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Abstract. With growing capabilities of computers use of multi-scale methods for detailed
analysis of response with respect to material and geometric nonlinearities is becoming
more relevant. In this paper focus is on MIEL (mesh-in-element) multi-scale method and
its implementation with AceGen and AceFEM based on analytical sensitivity analysis.
Such implementation enables efficient multi-scale modelling, consistency and quadratic
convergence also for two-level path following methods for the solution of path dependent
problems.

1 INTRODUCTION

Implementation of multi-scale methods is possible in various ways. Here, the numerical
scheme for implementation of MIEL multi-scale method based on sensitivity analysis is
presented. Implementation is done with the Mathematica packages AceGen and AceFEM
[1]. Programs enable analytical sensitivity analysis of first and second order [2], that can
be used for efficient implementation of multi-scale finite element methods, eg. FE2 or
MIEL.

2 AUTOMATIC DIFFERENTIATION BASED (ADB) NOTATION

AceGen is advanced automatic code generator, where automatic differentiation tech-
nique, automatic code optimization and generation are combined with computer algebra
systemMathematica[3]. Size of code is reduced through control of expression swell[4]. The
AceFEM package is a general finite element environment designed to solve multi-physics
and multi-field problems.
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Automation of primal and sensitivity analysis is done with AceGen. The automatic
differentiation technique (AD) can be used for the evaluation of the exact derivatives of
any arbitrary complex function via chain rule and represents an alternative solution to
the numerical differentiation and symbolic differentiation. The result of AD procedure is

called ”computational derivative” and is written as δ̂f(a)

δ̂a
. The AD operator δ̂f(a)

δ̂a
represents

partial derivative of a function f(a) with respect to variables a. If, for example, alternative
or additional dependencies for a set of intermediate variables b have to be considered for
differentiation, then the AD exception is indicated by the following formalism

δ̂f(a,b)

δ̂a

∣∣∣∣∣Db
Da

=M

, (1)

which indicates that during the AD procedure, the total derivatives of variables b with
respect to variables a are set to be equal to matrix M. The automatic differentiation
exceptions are the basis for the ADB formulation of computational problem. The ADB
notation can be directly translated to the AceGen input and is part of numerically efficient
code automation. Details of the method and of the corresponding software AceGen can
be found in [4], [2] and [5].

The automation of multi-scale analysis requires the automation of primal and sensi-
tivity analysis. In primal analysis the response of the system is evaluated, whereas in
sensitivity analysis the derivatives of the response, e.g. displacements, strains, stresses
or work, with respect to arbitrary design parameter φi are sought. The primal problem
is solved by the standard Newton-Raphson iterative procedure (see e.g. [2]). For the
automation of the multi-scale methods the sensitivity analysis with respect to prescribed
essential boundary conditions is needed.

3 MULTI-SCALE METHODS

Multi-scale methods are nowadays widespread in computational mechanics [6, 7, 8].
They usually originate from the demand to model heterogeneous materials, like fiber
reinforced composites, particle reinforced adhesives, concrete and even metal. FE2 is a
standard two-level finite element homogenization approach [9], that is appropriate for the
problems where scales are separated far enough and are only weakly coupled. FE2 method
is already implemented in AceFEM using sensitivity analysis, for details reader is referred
to [10, 11]. In some cases for example when difference between two scales is finite, or when
in the region of high gradients, the FE2 multi-scale approach fails, thus we need to use
some sort of domain decomposition method. One possibility is the mesh-in-element or
MIEL scheme described e.g. by Markovič and Ibrahimbegović in [12].

3.1 MIEL method

MIEL method is variant of domain decomposition methods. Here its implementation
based on sensitivity analysis is presented. The finite element models at different scales
communicate between each other through degrees of freedom of the finite element at
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Figure 1: MIEL, problem, micro and macro level

the macro-scale. The residual and tangent matrix are for each macro element obtained
directly from the micro-scale problem. Each macro element thus represents one micro
problem, see Fig. 1. Macro element performs only proper transfer of components of the
macro element residual vector and tangent matrix from micro scale to macro scale finite
element assembly procedure. At the macro level residual and tangent are assembled from
individual macro elements and macro response is calculated. Macro tangent matrix is
typically evaluated using the Schur complement of the global micro matrix, which is
numerical expensive operation. Here it is calculated through sensitivity analysis with
respect to prescribed essential boundary conditions. Implementation in AceFEM enables
this approach that is numerical more efficient for dense micro finite element meshes.
Correctly done sensitivity analysis at micro level leads to algorithmically consistent macro
tangent matrix. Quadratic convergence of problem is with that ensured also for examples,
that are dependent on load-path.

Let pMe be a vector of unknowns in the nodes of the macro element, pme a vector of
unknowns in the nodes of the characteristic micro problem element and W strain energy
function. The outer shape of the micro problem is the same as the shape of the corre-
sponding macro element. The prescribed essential boundary conditions (displacements)
are identical to the displacements at the boundary of the corresponding macro element.
The integration point contribution (g-th integration point in the e-th element of the micro
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Figure 2: Characteristic velocity field for MIEL

mesh) to the macro residual and macro tangent matrix is then

RMg =
∂W (pme(pMe))

∂pMe

=
∂W

∂pme

Dpme

DpMe

(2)

KMg =
∂RMg

∂pMe

=
∂2W

∂pme
2

Dpme

DpMe

+
∂W

∂pme

D2pme

Dp2
Me

. (3)

The implicit dependencies Dpme

DpM e
and D2pme

Dp2
M e

are obtained by the first and second order

sensitivity analysis. Thus, the sensitivity analysis based automation of the MIEL scheme
requires the second order sensitivity analysis for a set of sensitivity parameters pMe. The
ADB form of (2) and (3) then leads to

RMg =
δ̂W

δ̂pMe

∣∣∣∣∣Dpme

DpM e
=DpM e

pme

(4)

KMg =
δ̂RMg

δ̂pMe

∣∣∣∣∣Dpme

DpM e
=DpM e

pme,
D(DpM e

pm)

DpM e
=DpM epM e

pme

(5)

where data structures DpM e
pme =

Dpme

DpM e
and DpM epM e

pme =
D2pme

Dp2
M e

are the results of the

first and second order sensitivity analysis.
For the complete formulation of the prescribed boundary condition sensitivity problem,

we need the first and second order prescribed boundary condition velocity fields Dφi
p̄e

and Dφiφj
p̄e for details see e.g.[2]. Let p̄m be a vector of unknowns at the boundary of

micro problems with prescribed essential boundary conditions, thus p̄m = p̄m(pMe). The
set of sensitivity parameters of the MIEL problem is φ = pMe. The components of Dφi

p̄e

are obtained by the differentiation of p̄m(pMe) with respect to pMe. Let us assume the
standard interpolation of the unknown field u on the boundary of the macro element

u =
∑

Ni(Ξ) ui, (6)
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where Ni(Ξ) are the shape functions and ui the nodal unknowns and
∂u
∂ui

= Ni(Ξ). Thus,
the components of the first order boundary condition velocity field Dφi

p̄e are the values
of the macro element shape functions at the position of the boundary nodes of the micro
mesh, see Fig. 2. For boundary condition in form of linear combination (6), the second
order velocity field is zero Dφiφj

p̄e = 0.

4 EFFICIENCY IMPROVEMENT

Numerical efficiency of multi-scale methods can be improved in different ways. First
improvement was done at individual macro problem, with replacing calculation of Schur
complement with sensitivity analysis based calculation of macro tangent matrix. For
densely meshed micro-structure calculation of the Schur complement inflicts high memory
allocation and is time consuming, which is not the case for the sensitivity analysis based
implementation. In case of MIEL method this is due to the fact that the number of
sensitivity parameters remains the same, regardless of the density of the micro mesh,
whereas the size of the Schur complement grows with the number of the nodes on the
boundary of the micro problem.

Further optimisation can be done with use of unified sensitivity based approach to
multi-scale modelling, that is enabled by automatic-differentiation-based (ADB) formula-
tion for an arbitrary nonlinear, time dependent coupled problem (e.g. general finite strain
plasticity). Different multi-scale methods FE2, MIEL and also single scale schemes can
be used together in one model. With that optimal domain discretization is possible. For
example, MIEL that is numerically most demanding can be used only where it is needed,
other ways FE2 or single-scale method can be used.

In AceFEM solving of nonlinear problems is done implicitly with a Newton-Raphson
type iterative solution procedure. Since we have two scales, we have in general a path
following procedure at both scales, resulting in two-level path following procedure. Tra-
ditionally, each step at macro level is followed by only one step at micro level. Sensitivity
analysis based multi-scale analysis allows extension to more general case, where each
macro step can be followed by an arbitrary number of micro substeps.

Implementation of the presented multi-scale computational approach in AceFEM is
fully parallelized for multi-core processors. Micro problems are distributed on kernels by
evaluating each individual micro problem always at the same kernel. With parallelized
computation, computational time for complex problems can be significantly reduced. The
setup is also appropriate for the implementation on clusters.

5 NUMERICAL EXAMPLE

Multi-scale MIEL method was tested on Cook membrane benchmark problem, to verify
consistency and efficiency of micro-macro coupling. The homogeneous micro structure is
chosen intentionally for the benchmark purposes. Effect of macro mesh density and use
of different finite elements were investigated. With AceGen, the codes of analytical first
and second order sensitivity analysis are generated automatically. Examples were calcu-
lated with AceFEM, where whole MIEL scheme is implemented including communication
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between macro and micro scale. Essential boundary condition of macro mesh are sent
to micro problem and interpolated over the edge. Important is that essential boundary
condition velocity fields are set correctly.

5.1 Description of example

In Tab. 1 characteristics of problem on macro and micro level are described. Geometry,
constraints and load are defined at macro level, whereas material properties are defined
at micro level. Displacements are fixed on one side and on the other distributed load in
vertical direction is added. Division of macro mesh had been variated, while division on
micro level was the same in all computations. For mesh at macro and micro level two-
dimensional quadrilateral elements with 4 nodes Q1 and with 8 nodes Q2S were used.
Converged mesh density on micro level was used, so that results for different macro mesh
densities can be compared.

Table 1: Macro and micro problem for MIEL

macro problem micro problem
Geometry Material
h1 = 44 mm; h2 = 16 mm; E = 1 N/mm2

l = 48 mm; t = 1 mm ν = 0
Constraints: X = 0: u = v = 0 *micro mesh of macro element marked
Load: q = 0.1 N/mm2 with m
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5.2 Consistency of micro-macro coupling

Consistent coupling between micro and macro scale was verified with comparison of
upper right point P displacement on the Cook membrane test. Vertical displacement was
compared for different macro mesh densities. For single scale analysis results for linear and
quadratic elements are shown. For MIEL three combinations were investigated. MIEL
Q1-Q1: Q1 element at macro and Q1 element at micro level, MIEL Q2S-Q1: Q2S element
at macro and Q1 element at micro level and MIEL Q2S-Q2S: Q2S element at macro and
Q2S element at micro level. Convergence of result is faster for MIEL, than for single-
scale analysis, comparison is shown in Fig. 3. Overall convergence of Q2S elements with
quadratic interpolation is faster than with Q1. Results show that for meshing at micro
level use of Q2S elements is not preferable, because small improvement of convergence
does not compensate for increased computational time. In Fig. 4 results for strain Exx of
example MIEL Q2S-Q1 are shown.

Figure 3: Convergence of result for vertical displacement

Figure 4: Results for strains Exx
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6 CONCLUSIONS

In this work, basic principles of multi-scale MIEL method and possibilities for nu-
merical improvement were described. In a conventional way of computing macroscopic
tangent matrix a Schur complement is needed. As an alternative, the boundary condi-
tion sensitivity analysis was used to obtain macroscopic tangent matrix, for which second
order sensitivity is needed. Numerical examples were calculated with AceFEM. Consis-
tency of micro-macro coupling was shown on a Cook membrane example. Use of finite
elements with quadratic interpolation is recommended for macro elements, whereas for
micro mesh, elements with linear interpolation are preferred. Codes of the finite element
for analytical first and second order sensitivity analysis are generated automatically with
AceGen. For densely meshed micro-structures, the sensitivity analysis based calculation
is numerically more efficient than Schur complement. This is due to the fact that the
size of the Schur complement grows with the number of the nodes on the boundary of the
micro problem, whereas the number of sensitivity parameters remains the same regardless
of the density of the micro mesh. Traditionally, in multi-scale methods solved with two-
level path-following procedure one macro time step is followed by one micro time step.
Sensitivity analysis based multi-scale analysis allows that each macro step can be followed
by an arbitrary number of micro substeps.
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