how we can use this value ireptd compute the set
Rl yand howto find, giveX € Rl; , a subseX C X such thaXo — X\ Xo € RR; .

Proposition 5. The following equality holds.
Rlry = {X € FCr | yxmxgs ,(X) > mxs(X)}.

Proof.Let X be an arbitrary set iRl;,,, and takeXg in FG; such thatX, C X and
Xo = X\Xo € RRy.

We have, on one handpnf(Xy — X\Xo) > y, and on the other hand, the rule
should not be in the cover set of any other rule with confideyreater thary, i. e.
conf(Xo — Z\Xo) < yforall Z € FC; with Z D X.

That is,supX) > y=*supXp) > supZ) for all Z € FC; with Z > X. From the
first inequality, we deduce thXy meets all the conditions in order to be considered
for the computation oixgs ,(X), and thereforemxgsg ,(X) > sup(Xo). From the
second, we ggtsup(Xo) > mxg (X). We conclude thag+ mxgs ,(X) > mxs (X).

Conversely, leX € FC; be such thay+ mxgs ,(X) > mxg (X). Itis clear that
mxgs ,(X) cannot be 0 (sincexs (X) > 0), so

{Y €FG; | Y C X,y*sufY) < supX)} # 0.

Take Xo € FG; to be a set of maximal support that belongs to that set. There-
fore, we havemxgs ,(X) = supXo). SincesugXo — X\Xo) = sup(X) > 1 and

conf(Xp — X\ Xp) = ;‘gz)) > y we deduce thaXg — X\Xp € AR;,,. Note that for

anyZ O X, conf(Xg — Z\Xo) = ;ﬁ&’% < Z‘J;g)) = mr;‘;gif;) < y. Moreover, for

anyXj C Xo, sup(Xg) > supXp) (sinceXp € FG;) andyssupgX}) > sup(X) (due to
the choice we have made fifg). This is whyconf(X} — X\X4) = S <y We

sup(Xg)
conclude thako — X\Xp € RRy andX e Rly . 0O &

The previous proposition characterizes unequivodally,. Simple arithmetic
suffices to check that Propositi6h 5 identifies exactly tlesetl sets from which
representative rules follow as per Example 2. However, we aked a practical
method for identifying the set of representative rules.his énd, we give necessary
and sufficient conditions for a subset of an itemseRlpy, to be the left-hand side
of a representative rule (see Proposifibn 6).

Proposition 6. Let X € Rl;y, ¢t = mxs(X)/y, ¢ = supX)/y and X% C X. Then
Xo — X\Xo € RR yif and only if g < supXp) < ¢, < mng(Xo).

Proof.ConsiderX € Rl;, andXy C X. Clearly,Xo — X\Xo € RRy if and only if
the ruleXo — X\ Xp is in AR; , and does not belong to the cover set of any other rule

in AR; . That is equivalent tasupX) > T, sslj‘g;;)) >y, 583&(26)) < yfor all X c X
and SSJ‘&(Q) < yforall Z > X that satisfysupZ) > 1.

Now, it is easy to see that:
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supX) > 1 always holds becauséc FC;,

fﬁ&% >y & supXo) < ¢,

vxgcxo:%<y@%<y@cz<mns(xo),

VZOX: (Ze Fr= SUW2 y) o WXy o < supXo),

supXo) sup(Xo)

which concludes the proof.00

The correctness of Algorithid 1 trivially follows from Progiiong % and’b.

Algorithm 1 RR Generator

. Input: support threshold, confidence thresholg
CF={XCc%

supX) > 1}
FCr = {X e F | X=X}
FG; = {X € F¢ | VY C X,sup(Y) > sup(X)}

: for all X € FG; do

mng (X) = min({supY) | Y € FG;,Y C X} U {w})

. end for

Rl;y =0

: for all X € FC;\{0} do

mxs (X) = max({sup(Z) | Z € FC;,Z > X} U {0})
mxgs,,(X) = max{suplY) | Y € FG,Y C X, y*supY) < supX)}u{0})
if y+mxgg,,(X) > mxs (X) then
addX toRl;
end if

: end for
. forall X € Rl do

c1=mxs(X)/y
c =supX)/y
Ant ={Xp € FG | Xo C X, €1 < Sup(Xo) < ¢z < mng (Xo)}
for all Xo € Antdo
outputXy — X\ Xp
end for

. end for

3.3 An Algorithm for Different Confidence Thresholds

The disadvantage of Algorithid 1, compared to the oné in [Kkisnicz, 2001], is
that, for a givenX in FCr, mxgs ,(X) depends on the confidence threshold, and
hence it cannot be reused onckas changed, whereas batixs (X) andmns (X)

can be computed only once for a given valua @nd then used for different confi-
dence values. On the other hand, Algorifim 1 is guarantetd fase representative
rules, whereas the one [n [Kryszkiewicz, 2001] risks givimeppmplete output, as in
our counterexamples above.
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Instead of computingixgg ,(X) for each and every, one can find the individual
points of the interval(0, 1] wheremxgs ,(X) changes its value. Indeed, givinin
FC\{0}, let {Y1,...,Yyx } be the se{Y € FG; | Y € X} in descending order of
support. It is easy to see that

supYy), ify< sﬂg\)&))

mxgs ,(X) = { supYi.y), if y (% Sj‘,j(‘;(ﬁ)] el nX] -1},
0

otherwise

)

Let us introduce the following notation: foe {1,...,n[X]}, yi[X] = sup(Y;) and
pi[X] = supX)/supY;). Moreover,pp[X] = 0. Now, each time a new value of the
confidence thresholg is given, one can decide whether a frequent closeX st
in Rl by simply retrieving the intervalpi [X], pi;1[X]] with i € {0,...,n[X] -1}
to whichy belongs (recall that in this casexgs ,(X) = yi;1[X]) and then checking
whether the inequality  y;1[X] > mxs(X) holds. Note that if no suchexists
(thatis, whenevey has a value strictly greater thamx[X]), mxgs ,(X) takes the
value 0, which makeg* mxgs ,(X) smaller than or equal toixs (X).

These ideas are implemented in AlgoritHths 2[and 3.

Algorithm 2 RR Generator - preprocessing phase

. Input: support threshold

P Fe={XC % |supX) >}

DFCr={XeF | X=X}

FG; = {X € F¢ | VY C X,sup(Y) > sup(X)}

. for all X € FG; do

mng (X) = min({supY) | Y € FG,Y C X} U {w})
. end for

. for all X € FC;\{0} do

mxs (X) = max{sup(Z) | Z € FC;,Z > X} U {0})
nX]=|{Y € FG | Y C X}

;- Yoix) } be the se{Y € FG; \ Y C X} in descending order of support

forall i € {1,...,n[X]} do
Yi[X] = sup(Yi)
pi[X] = sup(X) /i [X]
end for
Po[X] =0
. end for

©CONOUDS WNE
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4 Characterizing the Basis for Closure-Based Redundancy

The results of the previous sections can be extended to fiisti@f Fules such that
any other rule inAR; , is redundant with respect to one rule in our list and the set
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Algorithm 3 RR Generator - second phase

1: Input: support threshold, confidence threshold

2: Rlgy=0

3: forall X € FC;\{0} do
4:  if Jie{0,...,n[X] -1} such thaty € (p;[X], pi-1[X]] then
5: if yxVir1[X] > mxg(X) then
6:
7
8

addX toRlz
end if
end if

9: end for
10: for all X € Rl do
11: g =mxs(X)/y
12:  cp=supX)/y
13:  Ant={Xp € FG; | Xo C X,C1 < sup(Xo) < ¢ < mng(Xo)}
14:  for all Xp € Antdo

15: outputXy — X\ Xo
16: end for
17: end for

of full-confidence implications. This is exactly the ideehbel a basis for closure-
based redundancy [Balcazar, 2010a].

Let #Z be a set of implications, i. e. rules that hold with confidethc®artial
rule X’ — Y’ is closure-based redundant relativeowith respect tox — Y if any
dataset? in which all the rules inZ hold with confidence 1 givesonf(X' — Y') >
conf(X —=Y).

Closure-based redundancy and standard redundancy a®intidn the set of
implications Z is empty. Knowing the sefZ is equivalent to knowing how the
closure operator works on each set. If the set of implicatisnempty, then any
subset is closed and all the closure-related argumensativalize; in particular,
in this case the set of representative rules forms a minirsizebasis.

In any case, we have the following characterization for wlesbased redun-
dancy:

Theorem 1 ([Balcazar, 20104]).Let % be a set of exact rules, with associated clo-
sure operator mapping each itemset Z to its clostirdet X — Y’ be a rule not
implied by#, that is, Y ¢ X’, then the following are equivalent:

1. XC X" and XY’ C XY,
2. The rule X— Y’ is closure-based redundant relative#with respect to X— Y .

Note thatY’ ¢ X’ is equivalent to saying that’ — Y’ is not a full implication.
One can then analogously define the closure-based covef aatute X — Y by
C(X—=Y)={X'"=Y'|XCX andX'Y’ C XY}. Accordingly, we must refine the
notion of “different” rule since only the closures are relat A rule X’ — Y’ is
closure-equivalent (again relative.#) to X — Y whenX’ = X andX’Y’ = XY.

The minimum-size basisg; , for closure-based redundancy contains all rules
in AR; ), of confidence strictly smaller than 1 that are not closursedaredun-
dant with respect to any rule iAR; ,, unless they are closure-equivalent (see
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[Balcazar, 2010a] for details). Again the main propertyttug basis is that every

rule inARy )y is closure-based redundant with a rule in the basis.

Proposition 7. If a rule is not in the basis, then it is closure-based redurtdaith
respect to a rule in the basis that is not closure-equivateit

Proof.Indeed, ifX — Y\ X is not in the basis, some rufe — Y’\ X’ exists above the
confidence and support thresholds for whi¢iC X andY C Y/, and eitheX” # X or
Y’ Y in turn, this rule is closure-based redundant with a rukaébasis, possibly
itself, sayX” — Y"\X”, so thatX” C X’ C X = X andY C Y’ C Y” =Y, further,
then,X” = X impliesX” = X, andY” =Y impliesY’ # Y. Therefore, ifX — Y\X
is not in the basis, then it is closure-based redundantXfiths Y\ X", which is in
the basis and is not closure-equivalent to it

Itis easy to check that, in all rules in this basis, the leftith sides are also closed
sets. We are interested in computing this basis fast. To ap I#tRI; , be the set
of all frequent closed itemsets from which at least one raletliis basis can be
obtained.

Proposition 8. The following equality holds.

Rlry = {X € FCr | yxmxgsg ,(X) > mxs ,(X) and mxgs ,(X) > supX)}.

Proof.Let X be an arbitrary set iRl ,: there is a basis rul¥ — X\ X, for these
confidence and support thresholds, whégés a proper closed subség C X. Pick
a minimal generatoK; of Xo; asXp is closed,sup(X;) = supXp) > supX); as
conf(Xg — X\Xo) >y, yxsupgXy) = yxsupgXo) < supX), henceX; participates in
the computation omxgs ,(X), so thatmxgs ,(X) > sup(Xy) > sup(X).

Besides, if there was a proper closed supeFseff X such thatsupZ) > 1
andc(Xp — Z\Xp) >y, then the ruleXy — X\ Xy would not be in the basis due
to redundancy withXo — Z\Xo. Therefore, the support of any frequent itemset
Z with X C Z is less thany x supXp). That is,mxs ,(X) < y*supXp). Hence,
yxmxgs ,(X) > y*SUp(Xy) = y*SupXo) > mxs y(X).

Conversely, assume that

y*mxgs ,(X) > mxs,y(X) andmxgs ,(X) > supX)

holds forX € FC;. Indeed,supX) < mxgs ,(X) implies that this last value is
not zero, and that there is at least one iteméet FG; such thatX; ¢ X and
yxsupXy) < supX). Among theseX;, we pick one with maximum support:
mxgs (X) = supX1). Let Xo = X1, Sosuf(Xo) = supX1) > sup(X) andXop C X.
Thenconf(Xg — X\ Xo) = supX)/supXo) > y*sugX1)/supXp) = vy, which im-
pliesXg — X\Xg € ARy y.

Suppose, for a contradiction, thé&t— X\ Xg is not in the basis. By Propositibh 7,
it must be closure-based redundant with respect to aYule Z\Y that is in the
basis and is not closure-equivalent to it. Being in the baggdies thatY, Z € FC;
(and keep in mind that botky andX are closed as well). By Theordrh 1, we have
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thatY C Xp andX C Z, where one of the two inclusions must be proper to ensure
closure-inequivalence. X C Z, we have that

supZ)
supY)

supZ) - mxg (X)
supXo) — mxggy(x)
which is a contradiction witieonf(Y — Z\Y) > yasY — Z\Y € #; , C ARy y. The

other possibility is thaZ = X andY C X, butsufY) > sup(Xp), becaus& € FCq,
contradicting the maximality aup(Xp). This finishes the proof. O

conf(Y — Z\Y) =

IN

<YV

Proposition 9. Let X € Rlry, ¢ = mxs(X)/y, and @ = supX)/y. Consider a
proper closed subsefpXC X. Then X — X\Xg € %, ifand only if g < supXp) <
C2 < mng(Xo).

Proof.ConsideiX € Rl;,, and a proper closed subs&tc X. The ruleXo — X\Xg is

in %, if and only if it meets the support and confidence threshajdirements with
respect tar andy, it is not a full implication, and is not closure-based redamt
with respect to another rure — Z\Y.

First of allsupX) > 1, becaus& € Rl so it remains to see that:
1. conf(Xp — X\ Xo) >,

2. conf(Y — Z\Y) < yforanyY,Z € FC; such thalY C Xy andX C Z, with at least
one of the two inclusions proper.

The first item is equivalent tsup(Xo) < ¢p; for the second item we will divide the
proof in two different steps: first, we are going to consider tase wher¥ C X
andX C Z.

sup(X)
sup(Y)

VY C Xo, conf(Y = Z\Y) <y < <y < cp<mng(Xo).

In a similar way, we obtain that for all such thatX c Z andY = Xo, conf(Y —
Z\Y) < yis equivalentta@; < sup(Xp). This finishes the proof. O

All the three algorithms defined so far can be modified to outpe set%; ,
of closure-based irredundant partial rules. These modtdics are easy from the
results we have proven in this Section, so they are omitted.

5 Empirical Comparison

We have seen that one can find toy examples of datasets in Waautput of the
algorithm in [Kryszkiewicz, 2001] is incomplete.

We have tested our algorithms on two real-world dataset¢dr#ining set part of
the UCI Adult US census dataset (see [Asuncion and Newmd]pand a Retail
dataset (se¢ [Brijs et al., 1999]).

We have implemented three different algorithms: one foirthemplete heuristic
given in [Kryszkiewicz, 2001], one that generates the catgbet of representative
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rules as described by Algorithiph 1, and the last algorithnpotsta complete basis
under the notion of closure-based redundancy. In order te@aparable results,
all algorithms allow rules with empty antecedent and uses#imee definition of fre-
quent sets and association rules as given in our prelineisaWe emphasize that, in
general, the incomplete heuristic fails to produce a coteflasis of representative
rules. The code is available at [Balcazar, 2010b].

The first dataset under study, which we refer by the name diRet a market
basket data which consists of 88163 transactions over 1&#fiButes. In order to
preserve the anonymity of the clients, the data has beergsed so that each item
is represented by a number and each line break separateedtftustomers. For
the interested reader, the pager [Brijs et al., 1999] costaiore information about
this dataset.

Table[2 shows the number of representative rules obtainedifferent support
and confidence thresholds (the seventh column), the cditgioé the output set
whenmns is used (the fifth column) and the time elapsed in order toinkkem
(the sixth and forth columns, respectively). We can seeattlabugh for higher sup-
port thresholds the output of the algorithms is, most of times, identical (recall
that the output of the algorithm in [Kryszkiewicz, 2001] isvays a subset of the
whole set of representative rules), lowering both thredhishows bigger differ-
ences.

Table 2 Comparison betweeBenRRand Algorithnl on the Retail dataset

Data GenRR |Algorithm
|[FC:| |SupporfConfidenceTime|Ruleq Time|Ruleg
0.9 [0.015 248|0.013 248
7573| 0.1% 0.8 [0.013 643]0.013 652
0.7 ]0.02¢ 1978]0.024 1990
0.9 [0.036 670(0.023 670
19115 0.05% 0.8 [0.0732228]0.041 2229
0.7 [0.1236029]0.083 6039

Dataset Adult is a transactional version of the trainingoset of the UCI census
dataset Adult US (seé JAsuncion and Newman, 2007]); it aiasif 32561 trans-
actions over 269 items. On the Adult dataset, we see the senein the behavior
of both algorithms. Note that in this case there are significifferences between
the output of the algorithm in [Kryszkiewicz, 2001] and ttet sf all representative
rules (TabléB). For example, for support and confidencesttulels of 0.05 and 0.7,
respectively, more than half of the rules are lost.

As an example, in the case the thresholds for support anddemte are 1% and
0.70, respectively, there are a total of 6867 represesetaties, among which 3408
are lost when usinginsor bmns(four of them listed in bold, the rest of the rules
are given as an example):

[c:0.75, s:1.03] Private White age: 41 Male,

[c:0.82, s:2.21] Never-married Unmarried=- <=50K USA,
[c:0.70, s:1.47]<=50K Assoc-acdm White= Private,
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Table 3 Comparison betweeGenRRand Algorithn{1 on the Adult dataset

Data GenRR [Algorithm[]|
|[FC:| |SupporjConfidence¢Time| Rules Time| Rules|
0.9 |0.147 6578|0.17q 7436
11929 1% 0.8 [0.13( 4827]0.149 7379
0.7 ]0.09¢ 3459[0.141 6867
0.9 |0.39111520§0.38( 1757
27444 0.5% 0.8 [0.299115160.4171819(
0.7 [0.263 8241[0.38416779

[c:0.75, s:3.74] Own-child Private hours-per-week: 46= <=50K Never-married USA,
[c:0.75, s:3.74] Never-married Own-child USA hours-pevek: 40= <=50K Private,
[c:0.87, s:1.03 ] Male Private age: 4% White

[c:0.75, s:1.03 ] Private White age: 4% Male

[c:0.86, s:7.07 ] Exec-managerial Private USA White

[c:0.73, s:1.04 ] Craft-repair Divorced- Male USA White

[c:0.75, s:1.68] Not-in-family hours-per-week: 59 <=50K

As mentioned in the beginning of this section, we have ruregrgents in order
to see the performance of our algorithm that finds a basisnalosed-based redun-
dancy conditions. The results are in Taljles 4[dnd 5. Not@&nhhis case the times
are significantly lower.

Table 4 Algorithm for Basis%; ,, (Retail dataset)

SupporiConfidencéTime[Ruleg
0.9 |0.006 233
0.1% 0.8 [0.007 643
0.7 ]0.013 1984
0.9 |0.029 549
0.05% 0.8 [0.024 2139
0.7 ]0.044 6039

Table 5 Algorithm for Basis#; , (Adult dataset)

SupporiConfidencgéTime| Rules
0.9 |0.093 7103
1% 0.8 [0.08¢ 7205
0.7 ]0.087 6662
0.9 |0.24316457
0.5% 0.8 ]0.25(017531
0.7 ]0.23316085

We have run the experiments on an Intel Core i3-330M @ 2,13@GkEehine
with 4 GB of RAM running under Microsoft Windows 7 Professa((64 bits). The
running time of all algorithms were between 6 and 123 midlm®ds in the case
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of the Retail dataset and between 82 and 417 millisecondthéAdult dataset.
Algorithm[d correctly outputs all representative ruleshet tost of being sometimes
slower than the possibly incomplete algorithm of Kryszkiexbut, in our tests, the
difference was rather irrelevant since the time neededita fhre results on screen
(a device slower than the CPU) still dominates the process.

It must be noted that the quantity of representative ruleg deerease at lower
confidence or support thresholds. This phenomenon has Hesmsrved and ex-
plained before (seé [Balcazar, 20lL0a]) and is caused byifolrules of a given
confidence, say 0.8, that are filtered out at higher threshidedving therefore many
other rules as representative, but that force all of thesefdbe representative rules
set as they become redundant when the confidence threslislegjew 0.8 and lets
the powerful rule in.

6 Conclusions

We have proposed an alternative (complete) solution foigreeration of the set
of all representative rules defined [n [Kryszkiewicz, 19P@&ee Algorithn{1); we
have also shown that the original algorithm was incompl@i. approach, which
seems to requiere more operations than the one in [Krysikie®001], has the
advantage of being guaranteed to output the whole set aéseptative rules.

On the other hand, one of its main drawbacks is that we camuserthe pre-
computed values of the parameters once the user changesfidence threshold.
Our proposal for fixing this problem involves dividing theopess into two phases
(see Algorithni2 and Algorithil 3). As a conclusion, depegdin whether one is
interested in getting complete results or getting thenefagtis more convenient to
use AlgorithnT1 or the algorithm i [Kryszkiewicz, 2001].

We have also extended our approach to the similar but différ&sis correspond-
ing to closure-based redundancy. Tests were performedher ta confirm that the
algorithm is significantly faster than the previous two.
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