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Abstract. A zero-thickness mortar/interface element formulation is briefly described and 
demonstrated. This element may be considered as an extension of traditional zero-thickness 
interface element, in order to represent material interfaces located in between subdomains with 
non-matching FE meshes. In the context of small strain analysis, these elements may be 
equipped with the same type of constitutive laws as traditional interface elements. Therefore, if 
friction or fracture-mechanics-based laws are adopted, mortar/interface elements may be used 
to represent frictional sliding or cracking following the lines (surfaces) along which they have 
been pre-inserted. Two basic verification examples of this type are presented, showing that the 
model can correctly represent uniform states of stress and deformation when connecting 
unmatched mesh subdomains. 

1 INTRODUCTION 
Since they were first proposed in the late 60s in a geo-mechanical context [1], zero-thickness 

interface elements have been a very useful tool to represent contacts and discontinuities in a 
variety of engineering fields, including concrete and other quasi-brittle materials, bone tissue, 
etc. However, as originally proposed, interface elements are subject to the limitation that nodes 
on each side must be paired and perfectly matched one-to one. That is, meshes of the continuum 
on both sides of the interface line have to be perfectly matching and conformal meshes. This 
may be not a non-trivial requirement in some cases, such as for instance in the case of complex 
problems containing different subdomains that may be more conveniently meshed 
independently, or in case of meshes initially matched that may become unmatched due to large 
opening/sliding of the discontinuities.  

One way to deal with unmatched meshes on both sides of the discontinuities, consists of the 
so called “mortar” elements. The concept was originally introduced by Bernardi et al in 1987 
in the context of spectral discretization of domain decomposition methods [2], and was later 
introduced in the FEM for large-deformation contact-friction analysis and shown to preserve 
the optimal convergence ratio and fulfil the Babuska-Brezzi condition [3]. Initially, mortar 
elements were formulated on the basis of Lagrange multipliers, although later formulations are 
also based on penalty approach [4]. The mortar formulation described here uses a penalty 
approach, which makes it similar to traditional zero-thickness interface elements and in fact, 
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the mortar formulation developed may be considered as an extension of those elements to the 
case of unmatched meshes. Another advantage of the penalty approach is the possibility of 
using the same constitutive models as used for interface elements, and in particular, the model 
of normal/shear cracking model developed in [5].  

2 STANDARD INTERFACE FORMULATION 
The departing point for the formulation of the mortar element is the classical displacement-

based zero-thickness interface element [6]. This is why this section includes a 
summary/reminder of that formulation, although it is recast in a way that is more convenient 
for the later extension to the mortar case. Figure 1 shows a linear interface element composed 
of two faces with two nodes per face. Although in the figure the faces are represented at a 
distance from each other, locations the two faces are generally coincident. A mid-plane line is 
defined at mid distance between the two faces, or if they coincide, at the same location. For 
interpolation and integration purposes, a local coordinate 𝜉𝜉𝜉𝜉 varying from −1  to 1, is defined 
along the mid-plane in such a way that nodes 1 and 3 are located just across the discontinuity 
at the point 𝜉𝜉𝜉𝜉 = −1, which is also denoted as mid-point α, and the same for nodes 2 and 4 at 
𝜉𝜉𝜉𝜉 = 1, which also denoted as mid-point β.   

 
Figure 1: Geometry of standard interface element 

Interface nodal relative displacement are then defined as: 
𝕣𝕣𝕣𝕣𝛼𝛼𝛼𝛼
𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 = 𝒖𝒖𝒖𝒖3 − 𝒖𝒖𝒖𝒖1 
𝕣𝕣𝕣𝕣𝛽𝛽𝛽𝛽
𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 = 𝒖𝒖𝒖𝒖4 − 𝒖𝒖𝒖𝒖2 

(1) 

where 𝒖𝒖𝒖𝒖1, 𝒖𝒖𝒖𝒖2, 𝒖𝒖𝒖𝒖3, 𝒖𝒖𝒖𝒖4 are the standard nodal displacements in Cartesian axes. Expression (1) 
may be written in matrix form as:  

𝕣𝕣𝕣𝕣𝑒𝑒𝑒𝑒
𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 = �

𝕣𝕣𝕣𝕣𝛼𝛼𝛼𝛼
𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥

𝕣𝕣𝕣𝕣𝛽𝛽𝛽𝛽
𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥� = �−𝕀𝕀𝕀𝕀  𝟎𝟎𝟎𝟎

  𝟎𝟎𝟎𝟎 −𝕀𝕀𝕀𝕀�
−𝕀𝕀𝕀𝕀  𝟎𝟎𝟎𝟎
 𝟎𝟎𝟎𝟎 −𝕀𝕀𝕀𝕀� �

𝒖𝒖𝒖𝒖1
𝒖𝒖𝒖𝒖2
𝒖𝒖𝒖𝒖3
𝒖𝒖𝒖𝒖4

� =  [𝚻𝚻𝚻𝚻𝐴𝐴𝐴𝐴  𝚻𝚻𝚻𝚻𝐵𝐵𝐵𝐵]  �
𝒖𝒖𝒖𝒖𝐴𝐴𝐴𝐴
𝒖𝒖𝒖𝒖𝐵𝐵𝐵𝐵� = 𝚻𝚻𝚻𝚻 𝒖𝒖𝒖𝒖𝑒𝑒𝑒𝑒 (2) 

where 𝚻𝚻𝚻𝚻 and 𝒖𝒖𝒖𝒖𝑒𝑒𝑒𝑒 are the overall transfer matrix and nodal displacement vectors, while 𝒖𝒖𝒖𝒖𝐴𝐴𝐴𝐴 and  𝒖𝒖𝒖𝒖𝐵𝐵𝐵𝐵 
are the displacement vectors containing the displacement of nodes on the upper and lower sides 
of the discontinuity surface, and matrices 𝚻𝚻𝚻𝚻𝐴𝐴𝐴𝐴 and 𝚻𝚻𝚻𝚻𝐵𝐵𝐵𝐵 are the respective transfer matrices. 
Relative displacements at any point 𝜉𝜉𝜉𝜉 of the mid-plane surface are then interpolated from their 
mid-point nodal values using the standard shape functions 𝑁𝑁𝑁𝑁𝛼𝛼𝛼𝛼(𝜉𝜉𝜉𝜉) and 𝑁𝑁𝑁𝑁𝛽𝛽𝛽𝛽(𝜉𝜉𝜉𝜉) (Fig.1), as: 
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𝕣𝕣𝕣𝕣 
𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥(𝜉𝜉𝜉𝜉) = �

𝑟𝑟𝑟𝑟𝑥𝑥𝑥𝑥(𝜉𝜉𝜉𝜉)
𝑟𝑟𝑟𝑟𝑥𝑥𝑥𝑥(𝜉𝜉𝜉𝜉)� = �𝑁𝑁𝑁𝑁𝛼𝛼𝛼𝛼

(𝜉𝜉𝜉𝜉) 0
0 N𝛼𝛼𝛼𝛼(𝜉𝜉𝜉𝜉)� �

𝑟𝑟𝑟𝑟𝛼𝛼𝛼𝛼𝑥𝑥𝑥𝑥(𝜉𝜉𝜉𝜉)
𝑟𝑟𝑟𝑟𝛼𝛼𝛼𝛼𝑥𝑥𝑥𝑥(𝜉𝜉𝜉𝜉)� + �

𝑁𝑁𝑁𝑁𝛽𝛽𝛽𝛽(𝜉𝜉𝜉𝜉) 0
0 𝑁𝑁𝑁𝑁𝛽𝛽𝛽𝛽(𝜉𝜉𝜉𝜉)� �

𝑟𝑟𝑟𝑟𝛽𝛽𝛽𝛽𝑥𝑥𝑥𝑥(𝜉𝜉𝜉𝜉)
𝑟𝑟𝑟𝑟𝛼𝛼𝛼𝛼𝑥𝑥𝑥𝑥(𝜉𝜉𝜉𝜉)� = 

= 𝐍𝐍𝐍𝐍𝛼𝛼𝛼𝛼(𝜉𝜉𝜉𝜉) 𝕣𝕣𝕣𝕣𝛼𝛼𝛼𝛼
𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 +   𝐍𝐍𝐍𝐍𝛽𝛽𝛽𝛽(𝜉𝜉𝜉𝜉) 𝕣𝕣𝕣𝕣𝛽𝛽𝛽𝛽

𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 = �𝐍𝐍𝐍𝐍𝛼𝛼𝛼𝛼(𝜉𝜉𝜉𝜉)   𝐍𝐍𝐍𝐍𝛽𝛽𝛽𝛽(𝜉𝜉𝜉𝜉)� �
𝕣𝕣𝕣𝕣𝛼𝛼𝛼𝛼
𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥

𝕣𝕣𝕣𝕣𝛽𝛽𝛽𝛽
𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥� 

(3) 

Combining equations (2) and (3) we obtain: 

𝕣𝕣𝕣𝕣 
𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥(𝜉𝜉𝜉𝜉) = �𝐍𝐍𝐍𝐍𝛼𝛼𝛼𝛼(𝜉𝜉𝜉𝜉)   𝐍𝐍𝐍𝐍𝛽𝛽𝛽𝛽(𝜉𝜉𝜉𝜉)� 𝚻𝚻𝚻𝚻 𝒖𝒖𝒖𝒖𝑒𝑒𝑒𝑒 = 𝐍𝐍𝐍𝐍(𝜉𝜉𝜉𝜉) 𝒖𝒖𝒖𝒖𝑒𝑒𝑒𝑒 = [𝐍𝐍𝐍𝐍𝐴𝐴𝐴𝐴(𝜉𝜉𝜉𝜉)  𝐍𝐍𝐍𝐍𝐵𝐵𝐵𝐵(𝜉𝜉𝜉𝜉)] �

𝒖𝒖𝒖𝒖𝐴𝐴𝐴𝐴
𝒖𝒖𝒖𝒖𝐵𝐵𝐵𝐵� 

(4) 

where 𝐍𝐍𝐍𝐍(𝜉𝜉𝜉𝜉) is the overall interpolation matrix for the interface element, which can be 
decomposed in the “upper” and “lower” interpolation matrices 𝐍𝐍𝐍𝐍𝐴𝐴𝐴𝐴(𝜉𝜉𝜉𝜉), 𝐍𝐍𝐍𝐍𝐵𝐵𝐵𝐵(𝜉𝜉𝜉𝜉), with components: 

 𝐍𝐍𝐍𝐍𝐴𝐴𝐴𝐴(𝜉𝜉𝜉𝜉) = �−𝑁𝑁𝑁𝑁𝛼𝛼𝛼𝛼
(𝜉𝜉𝜉𝜉) 0

0 −𝑁𝑁𝑁𝑁𝛼𝛼𝛼𝛼(𝜉𝜉𝜉𝜉)�
−𝑁𝑁𝑁𝑁𝛽𝛽𝛽𝛽(𝜉𝜉𝜉𝜉) 0

0 −𝑁𝑁𝑁𝑁𝛽𝛽𝛽𝛽(𝜉𝜉𝜉𝜉)�  

𝐍𝐍𝐍𝐍𝐵𝐵𝐵𝐵(𝜉𝜉𝜉𝜉) = �−𝑁𝑁𝑁𝑁𝛼𝛼𝛼𝛼
(𝜉𝜉𝜉𝜉) 0

0 −𝑁𝑁𝑁𝑁𝛼𝛼𝛼𝛼(𝜉𝜉𝜉𝜉)�
−𝑁𝑁𝑁𝑁𝛽𝛽𝛽𝛽(𝜉𝜉𝜉𝜉) 0

0 −𝑁𝑁𝑁𝑁𝛽𝛽𝛽𝛽(𝜉𝜉𝜉𝜉)� 
(5) 

The relative displacement vector in global coordinates x,y is rotated to the local normal and 
tangential coordinates n,t , by means of a local rotation matrix 𝐑𝐑𝐑𝐑: 

 𝕣𝕣𝕣𝕣 
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝜉𝜉𝜉𝜉) = 𝐑𝐑𝐑𝐑 𝕣𝕣𝕣𝕣 

𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥(𝜉𝜉𝜉𝜉) = 𝐑𝐑𝐑𝐑 𝐍𝐍𝐍𝐍(𝜉𝜉𝜉𝜉) 𝒖𝒖𝒖𝒖𝑒𝑒𝑒𝑒 = 𝐁𝐁𝐁𝐁(𝜉𝜉𝜉𝜉) 𝒖𝒖𝒖𝒖𝑒𝑒𝑒𝑒 = [𝐁𝐁𝐁𝐁𝐴𝐴𝐴𝐴(𝜉𝜉𝜉𝜉)  𝐁𝐁𝐁𝐁𝐵𝐵𝐵𝐵(𝜉𝜉𝜉𝜉)] �
𝒖𝒖𝒖𝒖𝐴𝐴𝐴𝐴
𝒖𝒖𝒖𝒖𝐵𝐵𝐵𝐵� 

(6) 

where matrix 𝐁𝐁𝐁𝐁(𝜉𝜉𝜉𝜉) may also be decomposed into upper and lower side submatrices: 

𝐁𝐁𝐁𝐁𝐴𝐴𝐴𝐴(𝜉𝜉𝜉𝜉) = 𝐑𝐑𝐑𝐑 𝐍𝐍𝐍𝐍𝐴𝐴𝐴𝐴(𝜉𝜉𝜉𝜉)     ,      𝐁𝐁𝐁𝐁𝐵𝐵𝐵𝐵(𝜉𝜉𝜉𝜉) = 𝐑𝐑𝐑𝐑 𝐍𝐍𝐍𝐍𝐵𝐵𝐵𝐵(𝜉𝜉𝜉𝜉) (7) 

In order to obtain the element stiffness matrix, the classical procedure is followed. First, the 
Principle of Virtual Work (PVW) is applied along the element mid-plane surface: 

(𝛿𝛿𝛿𝛿𝒖𝒖𝒖𝒖𝑒𝑒𝑒𝑒  )𝑇𝑇𝑇𝑇𝑭𝑭𝑭𝑭𝑒𝑒𝑒𝑒 = � (𝛿𝛿𝛿𝛿𝕣𝕣𝕣𝕣 
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)𝑇𝑇𝑇𝑇

 

𝐿𝐿𝐿𝐿
𝖙𝖙𝖙𝖙𝒏𝒏𝒏𝒏𝑛𝑛𝑛𝑛 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (8) 

Replacing the relative displacement vector 𝕣𝕣𝕣𝕣 
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 with expression (6), grouping terms around  

(𝛿𝛿𝛿𝛿𝒖𝒖𝒖𝒖𝑒𝑒𝑒𝑒 )𝑇𝑇𝑇𝑇 and eliminating this term from the equation, the weak form of equilibrium for the 
interface element is obtained as: 

𝑭𝑭𝑭𝑭𝑒𝑒𝑒𝑒 = �𝐁𝐁𝐁𝐁𝑇𝑇𝑇𝑇
 

𝐿𝐿𝐿𝐿
𝖙𝖙𝖙𝖙𝒏𝒏𝒏𝒏𝑛𝑛𝑛𝑛𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (9) 

The general format of a linear constitutive relation with stiffness 𝐃𝐃𝐃𝐃  and initial stress 𝖙𝖙𝖙𝖙0𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 is now 
considered as:  

𝖙𝖙𝖙𝖙𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝐃𝐃𝐃𝐃 𝕣𝕣𝕣𝕣 
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝖙𝖙𝖙𝖙0𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 (10) 

Replacing (9) into (8) leads to the expressions of the element stiffness matrix 𝐊𝐊𝐊𝐊𝑒𝑒𝑒𝑒 and the initial 
force vector 𝑭𝑭𝑭𝑭𝑒𝑒𝑒𝑒0:  
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𝑭𝑭𝑭𝑭𝑒𝑒𝑒𝑒 = 𝐊𝐊𝐊𝐊𝑒𝑒𝑒𝑒
  𝒖𝒖𝒖𝒖𝑒𝑒𝑒𝑒 + 𝑭𝑭𝑭𝑭𝑒𝑒𝑒𝑒0 (11) 

𝐊𝐊𝐊𝐊𝑒𝑒𝑒𝑒 = �𝐁𝐁𝐁𝐁𝑇𝑇𝑇𝑇
 

𝐿𝐿𝐿𝐿
𝐃𝐃𝐃𝐃 𝐁𝐁𝐁𝐁 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑            ,            𝑭𝑭𝑭𝑭𝑒𝑒𝑒𝑒0 = �𝐁𝐁𝐁𝐁𝑇𝑇𝑇𝑇

 

𝐿𝐿𝐿𝐿
𝖙𝖙𝖙𝖙0𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (12) 

that may be also rephrased in terms of upper and lower B matrices:  

𝐊𝐊𝐊𝐊𝑒𝑒𝑒𝑒 = � �𝐁𝐁𝐁𝐁𝐴𝐴𝐴𝐴
𝑇𝑇𝑇𝑇

𝐁𝐁𝐁𝐁𝐵𝐵𝐵𝐵𝑇𝑇𝑇𝑇
�

 

𝐿𝐿𝐿𝐿
𝐃𝐃𝐃𝐃 [𝐁𝐁𝐁𝐁𝐴𝐴𝐴𝐴  𝐁𝐁𝐁𝐁𝐵𝐵𝐵𝐵]𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑        ,        𝑭𝑭𝑭𝑭𝑒𝑒𝑒𝑒0 = � �𝐁𝐁𝐁𝐁𝐴𝐴𝐴𝐴

𝑇𝑇𝑇𝑇

𝐁𝐁𝐁𝐁𝐵𝐵𝐵𝐵𝑇𝑇𝑇𝑇
�

 

𝐿𝐿𝐿𝐿
𝖙𝖙𝖙𝖙0𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (13) 

3 ZERO-THICKNESS MORTAR INTERFACE 

3.1 Discretization/Formulation 
Zero-thickness mortar/interface elements are defined as the contact in between two 

continuum body surfaces denoted as “Surface A” and “Surface B”, which in the general 
situation (and as the main difference with standard interface elements) will exhibit “unmatched” 
meshes (nodes on both sides will not coincide one-to-one). The contact surface itself is 
considered a separate entity and is called “Surface C”. The discretization into mortar/interface 
elements is achieved by projecting all nodes from each side, surfaces A and B, onto the mid-
plane surface C, and then defining one mortar element for each one of the resulting segments 
(Fig. 2). 

 
Figure 2. Geometry of mortar interface element  

A standard displacement-based interpolation is defined independently for each the two sides 
of the mortar-interface element, with local coordinates 𝜉𝜉𝜉𝜉𝐴𝐴𝐴𝐴 and shape functions 𝑁𝑁𝑁𝑁𝐴𝐴𝐴𝐴

(𝑖𝑖𝑖𝑖)(𝜉𝜉𝜉𝜉𝐴𝐴𝐴𝐴) for 
surface A, and local coordinates 𝜉𝜉𝜉𝜉𝐵𝐵𝐵𝐵 and shape functions 𝑁𝑁𝑁𝑁𝐵𝐵𝐵𝐵

(𝑖𝑖𝑖𝑖)(𝜉𝜉𝜉𝜉𝐵𝐵𝐵𝐵). Additionally, a third local 
coordinate 𝜉𝜉𝜉𝜉𝐶𝐶𝐶𝐶 also varying in the range [-1,1] is defined along the mid-plane surface of the 
interface/mortar element segment, as well as the corresponding interpolation functions 𝑁𝑁𝑁𝑁𝐶𝐶𝐶𝐶

(𝑖𝑖𝑖𝑖)(𝜉𝜉𝜉𝜉𝐶𝐶𝐶𝐶). 
This choice of the mortar surface along the mid-plane surface has the advantage of a symmetric 
treatment of the two sides of the discontinuity [7,8]. 

Similarly to the classical interface elements, by assuming general linear constitutive 
behavior (10), the stiffness matrix and initial force vector of the mortar/interface element may 
be obtained by direct application of the PVW along the mortar surface. This leads to an 
expression analogous to (11), in which the stiffness and initial force vector of the 
mortar/interface element 𝐊𝐊𝐊𝐊𝑒𝑒𝑒𝑒

  and 𝑭𝑭𝑭𝑭𝑒𝑒𝑒𝑒0 take the form: 
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𝐊𝐊𝐊𝐊𝑒𝑒𝑒𝑒
 = � �𝐁𝐁𝐁𝐁𝐴𝐴𝐴𝐴

𝑇𝑇𝑇𝑇(𝜉𝜉𝜉𝜉𝐴𝐴𝐴𝐴)
𝐁𝐁𝐁𝐁𝐵𝐵𝐵𝐵𝑇𝑇𝑇𝑇(𝜉𝜉𝜉𝜉𝐵𝐵𝐵𝐵)�

 

𝐿𝐿𝐿𝐿𝐶𝐶𝐶𝐶
𝐃𝐃𝐃𝐃[𝐁𝐁𝐁𝐁𝐴𝐴𝐴𝐴(𝜉𝜉𝜉𝜉𝐴𝐴𝐴𝐴)  𝐁𝐁𝐁𝐁𝐵𝐵𝐵𝐵(𝜉𝜉𝜉𝜉𝐵𝐵𝐵𝐵)]  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝐶𝐶𝐶𝐶       ,         𝑭𝑭𝑭𝑭𝑒𝑒𝑒𝑒0 = � �𝐁𝐁𝐁𝐁𝐴𝐴𝐴𝐴

𝑇𝑇𝑇𝑇(𝜉𝜉𝜉𝜉𝐴𝐴𝐴𝐴)
𝐁𝐁𝐁𝐁𝐵𝐵𝐵𝐵𝑇𝑇𝑇𝑇(𝜉𝜉𝜉𝜉𝐵𝐵𝐵𝐵)�

 

𝐿𝐿𝐿𝐿𝐶𝐶𝐶𝐶
𝖙𝖙𝖙𝖙0𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝜉𝜉𝜉𝜉𝐶𝐶𝐶𝐶) 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝐶𝐶𝐶𝐶   (14) 

Although formally similar to (13), the matrices in expressions (14) exhibit a fundamental 
difference w.r.t. those: the shape functions involved in their components are now 𝑁𝑁𝑁𝑁𝐴𝐴𝐴𝐴

(𝑖𝑖𝑖𝑖)for 𝐁𝐁𝐁𝐁𝐴𝐴𝐴𝐴, 
which is parametrized in terms of 𝜉𝜉𝜉𝜉𝐴𝐴𝐴𝐴, and  𝑁𝑁𝑁𝑁𝐵𝐵𝐵𝐵

(𝑖𝑖𝑖𝑖)for 𝐁𝐁𝐁𝐁𝐵𝐵𝐵𝐵, which is parametrized in terms of 𝜉𝜉𝜉𝜉𝐵𝐵𝐵𝐵. In 
spite of that, the integrals in (14) are performed over the domain of the mortar surface C, along 
which  the position of integration points (where and constitutive stiffness, history variables, etc. 
are evaluated) is parametrized in terms of 𝜉𝜉𝜉𝜉𝐶𝐶𝐶𝐶. Therefore, a mapping needs to be established 
between 𝜉𝜉𝜉𝜉𝐶𝐶𝐶𝐶 and 𝜉𝜉𝜉𝜉𝐴𝐴𝐴𝐴, and also between 𝜉𝜉𝜉𝜉𝐶𝐶𝐶𝐶 and 𝜉𝜉𝜉𝜉𝐵𝐵𝐵𝐵. More details of this derivation may be found in 
[9]. 

3.2 Extension to non-linear constitutive behavior 
The extension of previous elastic formulation to non-linear constitutive behavior of the 

mortar/interface contact surface may be achieved by means of an iterative process in which, at 
each iteration, 𝐊𝐊𝐊𝐊𝑒𝑒𝑒𝑒

  and 𝑭𝑭𝑭𝑭𝑒𝑒𝑒𝑒0 are recalculated to represent the new tangential stiffness and residual 
force vector, respectively. In this study, an existing and extensively verified normal/shear 
cracking constitutive model is chosen to characterize the behavior of the interface. This model 
is defined in terms of the normal and shear stresses, with a hyperbolic surface characterized by 
three geometric parameters: friction angle, cohesion and tensile strength. The evolution of these 
geometric parameters is controlled by a single history variable: the work spent on fracture 
processes. The model covers the full range of cracking from uniaxial tension to shear-
compression, including those two limit situations, i.e.: (1) cracking under pure tension with zero 
shear stresses (Mode I) when the surface is reached along the horizontal axis; and (2) cracking 
under shear and very high compression when the surface is reached in its asymptotic region, 
where the hyperbola approaches a Coulomb criterion (Mode IIa), as depicted in Figure 3. More 
details of the constitutive model are given in [5,10] 
 

  
a) Evolution of cracking surface b) Elemental modes of fracture  

Figure 3. Hyperbolic cracking model  
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4 NUMERICAL EXAMPLES 

Two simple examples are presented in this section to illustrate that the proposed mortar 
interface formulation model is capable of reproducing uniform basic stress fields in spite of 
unmatched meshes on both sides. 

4.1 Example 1: uniaxial compression test 
 The geometry and boundary conditions of the first example are shown in Figure 4. It consists 

of two horizontal layers of the same material but unmatched meshes, connected with a line of 
mortar/interface elements. A uniform normal stress is applied on the top face of the mesh while 
the bottom face remains fixed vertically, and free to expand horizontally. The parameter values 
used for the continuum elements are: E =10,000 MPa and υ = 0. The only relevant interface 
parameters in this case are normal and tangential elastic stiffness KN = KT = 1e7 MPa/m. 

 

 
Figure 4. Example 1: geometry and boundary conditions 

The results are represented in Figures 5 and 6. Fig.5 depicts the stress distribution obtained 
along the discontinuity line, and Figure 6 depicts the principal stresses in the continuum 
elements. As shown, the normal stress turns out constant and with the correct value along all 
mortar/interface elements and perfectly constant and well aligned in the continuum in spite of 
the unmatched mesh geometry. 

 
Figure 5. Compression test: normal stress along discontinuity 

-1200

-1000

-800

-600

-400

-200

0
0 2 4 6 8 10 12

N
or

m
al

 s
tr

es
s (

M
Pa

)

x (mm)

416



M. de Francisco and I. Carol 
 

 7 

 

 
Figure 6. Compression test: principal stresses in the continuum elements.  

4.2 Direct shear under high compression 
The second example consists of a direct shear test, which is performed on the same geometry 

and as a continuation of the calculation presented in the previous example, by adding a second 
load step. This load consists of an increasing tangential displacement up to δt = 1.0e-3 m. applied 
on the nodes on the upper side of the mortar/interface line, while at the same time restricting 
the horizontal movement of the lower nodes of the same elements. The parameters used for the 
continuum and for elastic part of the interface are the same as in previous example, and the 
remaining parameters of the interface (now indeed relevant) are: initial friction angle tanφ0 = 
0.8785, initial tensile strength χ0 = 3.0 MPa, initial cohesion C0 = 4.0 MPa, fracture energy 
mode I, Gf

I = 0.2 MPaꞏm, energy mode IIa, Gf
IIa= 2 MPaꞏm and normal stress at which dilatancy 

vanishes, σdil = 0 MPa.  
 

 
Figure 7. Direct shear under high compression: Geometry and boundary conditions  

Figure 8 shows the evolution of the tangential stresses obtained at a point of the 
mortar/interface contact, as a function of the tangential displacement prescribed. The curve 
obtained directly reproduces the constitutive prediction. It has to be noted that the results show 
at all times uniform state of stress and deformation in both the continuum and the 
mortar/interface contact. Note that the results obtained are not at all trivial since, although 
tangential displacements may be applied to the mortar nodes directly, the normal stress is 
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applied on the top surface of the domain, which makes the results totally dependent on the 
overall correct structural response. 
 

 
Figure 8. Results of the shear test: shear stress vs. tangential relative displacement. 

5 CONCLUDING REMARKS 
A general zero-thickness mortar/interface formulation is described in this paper. These 

elements may be used to connect continuum elements in the general case of non-conforming 
discretization between the elements of two sides of interface. Simple numerical examples are 
proposed to test the performance of the approach, and the results obtained turn out correct, that 
is the mortar/interface element developed succeeds in transmitting properly the compression 
and shear stresses applied through the interface, even in the scenario of totally unmatched 
meshes. The results presented are a part of a wider scope research aimed at modeling the 
transition between fracture of quasi-brittle materials and contact friction between the resulting 
fragments. 
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