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Abstract. Residual stresses in forming simulations are typically investigated by analyzing the 
remaining stress state after removing all external loadings. However, the generation of the 
stress state during forming remains unknown. As a remedy, we use the plastic and elastic 
dislocation and incompatibility densities - derived from continuum mechanical and 
differential geometrical considerations - as indicators to track the generation of residual 
stresses through out a forming operation. Theoretical backgrounds for small and large strain 
plasticity are highlighted and practical aspects regarding implementation are provided. Two 
examples demonstrate the functionality of the approach, whereby the plastic incompatibility 
density in phenomenological, multiplicative large strain plasticity serves as indicator. 

 
1 INTRODUCTION 

During a forming process, residual stresses occur in the manufactured components. In 
general, these have a decisive influence on their forming, application and failure behaviour. 
Regarding a workpiece under cyclic bending, compressive residual stresses close to the 
surface of the workpiece improve its life-time behaviour, whereas tensile residual stresses 
promote crack initialization. In particular within cold extrusion processes, high residual 
stresses occur due to the required forming forces. Thereby, a number of forming experiments 
have been used to investigate the dependencies of residual stresses on contact and friction 
conditions and geometry changes, see [1] among others. However, a deeper understanding of 
residual stresses is required to explore the total potential of deliberately influencing the 
workpiece behaviour through forming-induced residual stresses. 

As a common definition, stresses which remain in the component after removing all 
external loadings are denoted as residual stresses. Therefore, the numerical investigation of 
residual stresses within the framework of a finite element (FE) simulation is typically based 
on the quantification and visualization of the remaining stress state within the unloaded 
component at the end of a forming operation. However, residual stresses arise during the 
whole forming process, and possibly also reduce again in case of an opposite load application. 
Since the residual stress generation during forming is not yet captured in the conventional 
procedure, a post-processing technique for an accompanying tracking of residual stresses 
would be of major interest to control them within manufacturing.  
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From a mechanical point of view, incompatible plastic strains in case of an inhomogeneous 
plastic deformation are responsible for residual stresses. In more detail, residual stresses arise 
in consequence of elastic lattice distortions, which are required to ensure that no gaps or 
overlaps occur despite the underlying incompatible plastic strains. By using differential 
geometrical considerations, Kröner [2] developed a linear continuum theory for residual 
strains with respect to additive small strain plasticity and further extended the approach also 
to nonlinearities [3]. For instance, a second order incompatibility density tensor is introduced 
therein to quantify the incompatible plastic strains.  

Our idea is to use the dislocation and incompatibility densities as indicators for residual 
stresses. The theoretical aspects are transferred even to multiplicative large strain plasticity in 
[4], which provides the applicability of these indicators also to forming simulations.  

The paper is structured as follows: Section 2 provides an overview to classify incompatible 
plastic strains within plastic deformations. Section 3 reiterates the computation of plastic 
incompatibilities in small strain plasticity and also recaptures its extension to multiplicative 
large strain plasticity. The functionality of these indicator for residual stresses is demonstrated 
by the plastic incompatibility density for two examples of a homogeneous and an 
inhomogeneous plastic deformation in Section 4. Finally, Section 5 summarizes the findings. 

2 MECHANICAL VIEW ON RESIDUAL STRAINS 
The theory of crystal plasticity is fundamental for describing the generation of residual 

stresses. Macroscopically observed plastic deformations within a forming process are the 
result of dislocation flow at the microscale. Thereby, dislocations partially get stucked within 
the periodically arranged crystal lattice and remain as additional obstacles for further 
dislocations flow, which leads to plastic hardening. 

As illustrated by the diagram in Figure 1, a classification of plastic deformations according 
to the generated dislocation structure is stated as follows: Homogeneous plastic deformations 
lead purely to the formation of so-called statistically stored dislocations (SSD), which are 
responsible for plastic hardening. In case of inhomogeneous plastic deformations, 
geometrically necessary dislocations (GND) are generated in addition. They are responsible 
for maintaining the inhomogeneous plastic deformation after removing all external 
loadings [5]. GNDs are further distinguished, whether they cause macroscopically stress-free 
lattice curvatures or lead to incompatible plastic strains. Incompatible plastic strains induce 
incompatible elastic strains as their counterparts to guarantee the continuity of the continuum. 
These elastic residual strains cause residual stresses. 

 
Figure 1: Incompatible strains in case of an inhomogeneous plastic deformation cause residual stresses  

Plastic deformation
Generation of dislocation structures

Homogeneous plastic deformation Inhomogeneous plastic deformation
Statistically stored dislocations (SSD) Geometrically necessary dislocations (GND)

Lattice curvatures
Stress-free

Incompatible strains
Responsible for residual stresses
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3 COMPUTATION OF DISLOCATION AND INCOMPATIBILTY DENSITIES 
Concepts of differential geometry and continuum mechanics allow to describe the 

classification of plastic deformations as depicted in Figure 1 and enable to quantify 
inhomogeneities and incompatibilities. Subsequently, the relationships are reiterated in detail. 

An unique deformation map 𝝋𝝋:𝑿𝑿 ∈ ℬ0 → 𝒙𝒙 ∈ ℬ𝑡𝑡  requires that no closure failure along an 
arbitrary closed material or spatial line path, 𝒞𝒞 or 𝒞𝒞0, exists. This requirement is called the 
integrability condition for the deformation gradient 𝑭𝑭: = Grad 𝝋𝝋 and is formulated based on the 
Stokes theorem as  

∮ d𝒙𝒙 =𝒞𝒞 ∮ 𝑭𝑭 ⋅ d𝑿𝑿 = 𝟎𝟎    
Stokes
⇒        𝒞𝒞0 ∫  Curl⊤ 𝑭𝑭 ⋅ 𝑵𝑵d𝐴𝐴 𝒜𝒜0

= 𝟎𝟎. (1) 

From Eq. (1), the stronger pointwise compatibility condition follows, which ensure that no 
gaps or overlaps arise within the deformation of the configuration: 

Curl⊤𝑭𝑭 =! 𝟎𝟎. (2) 

In contrast, the rotation field of purely the plastic (or elastic) part of the deformation 
gradient, called plastic (or elastic) dislocation density, only vanishes in case of a 
homogeneous deformation, but do not vanish in the presence of an inhomogeneous elasto-
plastic deformation. Thus, the plastic (or elastic) dislocation density expresses the non-
integrability of inhomogeneous elasto-plastic deformations. In a similar manner, the plastic 
(or elastic) incompatibility density, which is recaptured for additive small and multiplicative 
large strain plasticity in the subsequent sections, indicates incompatible plastic strains, which 
are responsible for residual stresses.  

3.1 Small strain 
In the linearized theory of small strain elasto-plasticity, the deformation gradient is 
approximated by 𝑭𝑭 ≈ 𝑰𝑰+ 𝜷𝜷. The displacement gradient 𝜷𝜷 ∶= Grad𝒖𝒖, also denoted in this context 
as distortion, additively decomposes into the symmetric strain tensor 𝝐𝝐 = 𝟏𝟏

𝟐𝟐[Grad𝒖𝒖+ Grad⊤𝒖𝒖] and 
the  antisymmetric rotation tensor 𝝎𝝎 = 𝟏𝟏

𝟐𝟐[Grad𝒖𝒖 − Grad⊤𝒖𝒖], whereby both additively decompose 
further into elastic and plastic parts: 

𝜷𝜷 = 𝝐𝝐 +𝝎𝝎 = [𝝐𝝐e + 𝝐𝝐p] + [𝝎𝝎e +𝝎𝝎p] = [𝝐𝝐e  +𝝎𝝎e]  + [𝝐𝝐p +𝝎𝝎p] = 𝜷𝜷e + 𝜷𝜷p (3) 

The integrability condition guarantees: 
CurlT𝜷𝜷 = 𝟎𝟎. (4) 

Since the Curl{⋅}-operator is distributive,  
Curl𝜷𝜷 = Curl(𝜷𝜷e + 𝜷𝜷p), (5) 

it follows for the plastic dislocation density 
𝒂𝒂p ≔ Curl𝜷𝜷p = −Curl𝜷𝜷e  ≠ 𝟎𝟎  (in general). (6) 

As describe above and according to the pioneering works of Kröner, see [2] among others, 
𝒂𝒂p quantifies the inhomogeneity of plastic deformations and exclusively equals to zero in case 
of homogeneous plastic deformations. 

Furthermore, the incompatibility density tensor Inc{⋅} with respect to the strain tensor of the 
total deformation requires 
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Inc𝝐𝝐 ≔ Curl⊤Curl⊤𝝐𝝐 = 𝟎𝟎, (7) 

but for its plastic and elastic parts, it yields in accordance to Eq. (6): 

𝜼𝜼p ∶= Inc𝝐𝝐p = Curl⊤Curl⊤𝝐𝝐p = [Curl⊤𝒂𝒂p⊤]sym = −Inc𝝐𝝐e ≠ 𝟎𝟎  (in general). (8) 

Here, the plastic incompatibility density 𝜼𝜼p serves as a measure for plastic strains, which 
result from the non-vanishing plastic dislocation density 𝒂𝒂p, see Eq. (6). Since 𝜼𝜼p quantifies 
incompatible plastic (or elastic) strains, the plastic (or elastic) incompatibility density serves 
as indicator for residual stresses. 
Remark 1: For the sake of implementation and according to Steinmann [10] the Curl{⋅}-
operation rewrites as: 

Curl{⋅} = [
{⋅}13,2 − {⋅}12,3 {⋅}23,2 − {⋅}22,3 {⋅}33,2 + {⋅}32,3
{⋅}11,3 − {⋅}13,1 {⋅}21,3 − {⋅}23,1 {⋅}31,3 + {⋅}33,1
{⋅}12,1 − {⋅}11,2 {⋅}22,1 − {⋅}21,2 {⋅}32,1 + {⋅}31,2

]. (9) 

3.2 Large strain 
According to Lee [6], the nonlinear large strain elasto-plasticity theory is based on the 

multiplicative decomposition of the deformation gradient into its elastic and plastic part:  
𝑭𝑭 = 𝑭𝑭e ⋅ 𝑭𝑭p (10) 

As illustrated in Figure 2, the plastic part of the deformation gradient, 𝑭𝑭p, represents the 
deformation due to the motion of dislocations (depicted as red circles) in the periodically 
arranged crystal lattice. The lattice orientation remains unchanged in the plastic intermediate 
configuration ℬ̅. The elastic part 𝑭𝑭e then causes the corresponding lattice distortion.  
 

 
Figure 2: Multiplicative elasto-plasticity modelling includes an incompatible plastic intermediate configuration 

Remark 4: Within multiplicative modelling, purely the elastic part of the deformation 
transforms the slip systems. The elastic part of the deformation gradient and the left Cauchy 
Green Tensor, 𝑭𝑭e and 𝒃𝒃e = 𝑭𝑭e ⋅ 𝑭𝑭e⊤ , allow to compute the slip direction 𝒔𝒔𝛼𝛼 and the slip plane 
normal 𝒎𝒎𝐼𝐼 in the spatial configuration in dependency of their counterparts in the plastic 
intermediate configuration: 𝒔𝒔𝛼𝛼 = 𝑭𝑭e ⋅ 𝒔̅𝒔𝛼𝛼, 𝒎̂𝒎𝛼𝛼 = 𝒃𝒃e ⋅ 𝒎𝒎𝛼𝛼 and 𝒎𝒎𝛼𝛼 = 𝑭𝑭e−⊤ ⋅ 𝒎̅𝒎𝛼𝛼. The transformation 
of a slip system is additionally depicted in Figure 2. 
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Plastic and elastic dislocation density 
The rotation field with respect to the plastic part of the deformation gradient, which is 

again denoted as plastic dislocation density, is defined as: 
𝑨𝑨p ∶= Curl𝑭𝑭p ≠ 𝟎𝟎 (in general). (11) 

In accordance to the additive small strain theory, 𝑨𝑨p differs from zero in case of 
inhomogeneous plastic deformations. Thus, the plastic intermediate configuration ℬ̅ is in 
general incompatible and the plastic dislocation density 𝑨𝑨p is directly linked to the GNDs, 
which arise during inhomogeneous plastic deformations. An incompatible plastic 
configuration induces incompatible elastic distortions to guarantee the continuity of the 
continuum. Therefore, it follows for the counterparts in the elastic regime: 

𝒂𝒂e ∶= curl𝒇𝒇e ≠ 𝟎𝟎 (in general). (12) 

The relationship between the elastic and plastic dislocation density, 𝑨𝑨p and 𝒂𝒂e, which is 
proposed [5] and further extensively investigated by Cermelli and Gurtin [7], results in: 

1 
det𝑭𝑭p 𝑭𝑭

p ⋅ 𝑨𝑨p = 1 
det𝒇𝒇e  𝒇𝒇e ⋅ 𝒂𝒂e. (13) 

Remark 2: The plastic dislocation density 𝑨𝑨p provides further background information: Its 
diagonal entries arise with the occurrence of screw dislocations, whereby non-diagonal entries 
are linked with edge dislocations. In addition, a multiplication with a direction vector 𝒕𝒕 of an 
assumed dislocation line leads to the associated Burgers vector 𝒃𝒃, which describes the closure 
failure: 𝒃𝒃 = 𝑨𝑨p⊤ ⋅ 𝒕𝒕. 
 
 Remark 3: The plastic part of the deformation gradient, 𝑭𝑭p, which is necessary for the 
computation of the plastic dislocation density 𝑨𝑨p, is only accessible if crystal plasticity 
modelling is applied. Unfortunately, in commonly used commercial FE software packages, 
for example Marc/Mentat or Abaqus, only a phenomenological multiplicative approach for 
large strain plasticity as described in Simo and Hughes [8] is implemented and so, the plastic 
part of the deformation gradient remains still unknown. However, a possible option to 
incorporate crystal plasticity modelling in the above mentioned FE packages is the usage of 
the Fortran library DAMASK [9]. 

Plastic and elastic incompatibility density 
The compatibility relations and their correlations with dislocation densities within the 

linear theory of small strains, see Kröner [2], are extended by Steinmann [4] to the general 
nonlinear case of large strains. Applying the multiplicative large strain modelling, the 
incompatibilities of the continuum rotations contained in 𝑭𝑭e = inv𝒇𝒇e lead to stress-free lattice 
curvatures, while the incompatibilities of the elastic part of the left Cauchy-Green strain 
tensor 𝒃𝒃e cause the lattice distorsions, which result in residual stresses. 

The theories of differential geometry is exploited in [4] to show that the non-integrability 
of plastic and elastic strains metrics 𝑪𝑪p (plastic part of the right Cauchy-Green tensor) and 𝒄𝒄e =
inv𝒃𝒃e (elastic part of the left Cauchy-Green tensor) coincides with the non-vanishing plastic 
and elastic Riemann curvatures 𝑯𝑯p and 𝒉𝒉e. According to these considerations, the plastic 
incompatibility density (in Euclidean space) is computed by, 
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2𝑯𝑯p = Ink𝑪𝑪p ≔ Curl⊤Curl⊤𝑪𝑪p + {Grad𝑪𝑪p}⟖{Grad𝑪𝑪p} ≠ 𝟎𝟎 (in general), (14) 

whereby {⋅}⟖{⋅} describes a special product of third-order tensors, see the implementation 
guidance in the subsection 3.3. Analogously, it follows for the elastic regime, 

−2𝒉𝒉e = ink𝒄𝒄e ≔  curl⊤curl⊤𝒄𝒄e  +  {grad𝒄𝒄e}⟖{grad𝒄𝒄e} ≠ 𝟎𝟎 (in general). (15) 

As in small strain plasticity, the plastic and elastic incompatibility densities are a measure 
for the incompatibility of the plastic strains and their elastic counterparts. Since the latter 
cause residual strains, both incompatibility densities are suited as residual stress indicators. 
Remark 5: In commercial FE-software packages, for example Marc/Mentat or Abaqus, 
access to the elastic part of the left Cauchy-Green tensor, 𝒃𝒃e, is provided via subroutines in 
case of using their phenomenological large strain plasticity modelling. The plastic part of the 
right Cauchy-Green tensor then follows with 𝑪𝑪p = 𝑭𝑭⊤ ⋅ inv𝒃𝒃e ⋅ 𝑭𝑭. Consequently, the plastic and 
elastic incompatibility densities, Inc𝑪𝑪p and inc𝒄𝒄e – indicators for residual stresses, are even 
computable without using crystal plasticity. 

A relation between the elastic and plastic incompatibility densities, see Eq. (14) and (15), 
is derived in Steinmann [4] as: 

det(𝑭𝑭p−1)
det𝑭𝑭p 𝑭𝑭p ⋅ 𝑯𝑯p ⋅ 𝑭𝑭𝐩𝐩⊤ = det(𝒇𝒇e−1)

det𝒇𝒇e 𝒇𝒇e ⋅ 𝒉𝒉e ⋅ 𝒇𝒇e⊤ (16) 

Unfortunately, Eq. (16) again requires an access to the plastic and elastic deformation 
gradient, respectively. 

3.3 An implementation scheme for the plastic incompatibility density 

While in the previous subsection focus is put on the relationships between the plastic and 
elastic dislocation and incompatibility densities, some hints for implementation are given 
subsequently. 

Computation of the plastic incompatibility density from Riemann curvatures 
The steps to compute the incompatibility density is described for the plastic regime, 

whereby Einstein summation is used as in [4].  
After differentiation of the plastic part of the Cauchy Green tensor, 𝑪𝑪p, with respect to the 

material coordinates 𝑿𝑿, the plastic Riemann connection is achieved by 

ℳ𝐼𝐼𝐼𝐼𝐼𝐼
p (𝑪𝑪p): = 1

2 [𝐶𝐶𝐼𝐼𝐼𝐼,𝐾𝐾
p − 𝐶𝐶𝐽𝐽𝐽𝐽,𝐼𝐼

p + 𝐶𝐶𝐾𝐾𝐾𝐾,𝐽𝐽
p ] (17) 

Next, the plastic material Riemann curvature tensor is computed, whereby differentiation 
of the Riemann connection ℳ𝐼𝐼𝐼𝐼𝐼𝐼

p , again with respect to the material coordinates 𝑿𝑿, is required: 

𝘔𝘔𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼
p (𝑪𝑪p): = −2 [ℳ𝐼𝐼𝐼𝐼𝐼𝐼,𝐿𝐿

p + ℳ𝐴𝐴𝐴𝐴𝐴𝐴
p ℳ   𝐽𝐽𝐽𝐽

p𝐴𝐴 ]. (18) 

Finally, the plastic incompatibility tensor is obtained by 

𝐻𝐻p𝑀𝑀𝑀𝑀(𝑪𝑪p) ≔ −1
4 ℰ𝑀𝑀𝑀𝑀𝑀𝑀𝘔𝘔𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼

p ℰ𝐾𝐾𝐾𝐾𝐾𝐾 = 1
2 ℰ𝑀𝑀𝑀𝑀𝑀𝑀ℳ𝐼𝐼𝐼𝐼𝐼𝐼,𝐿𝐿

p ℰ𝐾𝐾𝐾𝐾𝐾𝐾  + 1
2 ℰ𝑀𝑀𝑀𝑀𝑀𝑀ℳ𝐴𝐴𝐴𝐴𝐴𝐴

p ℳ   𝐽𝐽𝐽𝐽
p 𝐴𝐴ℰ𝐾𝐾𝐾𝐾𝐾𝐾 , (19) 

whereby ℰ refers to the third-order Levi-Cita-Symbol with 
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ℰ123 = ℰ231 = ℰ321 = 1,  ℰ132 = ℰ321 = ℰ231 = −1 (20) 

and 0 else. Within Euclidean space the first term in Eq. (19) equals 

ℰ𝑀𝑀𝑀𝑀𝑀𝑀ℳ𝐼𝐼𝐼𝐼𝐼𝐼,𝐿𝐿
p ℰ𝐾𝐾𝐾𝐾𝐾𝐾 = Curl⊤Curl⊤𝑪𝑪p, (21) 

whereas the second term in Eq. (19) can be formulated as  

 ℰ𝑀𝑀𝑀𝑀𝑀𝑀ℳ𝐴𝐴𝐴𝐴𝐴𝐴
p ℳ   𝐽𝐽𝐽𝐽

p 𝐴𝐴ℰ𝐾𝐾𝐾𝐾𝐾𝐾 = {Grad𝑪𝑪p}⟖{Grad𝑪𝑪p}. (22) 

Thus, Eq. (14) follows from Eq. (19). The computation of the elastic incompatibility 
density ink𝒄𝒄e from the elastic part of the left Cauchy Green tensor works in an analogous way. 
For further details, the interested reader is referred to [4]. 
 
Remark 6: For the sake of implementation and according to Kaiser and Menzel [10] the 
Curl⊤Curl⊤{⋅}-operation rewrites as: 

Curl⊤Curl⊤{⋅}   =    [
{⋅}12,12 + {⋅}13,13 {⋅}11,21 + {⋅}13,23 {⋅}11,31 + {⋅}12,32
{⋅}22,12 + {⋅}23,13 {⋅}21,21 + {⋅}23,23 {⋅}21,31 + {⋅}22,32
{⋅}32,12 + {⋅}33,13 {⋅}31,21 + {⋅}33,23 {⋅}31,31 + {⋅}32,32

]

− [
{⋅}11,22 + {⋅}11,33 {⋅}12,11 + {⋅}12,33 {⋅}13,11 + {⋅}13,22
{⋅}21,22 + {⋅}21,33 {⋅}22,11 + {⋅}22,33 {⋅}23,11 + {⋅}23,22
{⋅}31,22 + {⋅}31,33 {⋅}32,11 + {⋅}32,33 {⋅}33,11 + {⋅}33,22

]. 
(23) 

Differentiation of quadrature point quantities 
For the differentiation of quadrature point quantities – for example the tensor components 

𝐶𝐶𝐼𝐼𝐼𝐼,𝐾𝐾
p  within Grad𝑪𝑪p – a two-step technique is applied as already proposed in Steinmann [5] for 

a post-processing approach with respect to the plastic dislocation density:  
Firstly, the tensor components are mapped from the quadrature points to the discretization 

nodes, see Figure 3 a. Therefore, the Superconvergent Patch Recovery Procedure (SPR) [11] 
as an alternative to the global L2-smoothing [12] is applied. The mapped tensor quantities at 
each discretization node are indicated in the following by a tilde.  

 
Figure 3: A two-step technique for the differentiation of integration point quantities 

Secondly, as illustrated in Figure 3 b, the differentiation of a tensor component is 
evaluated at quadrature points by the help of shape functions:  

Extrapolation via patch-recovery

Quadrature point

Discretization node

Differentiation via shape functions

a b
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Grad𝑪𝑪p𝑗𝑗 = ∑ [𝑪̃𝑪p𝑎𝑎 ⊗ 𝜕𝜕𝑁𝑁𝑎𝑎(𝝃𝝃𝑗𝑗)
𝜕𝜕𝝃𝝃  ] ⋅ [𝑿𝑿𝑎𝑎 ⊗ 𝜕𝜕𝑁𝑁𝑎𝑎(𝝃𝝃𝑗𝑗)

𝜕𝜕𝝃𝝃  ]
−1

𝑛𝑛en
𝑎𝑎=1 ,  (24) 

whereby 𝑗𝑗 refers to the quadrature point, 𝑎𝑎 refers to the elementwise discretization node, 𝑛𝑛en 
denotes the number of element nodes and 𝑁𝑁(𝝃𝝃) refers to the shape functions with respect to its 
natural coordinates. 

4 COMPUTATIONAL EXAMPLES 
The functional principle of the plastic incompatibility density Inc𝑪𝑪p as an accompanying 

indicator for residual stresses during forming simulations is demonstrated for two examples of 
a homogeneous and an inhomogeneous elastoplastic deformation. 

As a representative of FE-packages with phenomenological, multiplicative large strain 
plasticity modelling, Marc/Mentat is used for both examples. Here, the deformation gradient 
𝑭𝑭 and the elastic part of left Cauchy Green tensor, 𝒃𝒃e, are accessible for each quadrature point 
through subroutines. The plastic part of the right Cauchy Green tensor then follows as: 

𝑪𝑪p = 𝑭𝑭⊤ ⋅ 𝒄𝒄e ⋅ 𝑭𝑭      with    𝒄𝒄𝒆𝒆 = inv𝒃𝒃e  (25) 

The plastic incompatibility density as in Eq. (14) is then computed according to the 
techniques presented in subsection 3.3.    

The same elasto-plastic material modelling is applied in both examples. The elastic 
constants are set to 𝐸𝐸 = 210.000 MPa and 𝜈𝜈 = 0.3. The isotropic plastic hardening, which is 
modelled by the Hockett-Sherby function with respect to the equivalent plastic strain ϵ̅p, is 
used as follows:  

𝜎𝜎yield(ϵ̅p) = 185.2 + [577.1 − 185.2][1 − exp(−2.18ϵ̅p0.667)]  (26) 

4.1 Example for homogeneous elasto-plastic deformation: Tension 
As the first example, an elasto-plastic deformation by a pure tension is considered. In a 

two-dimensional model, a bar (height: 180 mm, length: 200 mm) is drawn force-controlled in 
𝑒𝑒1-direction until an enlargement of 100 mm is reached, see Figure 1 a. The resulting 
constant Cauchy stress equals to 473 MPa (v.Mises coincides with the 11-component) in the 
fully loaded stated and the equivalent plastic strain computes to 0.47. After reducing the 
loading back to zero, also the stresses vanish. Thus, no residual stresses are generated. In 
accordance, since tension leads to a purely homogeneous deformation, the plastic 
incompatibility density also remains zero through all stages, see Figure 1 b.  

4.2 Example for inhomogeneous elasto-plastic deformation: Bending 
Pure bending, as a benchmark for an inhomogeneous deformation, is considered in the 

second example. The two-dimensional model consists of a bar (height: 40 mm, length: 
150 mm) and is bended by a punch with a travel way of 50 mm, see Figure 5 a. The maximal 
Cauchy stress is computed to 474 MPa (v.Mises) when fully loaded and equivalent plastic 
strains are computed up to maximal 0.48. When the punch is removed, the stresses reduces 
only to 437 MPa. The remaining stresses are residual stresses, which are generated through the 
inhomogeneous plastic deformation. In contrast to the previous examples, the plastic 
incompatibility density arises (during forming) to a maximum of 0.42 in the L2-norm when 
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fully loaded. Thus, the plastic incompatibility density indicates the generation of residual 
stresses even during forming and despite application of external loading, see Figure 5 b. 

 
Figure 4: No plastic incompatibility density is computed within a homogeneous deformation 

 
Figure 5: Plastic incompatibility density arise during forming in case of an inhomogeneous deformation 
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5 CONCLUSION 
Residual stresses are of major interest in manufacturing of functional components. 

However, the generation of residual stresses is not able to be tracked during forming. 
Typically, purely the remaining stress state after removing all external loads is investigated. 
However, residual stresses are the result of incompatible plastic strains in case of an 
inhomogeneous plastic deformation. Further, the plastic dislocation density measures the 
incompatibility of the plastic intermediate configuration. Thus, the plastic and elastic 
dislocation and incompatibility densities are exploited to indicate the generation of residual 
stresses even during the application of external loadings. Theoretical aspects regarding 
dislocation and incompatibility densities in small and large strain plasticity are reiterated and 
hints for implementation are provided. Two examples with a homogeneous and an 
inhomogeneous plastic deformation demonstrated the functionality of the indicators.  
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