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Abstract. In this work, a thermo-mechanically coupled constitutive model for semi-
crystalline polymers is derived in a thermodynamically consistent manner. In general, the
macroscopic material behaviour of this class of materials is dictated by the underlying
microstructure, i.e. by the distribution and structure of crystalline regimes, which form up
after cooling from the amorphous melt. In order to account for the latter, the total degree
of crystallinity is incorporated as an internal variable and its evolution is prescribed by
means of a non-isothermal crystallisation kinetics model. The numerically efficient and
robust framework is characterised based on experimental data for Polyamide 6 and shows a
promising potential to predict the hyperelastic, visco-plastic material behaviour at various
temperatures.

1 INTRODUCTION

Thermoplastic polymers are an important class of materials for many technically rele-
vant applications. In contrast to thermosets, which form irreversible chemical bonds, they
can be repeatedly reshaped after heating above the melting point. As a consequence, they
are well-suited for forming processes. A specific class of thermoplastics are semi-crystalline
polymers (e.g. Polyamide 6, which is the considered polymer in this work), which partly
crystallise after cooling from the melt. The degree and structure of the crystalline regimes
depends on the thermal conditions and applied stress. The relative degree of crystallinity
χc can be determined by the heat flow rate (dh)/(dt), which is measured by differential
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scanning calorimetry (DSC) (cf. chapter 3) and lays between zero (100% amorphous,
t < tOn) and one (at the end of the crystallisation process, t > tEnd).

χc =

∫ t

tOn

dh
dt
dt∫ tEnd

tOn

dh
dt
dt

:=
∆ht

∆hm

, χ =

∫ t

tOn

dh
dt
dt

∆h100
f

= χc

∆hm

∆h100
f

(1)

Here, the change in enthalpy during the whole crystallisation process ∆hm(θ̇) is intro-
duced, which is depending on the cooling rate. To obtain the absolute degree of crys-
tallinity χ, the material constant ∆h100

f corresponding to the specific fusion enthalpy of a
100% crystalline material, must be determined. For Polyamide 6 the latter can be com-
puted from the average of the values corresponding to the α-form (241 J/g) and γ-form
(239 J/g) as suggested by Fornes et al. [1].
Naturally, the morphology of the underlying microstructure (i.e. the degree of crys-
tallinity) has a significant influence on the mechanical behaviour of semi-crystalline poly-
mers (cf. chapter 3). Furthermore, the mechanical response of Polyamide 6 is charac-
terised by non-linear, visco-plastic behaviour, depending on the thermal conditions and
accompanied by large elastic and plastic strains (cf. section 3). In order to avoid cost- and
time-consuming trial and error approaches, a strong demand for computational models
arises, which accurately predict the complex material and structural response of parts
during and after thermoforming processes.
To this end, a continuum-mechanical, phenomenological material model is presented in
this work. The thermo-mechanically coupled, visco-plastic constitutive framework is de-
rived in a thermodynamically consistent manner (cf. chapter 2) and valid for large defor-
mation. In order to account for the underlying microstructure, the total degree of crys-
tallinity χ is treated as an additional internal variable. Crystallisation from a relaxed,
static melt is assumed and the evolution of χ is modelled by means of a non-isothermal
representation of the Avrami equation (see section 2.1). In section 3, the model is char-
acterised by isothermal and non-isothermal DSC analysis and uniaxial tensile tests for
different loading rates and degrees of crystallinity at varying temperatures .

2 MATERIAL MODEL FORMULATION

In line with e.g. the work [2] the resistance of deformation is decomposed into an in-
termolecular and a network contribution. For the intermolecular resistance, a finite strain
elasto-plastic model with non-linear isotropic hardening and non-linear kinematic harden-
ing of Frederick Armstrong type is considered. To account for the molecular orientation
and relaxation, the molecular network resistance is represented by a finite strain visco-
elastic model. Quantities corresponding to the elasto-plastic model and to the viscous
model will be denoted with index 1 and 2, respectively.
The total deformation gradient F is multiplicatively decomposed separately for both
models. For the elasto-plastic constitutive framework the classical split of the deforma-
tion gradient, F = Fe1Fp, into its elastic part Fe1 and plastic part Fp is proposed To
account for non-linear kinematic hardening, a physically motivated additional split of
the plastic part Fp = FpeFpi is performed. Noteworthy, these decompositions result in
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the intermediate plastic configuration ic1a and the so-called intermediate configuration of
kinematic hardening ic1b. The kinematic relations corresponding to the viscous model are
based on a multiplicative decomposition of the deformation gradient, F = Fe2Fi, into its
elastic Fe2 and inelastic part Fi. Thus, an additional, inelastic intermediate configuration
ic2 is introduced.
The Helmholtz free energy depends on the deformation only through the elastic right
Cauchy-Green deformation tensors Ce1, Ce2, and Cpe, in agreement with the principal of
material frame invariance.

Ce1 = F
T
e1Fe1 = F

−T
p CF

−1
p , Ce2 = F

T
e2Fe2 = F

−T
i CF

−1
i , Cpe = F

T
peFpe = F

−T
pi CpF

−1
pi

(2)
Here the right Cauchy-Green tensor C = F

T
F and the plastic right Cauchy-Green ten-

sor Cp = F
T
p Fp are introduced. The total, specific Helmholtz free energy is additively

decomposed into a contribution stemming from the intermolecular resistance ψ1, a contri-
bution from the molecular network resistance ψ2 and an energy term ψχ associated with
the crystallisation process.

ψ = ψe1(Ce1, χ, θ) + ψkin(Cpe, θ) + ψiso(κ, χ, θ)︸ ︷︷ ︸
ψ1

+ψ2(Ce2, χ, θ) + ψχ(χ, θ)
(3)

To account for the dependence of the material response on the temperature θ and the
morphology of the underlying microstructure, the energy terms are functions of the tem-
perature θ and the total degree of crystallinity χ. In this work, no differentiation between
crystal configurations nor morphology (lamella thickness) is made. Furthermore, non-
isothermal crystallisation processes from a static, relaxed melt are assumed. Consequently,
χ(θ, θ̇) is introduced as an additional internal variable and assumed to be a function of
the temperature and cooling rate θ̇. Hence, the free energy is an implicit function of the
cooling rate. In equation (3), ψe1 and ψe2 denote the elastic energy contributions of the
intermolecular and molecular network resistances, respectively. To phenomenologically
account for Bauschinger-like phenomena, ψkin, a defect-energy associated with plastic de-
formations, is introduced. The stored energy due to isotropic hardening is defined as ψiso

and is a function of the accumulated plastic strain κ.

2.1 Derivation based on the Clausius-Duhem inequality

Starting point of the thermodynamic consistent derivation of the constitutive frame-
work is the Clausius-Duhem form of the entropy inequality with respect to the reference
configuration (rc).

S :
1

2
Ċ − ρ0(ψ̇ + ηS θ̇)−

1

θ
q0 ·Grad(θ) ≥ 0 (4)

Here, S denotes the second Piola-Kirchhoff stress, ηS is the specific entropy, ρ0 is the
density in the rc and q0 the heat flux with respect to the rc. Assuming that ψe1, ψe2 and
ψkin are isotropic functions of Ce1, Ce2, and Cpe, respectively, and inserting the total time
derivative of the Helmholtz free energy (3) into the latter expression yields, after several
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mathematical transformations, the following form of the Clausius-Duhem inequality.

(S − S1 − S2) :
1

2
Ċ − ρ0

(
∂ψ

∂θ
+ ηS

)
θ̇ −

1

θ
q0 ·Grad(θ)

− ρ0
∂ψ

∂χ
χ̇+M2 : Di +

(
M1 − X̄

)
: Dp +Mkin : Dpi +Rκ̇ ≥ 0

(5)

The inequality (5) is an expression of the evolution of the internal variables (i.e. χ̇, Di,
Dp, Dpi, and κ̇) and the thermodynamic conjugated forces. Here, D(∗) = sym(L(∗))

denotes the symmetric part of the corresponding velocity gradient L(∗) = Ḟ(∗)F
−1
(∗) , with

(∗) = i, p, pi. The second Piola-Kirchhoff stress tensors corresponding to the intermolec-
ular and molecular network resistance are

S1 = 2ρ0F
−1
p

∂ψe1

∂Ce1

F
−T
p , S2 = 2ρ0F

−1
i

∂ψ2

∂Ce2

F
−T
i (6)

respectively. The Mandel stress tensors

M1 = 2ρ0Ce1

∂ψe1

∂Ce1

, M2 = 2ρ0Ce2

∂ψ2

∂Ce2

(7)

are defined with respect to the intermediate states ic1 and ic2, respectively. In addition,
the back stress X̄ in ic1a, the Mandel stress corresponding to kinematic hardening Mkin

in ic1b, and the stress-like driving force of isotropic hardening R read

X̄ = 2ρ0Fpe

∂ψkin

∂Cpe

F
T
pe, Mkin = 2ρ0Cpe

∂ψkin

∂Cpe

, R = −ρ0
∂ψiso

∂κ
(8)

In order to fulfil the first line of the inequality (5) for arbitrary processes, the following
relations for the total second Piola-Kirchhoff stress and entropy must hold

S = S1 + S2, ηS = −
∂ψ

∂θ
(9)

Fourier’s law , q0 = −JλTC
−1Grad(θ), is applied in addition for the heat flux, referring

to the rc, where λT denotes the heat conductivity and J = detF holds.
To guarantee the non-negativeness of internal dissipation (the second line in inequality
(5)), a set of evolution equations for the internal variables is presented, which fulfils the
inequality. Based on the proposed formulation of Reese and Govindjee [3], the evolution
of the inelastic deformation is given by

Di =
1

2τµ2

(
M2 −

1

3
tr(M2)I

)
+

1

9τK2

tr(M2)I. (10)

In the latter expression, the bulk modulus and shear modulus corresponding to the molec-
ular network resistance are denoted by K2(θ) and µ2(θ), respectively. The relaxation time
τ(S2,C, θ, χ) must be greater than zero and is in general a non-linear function of S2, C,
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θ, and χ.
In this work no pressure dependence, nor tension-compression asymmetry of the yield
behaviour is assumed. Hence, a yield function of von Mises type is proposed

Φ = ||dev(M1)− dev(X̄)|| −

√
2

3
(σy −R) (11)

Here, the initial yield stress σy(θ, χ) is introduced and dev(∗) denotes the deviatoric part
of a quantity. The associative plastic flow rule and the evolution equations for kinematic
and isotropic hardening are

Dp = λ̇
∂Φ

∂M1

= λ̇
dev(M1)− dev(X̄)

||dev(M1)− dev(X̄)||
, Dpi = λ̇

b

c
dev(Mkin), κ̇ = λ̇

∂Φ

∂R
=

√
2

3
λ̇

(12)
respectively, where λ̇ is the plastic multiplier. The equation for Dpi represents nonlin-
ear kinematic hardening of Armstrong-Frederick type in which b(θ) and c(θ) are material
parameters. Finally, the elasto-plastic model is supplemented by the Kuhn-Tucker condi-
tions Φ ≤ 0, λ̇ ≥ 0, and Φλ̇ = 0.
To predict the relative degree of crystallinity χc, the non-isothermal representation of the
Avrami equation by means of the modified Nakamura-Ziabicki framework [4] was found
to be a well-suited model (cf. chapter 3). Inserting the proposed form into the relation
for the total degree of crystallinity χ (cf. equation 1) and differentiating the latter with
respect to time yields the evolution equation for χ.

χ̇ ≈ χ̇c

∆hm

∆h100
f

= n Kc(1− χc)

(∫ t

ton

Kcdt

)n−1
∆hm

∆h100
f

≥ 0 (13)

The Avrami exponent n represents the nucleation mechanism and growth dimension and
is assumed to be temperature independent. The temperature and cooling rate dependent
parameter Kc is given by an empirical function proposed by [5]

Kc = Kmax exp

(
−
4 ln(2)(θ − θmax)

2

D2

)
(14)

where the Nakamura-Ziabicki crystallisation parameters Kmax(θ̇), θmax(θ̇) and D(θ̇) are
depending on the cooling rate. The starting time of the crystallisation process ton is de-
termined by the cooling rate depending onset temperature θon(θ̇).
It can be shown, that the set of evolution equations (10) and (12) fulfils the non-negativeness
requirement of the Clausius-Duhem inequality (5) (cf. [3] and [6]). The thermodynamic
consistency of the chosen evolution law for χ̇, will be discussed briefly. Concomitant with
the assumption of a crystallisation process from a relaxed, static melt, the energy terms
depending on the deformation (i.e. ψe1, ψkin, ψiso, and ψ2) are zero if χ̇ > 0. In addition,
for the energy associated with transformation ∂ψχ/∂χ < 0 holds if θ < θOn (cf. equation
(20)) and thus the remaining inequality −ρ0(∂ψχ/∂χ)χ̇ ≥ 0 is always fulfilled.
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2.2 Specific choices for energy terms

To conclude the constitutive framework, a set of volumetric energy terms Ψ is specified
in this section. For the elastic energy contribution of the molecular network resistance a
compressible version of the widely used Arruda-Boyce model [7] is chosen

Ψ2(Ce2, θ) =K2

(
J2
e2 − 1

4
− ln(Je2)

(
1

2
+ 3αT2(θ − θ0)

))
+ µ∗

5∑
i=1

Ci

λ2i−2
m

(
tr(C̄e2)

i
− 3i

)

(15)
The latter expression is a function of the isochoric part C̄e2 = F̄

T
e2F̄e2 of the elastic right

Cauchy-Green tensor, where F̄e2 = J
− 1

3
e2 Fe2 and Je2 = detFe2 =

√
detCe2 holds. The

constant parameter λm relates to the locking stretch of a fully extended chain, αT2(θ, χ)
is the coefficient of thermal expansion corresponding to the network resistance and θ0 is
a reference temperature. The parameter µ∗ and the tuple Ci are defined as

µ∗ = µ2

1

1 + 3
5λ2

m

+ 99
175λ4

m

+ 513
875λ6

m

+ 42039
67375λ8

m

, Ci =
(
1
2

1
20

11
1050

19
7000

519
67375

)
(16)

For the intermolecular resistance a Neo-Hookean material with combined linear and non-
linear isotropic hardening of Voce type and non-linear kinematic hardening of Armstrong-
Frederick type is considered. The corresponding energy terms are

Ψe1 =
µ1

2
(tr(Ce1)− 3)− µ1 ln(Je1) +

Λ1

4
(det(Ce1)− 1− 2 ln(Je1))

− 3K1αT1(θ − θ0) ln(Je1)
(17)

Ψkin =
c

2
(tr(Cpe)− 3)− c ln(Jpe) (18)

Ψiso =(σ∞ − σy)

(
κ+

exp(−βκ)

β

)
+

1

2
Hκ2 (19)

where Je1 = detFe1 is defined. The material parameters µ1(θ, χ), Λ1(θ, χ), K1(θ, χ),
αT1(θ, χ), σ∞(θ, χ), β(θ, χ), and H(θ, χ) corresponding to the elasto-plastic model, are
the Lamé constants, bulk modulus, coefficient of thermal expansion, and isotropic hard-
ening parameters, respectively. It is of note, that the specific functions for the introduced
material parameters are provided in chapter 3. The specific energy associated with crys-
tallisation, which contributes in an important manner to the heat release of fusion (cf.
equation (21)), is given by

ψχ = ∆h100
f

θ − θOn

θOn

χ (20)

2.3 Heat generation due to dissipation and crystallisation

The heat generation rt due to plastic r1 and viscous dissipation r2 and due to exothermic
crystallisation rχ is briefly discussed in this paragraph. The terms can be derived in a

6
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consistent manner from the local form of the energy balance and the Helmholtz free energy

rt =

(
M1 − θ

∂M1

∂θ
− X̄ + θ

∂X̄

∂θ

)
: Dp +

(
Mkin − θ

∂Mkin

∂θ

)
: Dpi +

(
R− θ

∂R

∂θ

)
κ̇

︸ ︷︷ ︸
r1

+

(
M2 − θ

∂M2

∂θ

)
: Di

︸ ︷︷ ︸
r2

+ ρ0 ∆h100
f χ̇︸ ︷︷ ︸

rχ

(21)
Noteworthy, the dissipation due to thermo-elastic coupling (∂S/∂θ) : (1/2Ċ) is assumed
to be negligibly small and is thus omitted in the latter expression.

2.4 Aspects of numerical implementation

For convenience the derivation of the constitutive equations was carried out in the
intermediate configurations. However, for the numerical implementation as an user ma-
terial subroutine UMAT into the commercial FEM software ABAQUS/Standard, the
model equations need to be represented in the current configuration. To this end, several
tensorial pull-back and push-forward operations are applied. The algorithmic implemen-
tation is based on the works of Dettmer and Reese [8] and Vladimirov et al. [6]. For
the numerical integration of the evolution equations (10) and (12) the exponential map
algorithm, which preserves plastic volume and the symmetry of the internal variables, is
applied and a local system of 16 non-linear scalar equations is solved in an efficient man-
ner. The evolution equation of the total degree of crystallinity is discretized by means of
the implicit Euler method and the trapezoidal scheme is used to numerically approximate
the integral in equation (13).

3 PARAMETER CALIBRATION

In this section, the characterisation procedure to obtain the material parameter set is
discussed briefly. During the computational solution procedure, cubic spline interpolation
is applied to interpolate between the parameters presented in the following.
In order to investigate the crystallisation kinetics of Polyamide 6 (Ultramid B40, kindly
provided by BASF), isothermal (crystallisation at 192◦C, 194◦C, 196◦C and 198◦C) and
non-isothermal DSC analysis (constant cooling rates of 5◦C/min, 10◦C/min, 20◦C/min,
40◦C/min, 60◦C/min, and 100◦C/min) are conducted with the DSC 1 from Mettler

Toledo. Based on the DSC data, the relative degree of crystallinty χc over time is com-
puted (cf. equation 1). The constant Avrami exponent n =2.38 is obtained from linear
regression of the classical double logarithmic form of the isothermal and non-isothermal
DSC data. The remaining, cooling rate dependent parameters of the non-isothermal
model (cf. equations (13) and (14)) are obtained from non-linear optimization of the
non-isothermal DSC data and are depicted in table 1. The non-isothermal experimental
data and the corresponding fit of the proposed model is shown in figure 1.
The mechanical parameters are obtained from uniaxial tensile test. Different loading

7
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Table 1: Parameters for modified Nakamura-Ziabicki model determined by non-linear optimization

θ̇ [K/min] Kmax [1/min] θmax [K] D [K] ∆hm [J/g]

5 9.51 348.22 102.27 56.89
10 13.73 348.46 100.48 54.57
20 9.28 351.10 109.52 54.16
40 7.77 355.17 116.97 50.48
60 5.54 362.99 128.31 48.24
100 4.80 359.49 125.64 43.92

χ
c
[-
]

Time [s]

Simulation
Experiment

5 K/min
10 K/min
20 K/min
40 K/min
60 K/min
100 K/min

Figure 1: Non-isothermal DSC data and corresponding model response

procedures (monotonic loading, cyclic loading, and relaxation tests) at different loading
rates (vmin = 1 mm/min and vmax = 10 mm/min) are performed at varying temperatures
below and above the glass transition temperature (θg ≈ 80◦C) at 20◦C, 50◦C, 120◦C,
and 160◦C. Dried specimens (type 5A in accordance with ISO 527-2:2012), which have
been produced by injection moulding, are tested for two different degrees of crystallinity
(χmin= 23 % and χmax= 28 %). Digital image correlation (DIC) is applied to obtain the
true stress (Cauchy stress σ1) over stretch λ1 relation in longitudinal 1-direction (cf. figure
2). Based on these results a staggered characterisation scheme is developed, in order to
obtain a unique set of mechanical parameters for each considered temperature (cf. table
2). It should be noted that due to the lack of compression data no information about the
Bauschinger effect is available. Consequently, only isotropic hardening is considered and
the parameters corresponding to kinematic hardening i.e. c and b are set to very small
values. Infrared thermography (IR) revealed a significant temperature increase, related
to adiabatic self-heating, accompanied by thermal softening, for higher loading rates at
moderate stretch levels of 5 %. Due to this fact, the (isothermal) material parameters
are only fitted up to this point for vmax.
The experimental data for monotonic tensile test at different loading rates and for vary-
ing temperatures and degrees of crystallinity is depicted in figure 2, together with the

8
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Table 2: Set of mechanical parameters at different temperatures

Function Parameter at: 20 ◦C 50 ◦C 120 ◦C 160 ◦C

E1 = χE1,0(θ) E1,0 [MPa] 5510 3923 1040 851

E2 = E2(θ) E2 [MPa] 1210 703 130 75

ν1 = ν2 ν1 [-] 0.35 0.35 0.35 0.35

σy = χσy,0(θ) σy,0 [MPa] 120 45 24 22

β = χβ0(θ) β0 [-] 2712 2021 200 195

H = χH0(θ) H0 [MPa] 239 669 181 171

σ∞ = χα(θ)σ∞,0(θ) σ∞,0 [MPa] 57.5 66.0 715.0 716.0
α [-] 0.154 0.682 2.651 2.425

τ = τ0(θ)�B�ϕ(θ)exp(�σ2�)
−δ(θ) τ0 [s] 463 220 96 72

ϕ [-] 6.624 5.014 2.525 2.425
δ [-] 0.196 0.277 0.421 0.621

1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18

B

0

10

20

30

40

50

60

70

80

90

1 1.02 1.04

B

0

10

20

30

40

50

60
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90

0

10

20

30

40

50

60

70

80

90

σ
1
[M

P
a]

λ1 [-]

20◦C

50◦C

160◦C

vmax vmin

Experiment

Simulation

χmin

χmax

Figure 2: Monotonic, uniaxial extension - Experimental data and corresponding model response

corresponding fit of the proposed model.
The thermal material properties are obtained from the literature. Based on experimen-
tal investigations a constant heat conductivity is considered λT = 0.27 W/Km [9]. In
line with the data provided in [1], the following function for the density is assumed
ρ0 = χ 0.001195 + (1− χ)0.00109 g/mm3. For simplicity, the coefficient of thermal ex-
pansion is assumed to be constant α1 = α2=0.876·10-4 (cf. [10]). In line with the work
[11], the following relation for the heat capacity is assumed cp = 4.502θ + 138.7 mJ/gK.
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4 COMPUTATIONAL EXAMPLE

In order to investigate the crystallisation process and structural response, a thermo-
mechanically coupled boundary value problem is considered. In two separate compu-
tations, the surface of a plate is subjected to different cooling rates (80 K/min and
15 K/min) until a temperature of 120 ◦C is reached at th (cf. figure 3). Next, the
temperature is held constant for 50 s to obtain a homogeneous temperature field. Subse-

Temperature θ

Displacement ux

[mm]

3.0

3.0

0.5

ux
θ [◦C]

C
o
ol H

ol
d

D
is
p
l.

H
ol
d

u
x
[m

m
]

Time [s]x

y

z

200

120

t0 th th+60 th+120 th+170
0

0.3

Figure 3: Geometry, boundary conditions and applied loading procedure
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0.15

0.2

0.25

192

185

162

124

θ [◦C]

θ [◦C]

χ
[-
]

χ
[-
]

θ̇ = 15 K/min
t = 57 s

θ̇ = 80 K/min
t = 57 s

th + 60 th + 120 th + 170
0

10

20

30

R
ea
ct
io
n
fo
rc
e
[N

]

Time [s]

Time [s]

Time [s]

κ [-]

0.0190.017

χ [%]

20.119.9

θ̇ = 15 K/min
θ̇ = 80 K/min

Figure 4: Reaction force, temperature θ, (evolution of) total degree of crystallinity χ and accumulated
plastic strain κ

quently, a displacement is linearly increased over time until a final value of ux = 0.3 mm is
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prescribed. In this step, the temperature boundary conditions are removed to investigate
adiabatic heating. In the last step, the displacement is held constant for 50 s to allow
for relaxation. The reaction force - time relation, the total degree of crystallinity χ, the
temperature θ, and the accumulated plastic strain κ for selected time steps are displayed
in figure 4, for the two different loading procedures.
During the cooling phase, temperature gradients and non-constant cooling rates arise,
which result in locally varying crystallisation conditions and thus in a (slightly) varying
crystallinity of the structure. Consequently, the stress distribution is heterogeneous as
well. Naturally, the different thermal treatments lead to a difference in the absolute de-
gree of crystallinity for the two considered examples. The dependence of the macroscopic
material behaviour on the underlying microstructure is clearly visible from the reaction
force - time relation (i.e. increasing stiffness, hardening and yield stress with increas-
ing degree of crystallinity). Furthermore, moderate adiabatic heating due to plastic and
viscous dissipation is observed.

5 CONCLUSION

In the present work, a thermo-mechanically coupled and thermodynamically consistent
constitutive framework at finite strains was proposed, to predict the material response
of semi-crystalline polymers in the context of thermoforming processes. To account for
the morphology of the underlying microstructure, the total degree of crystallinity was
introduced as an additional internal variable, which contributes in an important manner
to the elastic, viscous and plastic response of the material. The crystallisation kinet-
ics during cooling from the melt are modelled by a non-isothermal modification of the
Avrami model, where a static, relaxed melt is presumed. The set of material parameters
is characterized for Polyamide 6 (Ultramid B40 ) and obtained from isothermal and non-
isothermal DSC analysis and numerous, uniaxial tensile experiments. The experimental
data and simulated behaviour is in good agreement.
The model response is demonstrated in a thermo-mechanically-coupled boundary value
problem. The phenomenological approach allows to account for the complex crystalli-
sation phenomena on the micro-scale, with sufficient accuracy. In addition, the model
exhibits great convergence behaviour and numerical robustness. To the authors’ knowl-
edge, there is no comparable model available in the literature, which accounts for the
thermal, mechanical and crystallisation behaviour and the corresponding complex inter-
actions.
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