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1 INTRODUCTION 

Artificial intelligence and machine learning algorithms have known an increasing interest 
from the research community, triggering new applications and services in many domains. In 
geotechnical engineering, for instance, neural networks have been used to benefit from 
information gained at a given site in order to extract relevant constitutive soil information 
from field measurements [1]. The goal of this work is to use machine (supervised) learning 
techniques in order to predict the behaviour of a sheet pile wall excavation, minimizing a loss 
function that maps the input (excavation’s depth, soil’s characteristics, wall’s stiffness) to a 
predicted output (wall’s deflection, soil’s settlement, wall’s bending moment).  

Neural networks are used to do this supervised learning. A neural network is composed of 
neurons which apply a mathematical function on their input (see Figure 1, left) and synapses 
which take the output of one neuron to the input of another one. For our purpose, neural 
networks can be understood as a set of nonlinear functions which can be fitted to data by 
changing their parameters. In this work, a simple class of neural networks, called Multi-Layer 
Perceptron (MLP) are used. They are composed of an input layer of neurons, an output layer, 
and one or several middle layers (hidden layers) (see Figure 1, right). A neural network learns 
by adjusting the weights and biases in order to minimize a certain loss function (for instance: 
the mean squared error) between the desired and the predicted output. Stochastic gradient 
descent or one of its variations are used to adjust the parameters and the gradients are 
obtained through backpropagation (an efficient application of the chain rule). 
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The interest in neural networks comes from the fact that they are universal function 
estimators, in the sense that they can approximate any continuous function to any precision 
given enough neurons. However, this can lead to over-fitting problems where the network 
learns the noise in the data, or worse, where they memorize by rote each sample [2]. 

                         
Figure 1: (left) Graph of a neuron with activation (a), bias (b) and weight (w) - (right) MLP graph 

2 CREATION OF THE DATASET 
For a neural network to learn, a dataset of excavations must first be compiled. The size of 

the dataset should be in hundreds or thousands of samples, and we do not have at hand such a 
large number of real excavation results. Thus, the dataset is obtained through numerical 
simulation using ZSWalls [3], a simple 2D deep excavation retaining wall analysis software 
based on the finite element method (FEM) program ZSOIL.  

ZSOIL has been successfully used throughout the last three decades predicting the 
behaviour of large excavations in urban environments [4, 5].  

In this first attempt to prove the feasibility of the method, the following simplifications 
have been taken into account: the support system is a free standing sheet pile wall (no anchors 
or struts), we only consider one soil, without water (unit weight = 20 kN/m3, Poisson ratio and 
dilatancy angle are fixed), and the excavation width is proportional to its depth. The 
remaining meaningful variables (and their ranges, in brackets) are (see Figure 2 left): 

- soil’s parameters: loading E50 modulus [10 MPa; 100 MPa], friction angle phi [28°; 45°] 
and cohesion c [0 kPa; 10 kPa]. We use here the Hardening soil constitutive model with small 
strain extension [6], and assume Eur = 4 x E50 and E0 = 10 x E50 

- excavation’s depth H [2 m; 8 m] 
- wall’s length L [1.1; 3.0] x excavation’s depth 
- sheet pile’s characteristics (defining its moment of inertia I): 20 samples from the Arcelor 

Mittal catalogue [7]. We assume Esteel = 2 x 108 kN/m2 
From the background ZSOIL computation (Figure 2 right), the results extracted are: the 

wall’s stability (with the hypothesis that a computation that does not converge means that the 
support system does not hold) and if convergence is obtained, the maximum settlement 
behind the wall, the maximum horizontal wall’s displacement (or deflection) and the 
maximum bending moment in the sheet pile wall (Figure 3). 
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Figure 2: (left) ZSWalls input: definition of the excavation properties – (right) results of ZSOIL background 

calculation: bending moment and deformed mesh (x50) 

   
Figure 3: ZSWalls output: wall’s deflection, soil’s vertical settlement, wall’s bending moment 

3 ARCHITECTURE OF THE NEURAL NETWORK 
The logical choice for the input of the neural network is the set of meaningful variables 

that defines the sample (soil’s parameters, excavation’s depth, wall’s length and sheet pile’s 
characteristics). Every other variable is either dependent on these ones - and this dependence 
is left to the neural network to learn, or should not influence the results. As for the output, it is 
simply the convergence status (yes/no), and three continuous outputs: the maximum 
settlement, the maximum horizontal wall displacement and the maximum bending moment in 
the sheet pile wall. Since the continuous outputs don’t make sense if there is no convergence, 
the task should be separated in two: first a classification where the neural network predicts the 
convergence status, and then, if the convergence status is good, a regression can be done on 
the continuous variables. 
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All input values are scaled in order to have an expected value of 0 and a variance of 1. 
This, associated with the Glorot normal initialization of the weights, helped the network to 
learn faster. As for the output values, the convergence status is simply represented by a binary 
variable 0 or 1, and the continuous variables are linearly scaled between 0 and 1. This is 
necessary since a sigmoid activation function is used. 

As mentioned before, a MLP neural network is built. The number of input and output 
neurons are defined by the number of inputs and output features. Thus, only the number of 
hidden layers and the number of neurons in each layer have to be decided. When the number 
of layers and neurons is augmented, the representational power of the network is also higher, 
but this comes with an increased number of parameters and a bigger risk of over-fitting. 

The Tensorflow library for Python as well as the Keras API were used for all the 
experiments reported here. 

4 RESULTS 

4.1 Classification 
The complete dataset contains 5000 random samples, of which 37% did not converge. 
The first task to accomplish is to predict whether the excavation is stable, i.e. evaluate the 

convergence of the FEM model. The architecture used is a simple MLP with one hidden layer 
of 10 neurons and a sigmoid activation function. No regularization technique is used. The 
output of the network is a real number between 0 and 1. An output close to 0 means a non-
convergence prediction, and the opposite if the output is close 1. While there is a class 
unbalance, it did not create difficulties in the learning convergence. However, it reduces the 
meaning of accuracy (percentage of correct predictions) as 63% could be achieved with a 
network that only predicts convergence. 

A preferred measure of the quality of prediction is the Positive Predicted Value (PPV) and 
the Negative Predicted Value (NPV) which corresponds to the ratio between correct predicted 
positive (resp. negative) over total predicted positive (resp. negative). Since, in civil 
engineering, false positives should be most avoided, it is possible to set the cut-off point 
higher to reduce them, at the cost of an overall decrease of accuracy.  

The Receiver Operator Curve (ROC, see Figure 4, left) plots the False Positive Rate (FPR: 
fraction of negatives classified incorrectly) against the True Positive Rate (TPR: fraction of 
positives classified correctly). It is useful to show the tradeoff between correctly classifying 
positives and negatives cases when changing the cut-off point (see Figure 4, right). The Area 
Under the Curve (AUC) should be the closest possible to 1. It can be interpreted as the 
probability of correctly classifying a random positive case higher than a random negative 
case. 
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Figure 4: Receiver Operator Curve (ROC) and effect of cut-off point on PPV and NPV 

4.3 Regression 
The regression models were trained on the converged subset of the dataset (3141 samples), 

with 20% reserved for testing. Several models of increasing complexity were trained and 
evaluated: “10”, with one hidden layer of 10 neurons, “30”, with one hidden layer of 30 
neurons, and finally “30red” or “30-20-10”, with three hidden layers of neurons, containing 
respectively 30, 20 and 10 neurons.  

As stated before, a more complex system has more representational power, as it can learn 
more complex functions. However, it becomes prone to over-fitting and care should be taken 
when training and evaluating the network. In this work, to avoid over-fitting, training was 
stopped when validation performance started to degrade.  

As can be seen in Table 2, the performance of the model increases with its complexity: 
results are given for the different models with the coefficient of determination (R2), mean 
absolute error (MAE), mean relative error (MRE), 95 percentile of the relative error (RE95), 
mean relative error truncated (MRE_tr) and 95 percentile of the relative error truncated 
(RE95_tr). Note that truncation has been applied when absolute errors are below 2 mm 
(maximal settlement or wall’s displacement) or 5 kNm/m’ (maximal bending moment). 

 
Table 2: Prediction results for the different models in terms of errors 

 

Cut-off PPV NPV
- % %
0.5 94.5 90.3
0.9 98.7 77.7
0.95 99.2 72.4
0.99 100 64.2
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Figure 5 shows the behaviour of the three different models: the predicted values for 
settlement, deflection and bending moment given by the neural network are compared to the 
“correct” computed values. 

It can be noticed that there is a tendency to predict lower values. This probably comes from 
the choice of the relative error as a criterion for model selection: smaller predictions are 
bounded by 100% whereas bigger predictions are unbounded. 

   
Figure 5: Predicted against computed soil’s settlement, wall’s horizontal displacement and bending moment 
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5 CONCLUSIONS 
The resulting model can predict accurately if an unsupported excavation is stable. Soil’s 

settlement, wall deflection and maximum bending moment in the sheet pile wall can also be 
predicted with small relative errors (less than 5%). 

In future work, we would like to generalize this approach to real-life cases, building a tool 
capable of predicting the behaviour of an excavation support (slurry or sheet pile wall, with 
anchors or struts) for a given set of data (stratigraphy, groundwater table, excavation’s depth), 
without calculating it with conventional engineering software (finite element method), but 
rather using an existing dataset.  

Once this tool will be functional, it could also be used in order to find an optimal 
excavation design in terms of costs or planning, under constraints (maximal acceptable 
horizontal displacement for instance). 
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