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Abstract. This contribution is focused on a description of implementation details for
solver related to the slope stability benchmarks in 3D. Such problems are formulated by
the standard elastoplastic models containing the Mohr-Coulomb yield criterion and by
the limit analysis of collapse states. The implicit Euler method and higher order finite
elements are used for discretization. The discretized problem is solved by non-smooth
Newton-like methods in combination with incremental methods of limit load analysis.

In this standard approach, we propose several innovative techniques. Firstly, we use
recently developed sub-differential based constitutive solution schemes. Such an approach
is suitable for non-smooth yield criteria, and leads better return-mapping algorithms.
For example, a priori decision criteria for each return-type or simplified construction of
consistent tangent operators are applied.

The parallel codes are developed in MATLAB using Parallel Computing Toolbox.
For parallel implementation of linear systems, we use the TFETI domain decomposi-
tion method. It is a non-overlapping method where the Lagrange multipliers are used to
enforce continuity on the subdomain interfaces and satisfaction of the Dirichlet boundary
conditions.

1 INTRODUCTION

In our paper, we focus on parallel implementation of the new approach introduced
in [12], which is based on MATLAB codes. The parallelization is based on the TFETI
domain decomposition method [5], which is a modification of the original FETI method
proposed by Farhat and Roux [7].

1

989

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/294830907?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Martin Cermak and Vaclav Hapla and David Horak

We investigated the parallel implementation of a solver for small-strain, quasi-static
elastoplastic problem that contains the Mohr-Coulomb yield criterion, associative flow
rule, and perfect plasticity. The incremental constitutive problem is usually solved by the
elastic predictor/plastic corrector method. The plastic correction is also called (implicit)
return-mapping scheme. The improved scheme in [12] is based on the sub-differential
formulation of the plastic flow rule. It leads to a priori information whether the unknown
stress tensor lies on the smooth portion, on the “left” edge, on the “right” edge, or at the
apex of the pyramidal yield surface, even if the nonlinear isotropic hardening is considered
within the model.

The procedure of solving the problem in parallel is very similar to the classical solu-
tion. The main differences are: a) the original mesh is partitioned by METIS [10] into
subdomains, and it is necessary to assemble the TFETI objects for each subdomain such
as the equality constraint matrix and the kernel matrix, and these matrices do not change
during the computation process [13]; b) the stiffness matrix, right hand side and other
objects are assembled for each subdomain in each Newton step; c) in each Newton step,
the dual formulation in the Lagrange multipliers is solved instead of the primal formula-
tion in displacement; d) in contrast to the approach introduced in [12] where two loops
(loading step, Newton step) are considered, we add another loop for the iterative solver
(conjugate gradient) which solved the linearized problem in each Newton iteration.

In the text, we assume a deformable body from an elastoplastic material. The mate-
rial model contains the Mohr-Coulomb yield criterion, the associative flow rule, and the
nonlinear hardening law as in [2, 4]. For the sake of simplicity, consider an elasto-plastic
problem in 3D. Let Ω be a polygonal 3D domain and Th denote its triangulation. Further,
consider linear and conforming elements. So the displacement fields are approximated by
continuous and piecewise linear functions, and the strain, stress and isotropic hardening
fields are approximated by piecewise constant functions.

The paper is organized as follows. In Section 2, we introduce the initial value con-
stitutive problem for the Mohr-Coulomb plastic criterion with the implicit Euler time
discretization; in Section 3, we summarize the TFETI domain decomposition method
and algebraic formulation of our investigated problem; in Section 4, several implementa-
tion details for the parallel code in MATLAB are briefly summarized. We illustrate the
performance of our algorithm on the slope stability benchmark in 3D in Section 5.

2 THE CONSTITUTIVE INITIAL VALUE PROBLEM OF THE MOHR-
COULOMB CRITERION AND THE IMPLICIT EULER DISCRETIZA-
TION

The initial value constitutive problem reads:

Given the history of the strain tensor ε = ε(t), t ∈ [0, tmax], and the initial values εp(0) =
εp0, ε̄

p(0) = ε̄p0, find (σ(t), εp(t), ε̄p(t)) such that the conditions

σ = De : (ε− εp), κ = H(ε̄p),

ε̇p ∈ λ̇∂g(σ), ˙̄εp = −λ̇∂f(σ,κ)
∂κ

,

λ̇ ≥ 0, f(σ, κ) ≤ 0, λ̇f(σ, κ) = 0.




(1)
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hold for each instant t ∈ [0, tmax].

Here, σ, εp, ε̄p, λ denote the Cauchy stress tensor, the plastic strain, the hardening vari-
able, and the plastic multiplier, respectively. The dot symbol means the pseudo-time
derivative of a quantity. The functions f and g represent the yield function and the
plastic potential for the Mohr-Coulomb model, respectively. They are defined as:

f(σ, κ) = (1 + sinφ)ω1(σ)− (1− sinφ)ω3(σ)− 2(c0 + κ) cosφ, (2)

g(σ) = (1 + sinψ)ω1(σ)− (1− sinψ)ω3(σ), (3)

where ω1 and ω3 are the maximal and minimal eigenvalue functions, and ∂f(σ, κ)/∂κ =
−2 cosφ.

Further, the fourth order tensor De represents the linear isotropic elastic law

σ = De : ε
e =

1

3
(3K − 2G)(I : εe)I + 2Gεe, De =

1

3
(3K − 2G)I ⊗ I + 2GI, (4)

where εe = ε− εp, K and G (K,G > 0) denote the elastic part of the strain tensor, bulk
and shear moduli, respectively.

Finally, we let the function H representing the non-linear isotropic hardening in an
abstract form and assume that it is a nondecreasing, continuous, and piecewise smooth
function satisfying H(0) = 0.

It is worth mentioning that the value tmax need not be always known. Let

0 = t0 < t1 < . . . < tk < . . . < tN = tmax

be a partition of the interval [0, tmax] and denote σk := σ(tk), εk := ε(tk), ε
p
k := εp(tk),

ε̄pk := ε̄p(tk), ε̄
p,tr
k := ε̄p(tk−1), ε

tr
k := ε(tk) − εp(tk−1), and σtr

k := De : εtrk . Here, the
superscript tr denotes the so-called trial variables (see, e.g., [4]) which are known. If it
is clear that the step k is fixed, then we will omit the subscript k and write σ, ε, εp, ε̄p,
ε̄p,tr, εtr, and σtr to simplify the notation. The k-th step of the incremental constitutive
problem discretized by the implicit Euler method reads:

Given σtr and ε̄p,tr, find σ, ε̄p, and �λ satisfying

σ = σtr −�λDe : ν, ν ∈ ∂g(σ),

ε̄p = ε̄p,tr +�λ(2 cosφ),

�λ ≥ 0, f(σ, H(ε̄p)) ≤ 0, �λf(σ, H(ε̄p)) = 0.




(5)

Unlike Problem (1), the unknown εp is not introduced in (5). It can be simply computed
from the formula εp(tk) = ε(tk) − D−1

e : σ(tk) and used as the input parameter for the
next step. To solve the incremental problem, we use the standard elastic predictor/plastic
corrector method.

The elastic predictor. First, we verify whether the trial generalized stress (σtr, ε̄p,tr) is
admissible:

f(σtr, H(ε̄p,tr)) ≤ 0. (6)

3
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If this inequality holds, then we set

σ = σtr, ε̄p = ε̄p,tr, �λ = 0.

It is readily seen that the triplet (σ, ε̄p,�λ) solves the incremental problem.
The plastic corrector (the implicit return-mapping scheme). Let (6) not hold and as-

sume that the incremental constitutive problem has a solution. Then clearly �λ > 0,
and the problem reduces into the following form:
Given εe,tr and ε̄p,tr such that f(σtr, H(ε̄p,tr)) > 0, find σ, ε̄p and �λ > 0 satisfying

σ = σtr −�λDe : ν, ν ∈ ∂g(σ),

ε̄p = ε̄p,tr +�λ(2 cosφ),

f(σ, H(ε̄p)) = 0.





(7)

If the plastic potential g is differentiable on the yield surface, then the flow direction
ν is always single valued, and the return-mapping scheme leads to solving a system of
nonlinear equations. In [12] you can find details how to return to the smooth portion, to
the “left” edge, to the “right” edge, and to the apex of the pyramidal yield surface, as
well as how to construct nonlinear and tangential operators. The algebraic formulation
of the elastoplastic problem is formulated in [3] for the Drucker-Prager criterion and in
[14] for the von Mises criterion in combination with TFETI, which is summarized in the
following section.

As we mentioned above, we solved the nonlinear system of equations in each time step.
The semi-smooth Newton method [11] is applied to the nonlinear system of equations in
order to linearize it.

After preparing the tangential stiffness matrix and load vectors according to [12], we
can formulate the following problem:
Find increment of displacement �uk+1 ∈ V so that

vT
(
F k(�uk+1)−�f k+1

)
= 0 ∀v ∈ V , (8)

where �f k+1 is the increment of the load vector, F k is the nonlinear operator, and V is
the set of admissible displacements

V = {v ∈ Rn|BUv = o} .

The relation BUv = o represents the Dirichlet boundary conditions. The nonlinear
equations (8) can be linearized by the semi-smooth Newton method.

3 TFETI AND ALGEBRAIC FORMULATION OF THE PROBLEM FOR
ELASTO-PLASTIC BODIES

To apply the Total FETI (TFETI) domain decomposition method (DDM), we tear the
body from the part of the boundary with the Dirichlet boundary condition, decompose it
into subdomains, assign each subdomain a unique number, and introduce new “gluing”
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conditions on the artificial subdomain interfaces and on the boundaries with the imposed
Dirichlet condition. Let s denote the total number of the subdomains.

In the case of TFETI, the global stiffness matrix K and right-hand side f are assembled
only subdomain-wise, and take the form

K = diag(K1, . . . ,Ks),

f = [(f1)T , . . . , (f s)T ]T ,

where Kp and fp, p = 1, . . . , s, are the fully assembled stiffness matrix and load vector of
the subdomain Ωp, respectively. Then also the unknown vector of displacements u can
be subdivided as

u = [(u1)T , . . . , (us)T ]T ,

where up, p = 1, . . . , s, is the vector of displacements of subdomain Ωp.
TFETI is a dual approach, which means that the interface compatibility is enforced by

introducing the Lagrange multipliers. In the case of TFETI, also the Dirichlet boundary
conditions are enforced (see Figure 1) in this way whereas Kp remains unchanged, and
hence it is singular. The resulting equality constraints can be written as

Bu = o,

whereB is a signed Boolean matrix. It can be split vertically into two blocks corresponding
to the gluing part BG and the Dirichlet part BD.

Figure 1: The TFETI domain decomposition method for unit cube.

Introducing the Lagrange multipliers λ to enforce the interface compatibility, the global
problem takes the equivalent primal-dual form

[
K BT

B O

] [
u
λ

]
=

[
f
o

]
. (9)
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Let us establish notation

F = BK†BT , G = −RTBT , d = BK†f , e = −RT f .

K† denotes a generalized inverse of K, satisfying KK†K = K. Notice K† inherits the
block-diagonal structure from K and each block (K†)p is the generalized inverse of Kp.
We obtain a new linear system with unknowns λ and α

[
F GT

G O

] [
λ
α

]
=

[
d
e

]
. (10)

For more details about solving this system and preconditioning, see [6, 1].

4 IMPLEMENTATION DETAILS

Our parallel implementation is based on the TFETI DDM. To apply this method, the
original domain is partitioned into subdomains first. One of the widely used software tools
for this task is METIS [10], which allows meshes to be partitioned in 2D and 3D. This
software returns the number of subdomains for each element in the original mesh. Based
on this partitioning, we assemble the objects for each individual subdomains indepen-
dently. The local-to-global maping is constructed and the elements and nodes belonging
to the interface are identified in order to assemble the equality constraint matrix B.

The equality constraint matrix B consists of the Dirichlet part BD and the gluing part
BG. We have three ways how to assemble the gluing part BG: redundant, non-redundant
and orthonormal case, see [8]. In our code we allow all options but we recommend a) and
c) for better convergence.

Two well known preconditioners were implemented: Dirichlet and lumped, see [6,
1]. The Dirichlet preconditioner needs a smaller number of CG iterations but is more
expensive than the lumped one.

In our implementation, we use three loops: the outer loop for the loading process
represents the direct method; the middle loop for the semi-smooth Newton method; and
the inner loop for the linear iteration solver, more specifically the preconditioned conjugate
gradient method with projector (PCGP). The first two loops were introduced in [12] in
detail and the last one in [14].

For parallel computation, we use MATLAB Distributed Computing Server and MAT-
LAB Parallel Toolbox for sending and receiving data via its Message Passing Interface
(MPI) wrappers.

5 NUMERICAL EXPERIMENTS

We implemented the direct method of incremental limit analysis in MATLAB for the
3D slope stability problem. The code is parallelized by MATLAB Parallel Toolbox as
we mentioned in the previous section, and includes the improved return-mapping scheme
for the Mohr-Coulomb model. The available options include a) several types of finite
elements with appropriate numerical quadratures; b) locally refined meshes with various
densities; c) different preconditioners; d) different types of the equality constraint matrix.
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We consider the extension of the benchmark for the plane strain problem introduced
in [4, Page 351] for the 3D case. Further, we set E = 20 000 kPa, ν = 0.49, φ = 20◦ and
c = 50 kPa, where c denotes the cohesion for the perfect plastic model. The stopping
tolerance of the Newton and CG loops are set to εNewton = 10−7 and εCG = 10−12,
respectively.

All numerical experiments were computed on the Salomon supercomputer. The Sa-
lomon cluster consists of 1008 compute nodes, totaling 24,192 compute cores with 129 TB
RAM and giving over 2 Pflop/s theoretical peak performance. Each node is a powerful
x86-64 computer, equipped with 24 cores, at least 128 GB RAM. The nodes are intercon-
nected by 7D Enhanced hypercube InfiniBand network and equipped with the Intel Xeon
E5-2680v3 processors. The Salomon cluster consists of 576 nodes without accelerators
and 432 nodes equipped with the Intel Xeon Phi MIC accelerators.

Within this slope stability experiment, we compared the loading paths for the Q1
and Q2 hexahedral elements with 8 and 20 nodes, respectively, simillarly as in [12]. We
consider 2 × 2 × 2 and 3 × 3 × 3 nodes integration quadratures for these element types,
respectively. For the Q1 elements, the meshes contain 5103 and 37597 nodal points.
For the Q2 elements, the meshes contain 19,581 and 147,257 nodal points. We use the
direct method of the incremental limit analysis which is terminated when the computed
settlement exceeds 4 meters. For parallel computing, we use 4 and 20 cores on Salomon
for level 1 and 2, respectively.

The corresponding loading paths are depicted in Figure 2. We can see that the loading
paths are very similar to loading paths which were introduced in [12]. Figure 3 illustrates
a failure at the end of the loading process for the Q2 elements and the finer mesh.

The computation time of our approach is worse than the time which we need for the
sequential version of the code in MATLAB, but this implementation gives us the oppor-
tunity to compute bigger problems and guidelines how to implement it more efficiently
for example in our PERMON toolbox [9].

Figure 2: Comparison of the loading paths
for Q1 and Q2 elements.

Figure 3: Total displacement and original
shape at the end of the loading process.
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6 CONCLUSIONS

In this paper, we have briefly summarized our parallel implementation of the Mohr-
Coulomb plastic criterion, which is based on the new approach introduced in [12] and
the TFETI DDM. This approach allows us to compute bigger benchmarks and estimate
the limit value to get closer to the expected value of 4.045 (which is the experimentally
measured limit value of the slope stability experiment).
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