
Advanced Numerical MethodsElastic properties of isotropic discrete systems with skew contact normalsJ. Eliáš

XV International Conference on Computational Plasticity. Fundamentals and Applications
COMPLAS 2019
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Abstract. The macroscopic elastic properties of discrete assemblies are fundamental
characteristics of such systems. The contribution uses homogenization procedure based
on equivalence of virtual work between the isotropic elastic continuum and the discrete
system to develop analytical formulas for estimation of macroscopic elastic modulus and
Poisson’s ratio.

Such homogenization was recently used to derive formulas for discrete assemblies where
(i) there is no vacant space between the discrete units, (ii) the orientation of contacts is
uniformly distributed and (iii) the contact normals are parallel to contact vectors (direc-
tions connecting centers of discrete units). The third assumption is now removed, three
dimensional systems with arbitrary relation between contact vectors and contact normals
are studied here.

It is shown that the limits of Poisson’s ratio of such system depends on the relation
between contact normal and contact vector. The widest limits are however obtained when
these two vectors are parallel. This means that arbitrary manipulations with discrete
geometry cannot extend Poisson’s ratio of the system outside the known boundaries.

1 INTRODUCTION

Discrete modeling allows to explain or predict complex behavior of heterogeneous,
cohesive or granular materials. It represents material random heterogeneity and also
directly works with discrete and oriented nature of cracks. Its elastic behavior still posses
open challenges. Besides the minor issue of inevitable boundary layer [1], the major
problem lies in inability to exhibit Poisson’s ratios greater than 1/4 for three dimensional
models. The usage of the discrete models is therefore limited to materials with relatively
low Poisson’s ratio.

This paper is motivated by long belief of the author that Poisson’s ratio of discrete
systems can be increased by changing model geometry. Models described in literature
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usually use contact faces between discrete units perpendicular to contact vectors [2, 3].
This restriction is here abandoned allowing to construct model of completely arbitrary
geometry. Poisson’s ratio is then analyzed using strong assumptions about rotations
and translations in the model according to [4]. The paper unfortunately proves that
geometrical changes lead only to shrinking of the interval of achievable Poisson’s ratios.
The previously published results derived for 2D models [5] are extended here into 3D.

The studied system is composed of ideally rigid bodies filling a domain continuously
without gaps or overlapping. It is assumed that the system is isotropic in statistical sense
– there is no directional dependence. The rigid bodies interact at their borders, where
normal and tangential displacement discontinuities ∆ results in normal and tangential
forces. Critical parameter governing the macroscopic Poisson’s ratio is the ratio between
tangential and normal contact stiffness denoted α hereinafter.

Equations are derived from virtual work equality between the discrete system and
Boltzmann continuum subjected to equal straining. The discrete system yields non-
symmetric stress tensor on contrary to the Boltzmann continuum symmetric stress quan-
tity. The virtual work equivalence is therefore accomplished with help of symmetrization
of the tensor of elastic constants from the discrete model. To simplify the notation, we
introduce operation transposition Tij on arbitrary tensorA of sufficient order by swapping
indices i and j.

A
Tij

...i...j... = A...j...i... (1)

2 FUNDAMENTAL GEOMETRIC RELATIONS

Each if the rigid bodies have 6 degrees of freedom associated with translations and
rotations of some inner node, xa. The contact element between two nodes xa and xb has
contact area A, length l, unit normal vector n and contact vector t. The situation is
sketched in Fig. 1a in two dimensions.

The vector n is here defined in Cartesian coordinate system by two angles, ξ and ζ

n = (cos ξ sin ζ, sin ξ sin ζ, cos ζ) (2)

Figure 1: a) Contact between two rigid bodies, its normal and contact vector, area and volume; b)
angles determining directions of normal and contact vector.
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where ζ is angle between z axis and normal and ξ is the rotation of n around the z axis
- see Fig. 1. We assume that the system has no directional bias, therefore all normal
directions share the same probability of occurrence. Therefore, ξ must be uniform over
interval from 0 to 2π and ζ has the following probability density function

fξ(ξ) =





1

2π
for ξ ∈ (0, 2π)

0 otherwise
fζ(ζ) =




sin ζ

2
for ζ ∈ (0, π)

0 otherwise
(3)

The contact vector t is defined relatively to normal vector n by angles χ and θ -
see Fig. 1b. To ensure isotropic, directionally unbiased 3D structure θ is required to be
uniformly distributed over 0–2π interval, probability distribution of fχ can be arbitrary.

fθ(θ) =





1

2π
for θ ∈ (0, 2π)

0 otherwise
(4)

For sake of simplicity, it will be assumed now that the maximum angle between n and t
is γ ∈ (0, π) and all directions within this range are equally probable.

fχ(χ) =




sinχ

1− cos γ
for θ ∈ (0, γ)

0 otherwise
(5)

Rotation matrix is the second order tensor that provides the following relation between
n and t

t = R · n (6)

One can imagine construction of n via taking the vector
(
0 0 1

)
, rotate it along the

y axis by angle ζ and then along z axis by angle ξ (Fig. 1b). In the same way, the
construction of t is done by four successive rotations along axes y, z, y and z by angles
χ, θ, ζ and ξ, respectively.

n = Rz(ξ) ·Ry(ζ) ·
(
0 0 1

)
t = Rz(ξ) ·Ry(ζ) ·Rz(θ) ·Ry(χ) ·

(
0 0 1

)
(7)

The rotation matrix from Eq. (6) is therefore

R(ξ, ζ, χ, θ) = Rz(ξ) ·Ry(ζ) ·Rz(θ) ·Ry(χ) ·RT
y (ζ) ·RT

z (ξ) (8)

The cosine of angle χ between n and t reads

cosχ = n · t = n ·R · n = R : (n⊗ n) = R : N (9)

where the second order tensor N is according to Kuhl et al. [4] defined as N = n ⊗ n.
Since no gaps or overlaps exist between the rigid bodies, the volume of the domain is
summation over volume of individual mechanical elements

V =
∑
e

Ve =
∑
e

cosχe
Aele
3

=
∑
e

Re : Ne
Aele
3

(10)

Note that the volume of individual element is negative whenever χ > π/2.
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3 TENSOR OF EQUIVALENT ELASTIC CONSTANTS

Let us strain the discrete system in macroscopic sense by constant strain tensor ε. Ac-
cording to [4], it is assumed that all the rotations are zeros and differences in translations
are dictated by differences in position

ϕ = 0 ub − ua = ε · (xb − xa) (11)

The displacement jump on contact between cells a and b reads

∆ = ub − ua = lε · t (12)

where l and t are length and contact vector belonging to element connecting bodies a and
b. The normal and shear strain and stress directly follow

eN =
n ·∆

l
= n · ε · t eT =

∆

l
− eNn = ε · t− (n · ε · t)n (13)

sN = E0eN sT = E0αeT (14)

where E0 is the normal stiffness coefficient and α is the tangential/normal stiffness ratio
considered constant in the whole domain.

The virtual work done by single element reads

δW = Al (sNδeN + sT · δeT ) (15)

and summation of individual contributions provides the total virtual work in the discrete
system.

Let us now define two additional tensors: the fourth order tensor III vol and the third
order tensor T .

III vol =
1⊗ 1

3
(16)

T = 3n ·
(
III vol

)T13 − n⊗ n⊗ n (17)

where 1 is the identity matrix of size 3. Note that T is different from definition in [4, 1]
because the symmetry implied by equality t = n is no longer present. The transposition
T13 means that dimensions 1 and 3 are swapped. Eq. (13) can be rewritten as

eN =
(
N ·RT

)
: ε eT =

(
T ·RT

)
: ε (18)

using transposition T of the second order tensor swapping its two dimensions T = T12.
The virtual work of single element expressed in Eq. (15) can be rewritten as well

δW = Al (sNδeN + sT · δeT )

= AlE0

([(
N ·RT

)
: ε

] [(
N ·RT

)
: δε

]
+ α

[(
T ·RT

)
: ε

]
·
[(
T ·RT

)
: δε

])

= AlE0

[
ε :

(
R ·N ⊗N ·RT

)T12
: δε+ αε :

(
R · T T13 · T ·RT

)
: δε

]

= AlE0ε :
((

R ·N ⊗N ·RT
)T12

+ αR · T T13 · T ·RT
)
: δε (19)

= AlE0ε : (NNN + αTTT ) : δε
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where

NNN =
(
R ·N ⊗N ·RT

)T12 TTT = R · T T13 · T ·RT (20)

The total virtual work of reads

δW dis =
∑
e

δWe =
∑
e

AeleE0ε : (NNN e + αTTT e) : δε (21)

The discrete system is now related to equally strained elastic isotropic Boltzmann
Boltzmann continuum occupying the same domain of volume V . Stress in the continuum
is provided by constitutive equation σ = D : ε, where D is fourth order tensor of elastic
constants. The virtual work of the continuum is

δW con = V σ : δε = V ε : D : δε (22)

The equivalence of the discrete and continuous system implies equality of virtual works

δW dis = δW con (23)

Substituting Eqs. (21) and (22) into Eq. (23), expression for tensor of elastic constants is
derived

D =

〈
1

V

∑
e

AeleE0 (NNN e + αTTT e)

〉SYM

(24)

The symmetrization is needed because the tensors NNN and TTT do not posses the symme-
tries required for Boltzmann continuum, which are the major symmetry (derived from
equivalence of mixed derivatives of elastic potential) and the minor symmetry (derived
from symmetry of stress and strain tensors). The symmetric part can be easily obtained
using transposition T34.

〈•〉SYM =
•+ •T34

2
(25)

Thanks to assumed statistical independence between normal and contact vector and
elemental area and length, the summation in Eq. (24) can be broken into the following
expression

D =
E0

V
〈E [NNN ] + αE [TTT ]〉SYM

∑
e

Aele (26)

where E [•(x)] is the mean value of function • dependent on vector x with distribution
function fX(x)

E [•(x)] =
∞∫

−∞

· · ·
∞∫

−∞

•(x)fX(x) dx (27)

Substituting V from Eq. (10) and utilizing the statistical independence again, one
obtains

D =
3E0

E[R : N ]
〈E [NNN ] + αE [TTT ]〉SYM (28)
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4 EVALUATION OF EXPECTATIONS

The integration of mean values from Eq. (28) is tedious. It was analytically done
in [5] in two dimensions over two independent variable. For three dimensions it has to
be performed over four independent angles and the integration cannot be separated since
rotation matrixR depends on all four angles. The calculation was performed by computer
with a help of Python library for symbolic mathematics SymPy [6]. The following three
integrations were delivered.

E [R : N ] =

γ∫

−γ

2π∫

0

π∫

0

2π∫

0

R : N
1

2π

sin ζ

2

1

2π

sinχ

1− cos γ
dξ dζ dθ dχ = cos2

(g
2

)
(29)

E [NNN ] =

γ∫

−γ

2π∫

0

π∫

0

2π∫

0

NNN
1

2π

sin ζ

2

1

2π

sinχ

1− cos γ
dξ dζ dθ dχ =

=
1

3

(
III vol

)T23
+

2 cos γ + cos 2γ + 1

20

(
III vol +

(
III vol

)T24 − 2

3

(
III vol

)T23

)
(30)

E [TTT ] =

γ∫

−γ

2π∫

0

π∫

0

2π∫

0

TTT
1

2π

sin ζ

2

1

2π

sinχ

1− cos γ
dξ dζ dθ dχ =

=
2

3

(
III vol

)T24 − 2 cos γ + cos 2γ + 1

20

(
III vol +

(
III vol

)T23 − 2

3

(
III vol

)T24

)
(31)

Only the symmetric parts of these expectations are needed (Eq. 25). The symmetric
parts of involved tensors are

〈(
III vol

)T23
〉SYM

=
〈(

III vol
)T24

〉SYM

=
III

3
(32)

where the fourth order tensor III = Iijkl = (δikδjl + δilδjk)/2 with δij ≡ 1 being the
Kronecker delta is employed. The symmetric part of expectations reads

〈E [NNN ]〉SYM =
2 cos γ + cos 2γ + 21

180
III +

2 cos γ + cos 2γ + 1

20
III vol (33)

〈E [TTT ]〉SYM =
39− 2 cos γ − cos 2γ

180
III − 2 cos γ + cos 2γ + 1

20
III vol (34)

5 MACROSCOPIC ELASTIC CHARACTERISTICS

The mechanical behavior of linearly elastic isotropic solid is determined by two in-
dependent constants (here we choose elastic modulus E and Poisson’s ratio ν) defining
tensor of elastic constants

D =
E

1 + ν
III +

3Eν

(1 + ν)(1− 2ν)
III vol (35)
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Figure 2: Macroscopic elastic characteristics according to Eqs. (38) and (37).

Equation (28) along with symmetrized expectations (29), (33) and (34) provides

D = E0

[
(1− α)(2 cos γ + cos(2γ)− 39) + 60

30(cos γ + 1)
III +

3(1− α)

5
cos γIII vol

]
(36)

Equality between respective scalar multipliers of tensors III vol and III in Eqs. (36)
and (35) provides relations between macroscopic parameters E and ν and mesoscopic
parameters E0, α and γ.

ν =
3(1− α)(cos γ + cos2(γ))

(1− α)(7 cos γ + 7 cos2 γ − 20) + 30
(37)

E = E0
2 [(1− α)(cos γ + cos2 γ − 20) + 30] [(1− α)(cos γ + cos2 γ − 2) + 3]

(1− α)(7 cos γ + 7 cos2 γ − 20) + 30
(38)

These equations are plotted in Fig. 2 for range α ∈ (0, 3).
Calculation limit for γ → 0 must yield relations for discrete system with n = t.

lim
γ→0

ν =
1− α

4 + α
lim
γ→0

E = E0
2 + 3α

4 + α
(39)

Indeed, the calculation of limits provides correct expressions derived in e.g. [1] under
assumption of perpendicularity of contact vector and contact face. They are also identical
to those from microplane theory [7].

By differentiate the expression with respect to γ and search for stationary point, the
maximum and minimum possible values of Poisson’s ratio can be found. The stationary
points are γ = 0, π and arccos(−0.5) (≈ 2.09440). Plotting the Poisson’s ratio with
respect to the limit angle γ (Fig. 2 on the right hand side) shows that the maximum
range of ν is obtained for γ = 0, i.e. when the contact vector equals the normal vector.
This is the classic solution stated in Eq. (39). Increasing γ towards π/2 shrinks the
interval of achievable Poisson’s ratios to zero. The interval opens again beyond π/2 with
opposite signs; its width maximizes at γ = arccos(−0.5). The limiting values at this
point are obtained at α = 0 and α → ∞ as (−0.091, 0.034). The maximum values of
Poisson’s ratio are achieved for n = t, any deviation of the model geometry from this
relation causes narrowing of the Poisson’s ratio limits.
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6 CONCLUSIONS

• It has been proven that under assumption (5) one cannot increase the Poisson’s
ratio limits beyond what is provided by model with n = t in Eq. (39).

• The formulas are derived from strong and unrealistic assumption about rotations
and displacements in the model (Eq. 11). Behavior of the real model will be less
rigid, however the overall effect on macroscopic elastic constants should be qualita-
tively the same.

• The same conclusions were found for 2D models under the same assumptions in [5].

• The theory will be extended to arbitrary distribution of χ and verified by comparison
with real behavior of discrete systems.
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