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Abstract. Residual stresses and fiber orientations in arterial walls can be approx-
imated by means of the simulation of growth and remodeling processes. In order to
enable a comparison of different approaches of combined growth and remodeling in one
framework, a method based on the optimization of model parameters is developed. The
minimization of a mechano-biologically motivated objective function permits to evalu-
ate the approaches with respect to their ability of effectively reducing stress peaks and
stress inhomogeneities in the arterial wall. This examination is performed for a simpli-
fied, one-layered, rotationally symmetric arterial segment in order to enable the analysis
of the fundamental mechanisms included in the individual model variants. Once the most
probable growth mechanism is identified, multi-layered segments can be analyzed in more
detail.

1 INTRODUCTION

The mechanical behavior of arterial tissues is considerably affected by residual stresses,
which reduce stress peaks and gradients in the arterial wall [8, 9]. Furthermore, the ar-
rangement of the collagen fibers, whose orientation is graded over the wall thickness,
strongly affects the load bearing behavior. Unfortunately, residual stresses or fiber ori-
entations can currently hardly be measured in vivo. However, they have to be known in
order to perform reliable patient-specific numerical simulations. Both phenomena can be
included by modeling the adaptation of the artery to its mechano-biological environment,
which appears as arterial growth and remodeling.

Following Hariton et al. [6], it is assumed that the collagen fibers reorient based on the
principal stress state such that they arrange symmetrically with respect to the principal
axes. The reorientation towards the target fiber orientations is here described by an
evolution equation, which assures that abrupt changes do not occur.
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If growth is simulated in tubular structures, residual stresses arise automatically as a
consequence of the growth deformation and need not to be taken into account for instance
by rather technical approaches as e. g. presented by Balzani et al. [2] or Schröder and von
Hoegen [13]. The growth model applied here is based on a multiplicative decomposition
of the deformation gradient into an elastic and a growth part as originally proposed by
Rodriguez et al. [12] and then pursued amongst others by Kuhl et al. [10] or Göktepe et
al. [5]. In order to account for the anisotropy of the growth mechanism, the growth part
itself is decomposed here into up to three individual parts, where each part is associated
to a principal direction of a stress tensor. By specifying the number and form of the indi-
vidual growth tensors and by using different growth-driving quantities, a set of different
formulations for the automatized calculation of residual stresses and fiber orientations is
obtained. A detailed description of the combined growth and remodeling framework has
been published in [14].

This contribution aims at developing a method which enables a quantitative compar-
ison of the fundamental mechanisms included in the different formulations. The growth
parameters are therefore computed by minimizing a mechano-biologically motivated ob-
jective function, which is formulated such that its minimum reflects the most efficient
reduction of stress peaks and stress inhomogeneities in the arterial layers. This system-
atic analysis is conducted for different loading scenarios applied to a simplified one-layered
artery which is idealized as a rotationally symmetric tube, enabling an efficient optimiza-
tion. By comparing the obtained minima of the individual approaches, an assessment
regarding the most probable mechano-biological mechanism is enabled.

2 GROWTH AND REMODELING FRAMEWORK

As initially proposed in [12], the growth model is based on the multiplicative de-
composition F = FeFg of the deformation gradient into a pure growth part Fg, which
involves a stress-free volume change of factor Jg = det[Fg], and a remaining elastic
part Fe, which generates stresses. The 2nd Piola-Kirchhoff stress tensor is obtained as
S = F

−1
g SeF

−T
g , where Se = 2 ∂ψ/∂Ce is the stress in the intermediate configuration,

which is defined by an appropriate strain energy function ψ and arises from the deforma-
tion tensor Ce = F T

e Fe = F −T
g CF −1

g . A polyconvex hyperelastic strain energy function
from [1] is used to describe the orthotropic material behavior. It takes two families of
fibers into account, whose orientations are given by the vectors A(1) and A(2).

2.1 General framework

Accounting for the orthotropic behavior of soft biological tissues, the growth tensor
itself is decomposed into three parts according to

Fg = F
(3)
g F

(2)
g F

(1)
g , (1)

where each part is related to one of three perpendicular directions A
(a)
g and an internal

variable ϑ(a), a = 1, 2, 3, determining the amount of growth. For the definition of the
parts of the growth tensor, it is supposed that growth is a stress-driven process which
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aims at reducing high stress values [4]. The directions A
(a)
g are therefore not meant to

represent coordinate axes or structural directions, but rather refer to the local stress state
of the tissue. Assuming that all growth and remodeling processes are driven by the same
stress quantity, the elastic part of the Mandel stress tensor, i. e. CeSe =·· Σe, is chosen
as driving quantity as proposed in [7] and the directions A

(a)
g are computed as principal

directions of this stress tensor. The evolution of the growth factors ϑ(a) is described by a
coupled set of evolution equations

ϑ̇(a) = k
(a)
ϑ (ϑ(a))φ(a)(Σe), a = 1, 2, 3, (2)

which is also formulated in dependence on the elastic part of the Mandel stress. Besides
the growth function k

(a)
ϑ from [11] with

k
(a)
ϑ (ϑ(a)) =




k+
ϑ,(a)

�
ϑ+
(a) − ϑ(a)

ϑ+
(a) − 1

�m+
ϑ,(a)

for φ(a) > 0

k−
ϑ,(a)

�
ϑ(a) − ϑ−

(a)

1− ϑ−
(a)

�m−

ϑ,(a)

for φ(a) < 0

0 for φ(a) = 0,

(3)

a driving force φ(a) is involved for each direction a. The algorithmic implementation of
the growth model within a finite element framework is explained in detail in [14].

The fiber orientation vectors A(1) and A(2) are considered as variable, adjusting au-
tomatically following local demands. Once again, the elastic part of the Mandel stress
tensor is used to define this reorientation process. Following the hypothesis in [6], the
load-bearing behavior can be improved if the fibers arrange symmetrically with respect to
the tensile principal stresses and if their orientation within the plane of the highest tensile
principal stresses is governed by the ratio of these stresses. The target fiber orientation
vectors are thus defined by

Ā
(1)
targ = �ΣI

e�eI + �ΣII
e �eII and Ā

(2)
targ = �ΣI

e�eI − �ΣII
e �eII, (4)

where eI and eII are unit vectors in the directions of the principal stresses ΣI
e and ΣII

e of
the elastic part of the Mandel stress. Use of the Macaulay brackets, which are defined as
�•� = 1/2 (| • |+ •), guarantees that only positive principal stresses are included. Since the
constitutive equations are formulated in the reference configuration, the target vectors
are pulled back and optionally exchanged and/or rotated by 180◦ to keep the remodeling

effort minimal. Finally, the vectors A
(1)
targ and A

(2)
targ are obtained as target vectors for

the fiber orientation vectors A(1) and A(2). The numerical treatment of the reorientation
process is handled as described in [14], making use of an evolution equation η̇(a) = kη(η

(a))

for each fiber family. Herein, the variable η(a) represents the angle between A(a) and A
(a)
targ

and the remodeling function kη(η
(a)) = −k+

η ln(m+
η |η

(a)|+1) (with η(a) in rad) defines the
temporal behavior.
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2.2 Variability of model components

So far, the individual parts of the growth tensor in Eq. (1) and the driving forces for
the evolution of the growth factors in Eq. (2) have not been specified in detail. Both
can be chosen based on hypotheses on the mechanism of growth and stress reduction,
but nevertheless, a variety of different approaches is imaginable. The purpose of this
contribution is to develop a method which enables an optimization-based comparison of
these approaches, such that finally an estimation regarding the most probable mechanism
is possible. Thereby, the focus is however rather on the anisotropic character of growth
than on bio-chemical aspects.

Concerning the form of the individual parts F
(a)
g of the growth tensor, three different

approaches, namely

F
(a)
g = ϑ(a)

I, (5a)

F
(a)
g = ϑ(a)

I +
(
1− ϑ(a)

)
A

(a)
g ⊗A

(a)
g , (5b)

F
(a)
g = I +

(
ϑ(a) − 1

)
A

(a)
g ⊗A

(a)
g , (5c)

are included to the examination. The first approach in Eq. (5a) describes isotropic growth.
Due to the anisotropy of arterial tissues, isotropic growth is expected not to be a realistic
model assumption. Therefore, the anisotropic forms in Eqs. (5b) and (5c) are additionally

taken into account. They describe growth perpendicular to a direction A
(a)
g as well as

growth in a direction A
(a)
g , respectively. Depending on the type of loading, both mecha-

nisms can effectively reduce stresses in the direction of A
(a)
g , either by an increase of the

cross-sectional area or by an elongation in the direction of the load.
For the driving force governing the evolution of the growth factors ϑ(a), the set of

approaches chosen for the examination is given by

φ(a)(Σe) = Σe : I, (6a)

φ(a)(Σe) = Σe : M
(a)
g , (6b)

φ(a)(Σe) =
〈
Σe : M

(a)
g

〉
, (6c)

φ(a)(Σe) =

{
1
2
Σe :

(
M

(I)
g +M

(II)
g

)
for ΣI

e > 0, ΣII
e > 0

Σe : M
(I)
g for ΣI

e > 0, ΣII
e ≤ 0

, (6d)

where M
(•)
g = A

(•)
g ⊗A

(•)
g . The indices I and II point out that the 1st and 2nd principal

directions of Σe are referred to. Besides the isotropic stress measure in Eq. (6a), a pro-

jection of the elastic part of the Mandel stress in the direction of A
(a)
g is considered as

driving force in Eq. (6b). Furthermore, the case that only positive values of these pro-
jected stresses, i. e. tensile stresses, provoke growth, is reflected in Eq. (6b). In addition,
Eq. (6d) represents the average stress state within the plane spanned by the fiber fami-
lies. In the case of only one tensile principal stress, the stress projected in the associated
direction is used and both fiber families align in this direction, cf. Eq. (4).
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In order to allow for a concise denomination of the different approaches, the numeric
identifiers “Fg-ID” and “φ-ID” are introduced for the type of growth tensor and the type
of driving force, respectively. Their values are summarized in Tables 1 and 2. Note that
it is not necessary to include each of the three parts of Fg. Purely isotropic growth

for instance is already defined by setting Fg = F
(1)
g = ϑ(1)I. The number of included

directions will be referred to as ndir in the following.

Table 1: Denomination of the different forms of the individual parts of the growth tensor.

Fg-ID type of growth F
(a)
g

1 isotropic growth Eq. (5a)

2 growth perpendicular to A
(a)
g Eq. (5b)

4 growth in the direction of A
(a)
g Eq. (5c)

Table 2: Denomination of the different driving forces.

φ-ID type of driving force φ(a)

2 isotropic stress measure Eq. (6a)

4 stress in the direction of A
(a)
g Eq. (6b)

5 stress within the plane of the fibers Eq. (6d)

6 tensile stress in the direction of A
(a)
g Eq. (6c)

3 OPTIMIZATION-BASED COMPARISON OF THE APPROACHES

With the high number of adjustable model components listed above, a multitude of
different approaches can be generated. A comparison of these approaches is made even
more difficult by the dependence of their behavior on the growth and remodeling pa-
rameters. Most of these parameters however mostly affect the velocity of the adaptation
processes and not the final result. Provided that a growth equilibrium state is attained,
the resulting stress distributions are supposed to mainly depend on the form of the indi-
vidual parts F

(a)
g of the growth tensor, the associated driving forces φ(a) and the limiting

values ϑ+
(a) of the growth factors for positive growth. In order to compare different ap-

proaches, these parameters have to be set specifically such that the best possible behavior
in a biomechanical sense is achieved. This is done by optimization of a mechano-biologi-
cally motivated objective function, which then also serves as comparative value between
the approaches.

3.1 Growth equilibrium state

Before evaluating the objective function, it has to be assured that a growth equilibrium
state is attained after application of the load. Such a state is indicated by a vanishing
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rate of all growth factors and is thus assumed to be attained if the condition

1

nele nGP ndir

∑
nele

∑
nGP

ndir∑
a=1

∣∣ϑ(a)
t+∆t − ϑ

(a)
t

∣∣
ϑ
(a)
t ∆t

< ǫ (7)

is fulfilled. Thereby nele and nGP are the numbers of elements and Gauß points and ǫ is
set to ǫ = 10−4/s = 0.01%/s. At growth equilibrium, a final stress state is reached which
is used for the evaluation of the objective function.

3.2 Definition of the objective function

For the purpose of evaluating different growth mechanisms with respect to their ability
of efficiently improving the load-bearing behavior, an objective function of the structure

fobj =
∑
i

ωi qi (8)

is defined, where qi are the arguments and ωi are weighting factors representing the
importance of the individual arguments. The arguments qi denote optimization objectives
which are claimed to be minimal at growth equilibrium, for example stress peaks or
differences and the volume change due to growth. All these objectives are normalized
such that they are unitless and of same order of magnitude, and their optimal value is
zero. By minimizing Eq. (8), the specific set of parameters is obtained that leads to the
optimal mechano-biological state reachable by the particular model variant. The explicit
expressions are

q1 =
max

r
|σϕ|

σ̃peak
, q4 =

max
r

|σϕ| −
∣∣mean

r
σϕ

∣∣
σ̃diff

,

q2 =
max

r
|σz|

σ̃peak
, q5 =

max
r

|σz| −
∣∣mean

r
σz

∣∣
σ̃diff

, (9)

q3 =
mean

r
|σϕ − σz|∣∣mean
r

σϕ

∣∣ , q6 =
∣∣mean

B
Jg − 1

∣∣,

where the stresses σ̃peak and σ̃diff are introduced as normalizing values for stress peaks and
differences. The operator “mean” denotes the volume average of a quantity over the whole
domain B or over the radial direction r, respectively. In a multi-layered model, a layer-
wise examination of the means would be more reasonable. Here, the artery is assumed to
consist of a single layer in order to keep the numerical effort low, which is justified since
the fundamental mechanism is matter of interest. The mechano-biological motivation for
the objective definitions above is as follows:

q1: In a cylindrical tube with internal pressure and moderate axial strain, the highest
stress occurs at the internal surface in circumferential direction. A reduction of this
stress peak towards a reference level σ̃peak or less might therefore be desired by the
tissue in order to increase its resilience.
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q2: The same might hold for the peak of the axial stress, which however can also become
compressive in case of intense axial growth. For this reason, the absolute value is
considered.

q3: Healthy arteries cut from the body contract in axial direction, which means that
their natural in vivo state is under axial tension. Zero axial stresses are thus not
expected and a layer-wise reduction of the average difference between circumferential
and axial stresses is potentially a more realistic goal of arterial adaptation.

q4/q5: To obtain stress distributions which are layer-wise constant over the wall thickness
as far as possible, the maximal stresses per layer have to approach the mean values.
Constant stresses might be desired since the material within a layer is assumed to
prefer a uniform exposure that does only marginally vary over the radial position.

q6: From an energetic point of view, the material is assumed to avoid an unnecessarily
high amount of grown material, i. e. to keep the volume change induced by growth,
Jg − 1, at the lowest level possible.

In the examination presented here, each of the optimization goals is supposed to be equally
important, which means that all weighting factors are set to ωi = 1. The normalizing
stresses are set to

σ̃peak = 100 kPa and σ̃diff = 50 kPa, (10)

since these values are estimated to be in the order of magnitude of average stress peaks
and differences between peak and mean values.

4 NUMERICAL EXAMINATION

The boundary value problem considered for the optimization-based comparison of dif-
ferent model approaches is a one-layered arterial segment discretized into seven rotation-
ally symmetric 2D finite elements over the wall thickness, see Fig. 1. Table 3 lists all
parameters which are set equally for all simulations. Besides the material parameters,
this also applies to the remodeling parameters and to growth parameters with minor im-
pact on the growth equilibrium state. The initial fiber angles are set to ± 30◦ with respect
to the circumferential direction.

r

z

p

ra = 7.5mmri = 6.5mm

uz

l = 1
7 mm

Figure 1: Boundary value problem of a rotationally symmetric arterial segment loaded by an internal
pressure p and an axial displacement uz.
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Table 3: Parameters of the material model from [1], adjusted to human media in [3], parameters of the

remodeling function kη and unvaried parameters of the growth function k
(a)

ϑ , set equally for all directions.

c1 ǫ1 ǫ2 α1 α2 k+
η m+

η k+
ϑ m+

ϑ ϑ− k−
ϑ m−

ϑ

in kPa in kPa in – in kPa in – in s−1 in – in s−1 in – in – in s−1 in –

17.5 499.8 2.4 30 001.9 5.1 0.6 5.0 1.0 3.0 0.95 1.0 3.0

In a first simulation step, an internal pressure of p = 120mmHg and an axial dis-
placement uz are applied without activating growth and remodeling. After reaching this
representative loading, the load is kept constant and growth and remodeling are activated.
The computation is then continued until a growth equilibrium state is attained.

To give an example for the values of the objective function in the non-growing reference
artery, its stress state for an axial displacement of uz = 0.05 l is given in Fig. 2 a and
the associated contributions ωi qi as well as the summarized value fobj are depicted in
the bar plot in Fig. 2 b. Such a plot depicts the reachable performance of an individual
model approach and thus, this case with fobj = 5.403 where no growth and remodeling
is considered, should indicate a relatively poor performance. However, note that the
absolute values of the individual objectives themselves have few meaning and can only be
evaluated by comparing them between different model approaches.

(a) (b)

Figure 2: (a) Distribution of the radial, circumferential and axial stresses over the radial position and
(b) composition of the value of the objective function in a non-growing pressurized artery with 5% axial
strain.

4.1 Optimization scenarios

For each different combination of Fg-ID and φ-ID for different numbers of growth direc-
tions ndir, the limiting values ϑ+

(a) of the growth factors are identified by minimizing fobj.
In order to also account for different loading scenarios or more specifically, to estimate
if a model variant performs insensitive with respect to load changes, the following opti-
mization scenarios are proposed:
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1. Optimize ϑ+
(a) by averaging over different levels of uz in order to find the best per-

formance over a range of loading situations,

2. Optimize ϑ+
(a) for a fixed value of uz in order to find the best performance for a given

loading situation,

3. Optimize ϑ+
(a) and uz in order to find the best performance of the given growth

model over all possible loads.

For the cases where the axial displacement is not an optimization variable, it is chosen
among uz ∈ [0.0 l, 0.1 l, 0.2 l]. For the least sensitive model variant, the value of the
objective function obtained in the first case should only minimally differ from the one
obtained in the third case. The minimization of the objective function is realized using
the “GlobalSearch” algorithm of MATLAB in combination with the solver “fmincon”
for constrained nonlinear minimization. Based on preliminary representative numerical
calulations, the bounds of the parameters ϑ+

(a) are chosen as [1.001, 1.5] and the axial

displacement is restricted to values within [0.0 l, 0.3 l].

4.2 Results and Discussion

Here, the optimization results of some representative model variants are given. Isotropic
growth is compared to a series of approaches where three growth directions are included
and where the same combination of growth tensor and driving force is considered for each
of these directions. An exemplary denomination like “161616” means that Fg-ID = 1 and
φ-ID = 6 for each of the ndir = 3 parts of the growth tensor. The token “12” denotes
isotropic growth, see as well Tables 1 and 2 for explanation of the numbers. For the
comparison, a performance measure P is defined as the negative relative deviation of the
optimized objective function values with respect to the reference value f ref

obj = 5.403 for
the case where no growth and remodeling is included, see Fig. 2 b. Thus, this measure is
given by

P = −
(fobj − f ref

obj)

f ref
obj

. (11)

Higher (positive) values are associated with model variants which indeed lead to stronger
improvements in the mechano-biological state. The results for the considered model vari-
ants are given in Fig. 3.

For a comprehensive evaluation and discussion, further model variants need to be ana-
lyzed and thus, the results given here can only be interpreted as representative examples
showing how the proposed methodology for the comparison of different models works.
However it can be seen that significantly increased performance measures are observed
for anisotropic growth models compared to the purely isotropic formulation. This already
indicates that the assumption of isotropic growth may not be realistic as also previously
speculated in the literature.
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(a) (b)

Figure 3: Performance measure P for a subset of different approaches when optimizing (a) the param-
eters ϑ+

(a)
by averaging over three load levels uz,i or (b) the parameters ϑ+

(a)
and the load level uz. The

tokens on the x-axis are composed of Fg-ID and φ-ID, consecutively listed for the multiplicative parts of
the growth tensor.

5 CONCLUSION

In this contribution, a new method to compare different approaches within an existing
framework of combined growth and fiber reorientation in arterial walls was proposed. It
relies on the evaluation of a mechano-biologically motivated objective function, which is
used to optimize the parameters of different growth models for different loading situations.
The objective function is defined at growth equilibrium based on stress peaks, stress
inhomogeneities and the volume change due to growth. All these quantities are supposed
to be reduced more effectively the better the approach, and hence it might be possible
to identify the most realistic growth mechanism. Even though a simplified one-layered
model of the artery with a minimized number of optimization variables is used, the results
should enable the comparative assessment of the fundamental mechanisms included in the
individual model variants. However, only a number of selected variants was analyzed so
far and thus, no final conclusion can be drawn with view to which model variant may be
most realistic.
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