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Abstract. The material point method (MPM) is one of the latest developments in particle in 
cell methods (PIC). The structure is discretized into a number of material points that hold all 
the state variables of the system [1] such as stress, strain, velocity, displacement etc. These 
properties are then mapped to a temporary background grid and the governing equations are 
solved. The momentum conservation equations (together with energy and mass conservation 
considerations) are solved at the grid nodes. The state variables of the particles are then updated 
by transferring the solutions from the grid nodes back to the material points. Since the 
background grid is used only to solve the governing equations at the end of each computational 
step it can be reset to its undistorted form and thus mesh distortion and element entanglement 
are avoided. 

In this work an explicit MPM accounting for elastoplastic material behavior with degradations 
is proposed. The stress tensor is decomposed into an elastic and a hysteretic – plastic part [5] 
where the hysteretic part of the stresses evolves according to a Bouc-Wen type hysteretic rule 
[2]. The inelastic constitutive material law provides a smooth transition from the elastic to the 
inelastic regime and accounts for the different phases during elastic loading, unloading, yielding 
and stiffness and strength degradation. Heaviside type functions are introduced that act as 
switches, incorporate the yield criterion and the terms for stiffness and strength degradation as 
in the Bouc-Wen model of hysteresis [2]. The resulting constitutive law relates stresses and 
strains with the use of the tangent modulus of elasticity, which now includes the Heaviside 
functions and gathers all of the governing inelastic degrading behavior. 

 
 
1 INTRODUCTION 

In the Material Point Method, the domain is discretized into a set of material points or 
particles.  Each particles represents a fraction of the volume of the material and carries all the 
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properties and the state of the material (mass, stress, density strain etc.). In addition to the 
material points a background grid is employed. This is in most cases structured, but it can also 
be arbitrary. The grid is static and does not deform and it is reset to its original form after each 
computational step. It is used to solve the governing equations of motion. The properties of the 
material points are mapped to the background grid using shape functions similar to FEM. After 
the solution is obtained in the background grid nodes, the updated quantities are mapped back 
to the material points. 

 
Figure 1: MPM discretization. 

In this work cubic B-Splines shape functions are used [3]. They have been shown to reduce 
quadrature errors and the grid crossing errors that occur when a material point crosses between 
two elements of the background grid if the gradients of the shape functions are discontinuous 
[4]. 

2 THE MATERIAL POINT METHOD 
In the MPM algorithm the following steps are considered: firstly, the element of the 

background grid that each material point lies in, is identified and the corresponding shape 
functions are evaluated. The material point masses pM and momenta  pMv   are mapped to the 
background grid and the nodal masses im  and momenta  imv  are calculated:  
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where iN  are the corresponding shape functions. The nodal internal forces int
iF  are calculated 

on the background grid based on the material point stresses and using the gradient of the shape 
functions: 
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where pp  is the density of the material point p. The total nodal force vector iF , on the 
background grid is calculated and the appropriate boundary conditions are applied: 
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intext
i i iF F F   (3) 

The momenta at the background grid nodes are updated: 

    ii imv mv Fdt   (4) 

The properties are mapped back to the material points and their positions and velocities are 
updated as follows: 
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The final step is to calculate the strain increments and from those the stress increments. Using 
the Modified Update Stress Last (MUSL), that has been shown to conserve energy better, the 
grid nodal momenta are recalculated based on the new particle velocities and the particle strain 
increments p  are calculated based on the new nodal velocities: 
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where  D  is the plane stress elasticity matrix: 
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 (7) 

3 PLASTICITY MODEL WITH DEGRADATIONS 
The mechanical analogue of the Bouc – Wen [2] hysteretic model for a Single Degree of 

Freedom system is presented in Figure 2.  
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Figure 2: Mechanical analogue of Bouc-Wen model. 

The model can be visualized as the parallel combination of two components, one being a 
linear spring with reduced stiffness ak , where a  is the ratio of the post yield stiffness to the 
initial elastic one. The second element consists of a linear spring and a slider that are connected 
in series. If the force that acts on the system is smaller than the yield force, then the system 
behaves elastically with its initial stiffness. If, however, the yield force is exceeded, then the 
force in the second element stays constant and equal to the yield force and the linear spring 
provides the additional hardening. 

The differential equations of the Bouc-Wen model for the single degree of freedom system 
are: 
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where z  is the hysteretic parameter, yz  is the maximum value of the hysteretic parameter, sgn  
is the signum function, K  is the stiffness of the spring and a  is the ratio of the post yield 
stiffness to the initial elastic one. The total force is uncoupled into an elastic one and a hysteretic 
one. 

The Bouc – Wen model as explained in the previous paragraph is generalized herein 
regarding the stress tensor which is now decomposed into an elastic a hysteretic part as: 

          e hI        (9) 

where  a  is a diagonal matrix that hold the ratio of the post yield stiffness to the elastic one 
and  I is the identity matrix. The elastic part of the stresses relates to the strains with the use 
of the classic constitutive matrix  D : 

    e D   (10) 

The hysteretic part of the stresses follows a Bouc-Wen type hysteretic rule and thus: 

         1 2
h D I H H R    (11) 
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where 1 2,H H  are Heaviside type functions and  R  is the interaction matrix. Its formulation 
stands from the theory of classical plasticity and can be found in [5] and [7] and contains no 
hardening related terms [6]. The Heaviside type functions are given as: 
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where   is the yield criterion. These functions essentially smooth the transition from the elastic 
to the inelastic regime and control loading and unloading behaviour. The rate form of equation 
(9), using equation (11), can be written as: 
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Two additional parameters are added into the model to account for stiffness degradation and 
strength deterioration. These parameters where first introduced by Baber and Wen [8] and 
equation (13) now becomes: 
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Regarding the parameters in the previous relations, nc  and vc  are the model parameters that 
need to be identified, while he  is the accumulated hysteretic energy due to plastic energy 
dissipation. It is calculated from the hysteretic stresses as: 

   h he d    (16) 

Finally, the constitutive equation can be written as: 
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where tE    can be considered as a tangent matrix effectively controlling the smooth transition 
from the elastic to the inelastic regime, loading and unloading, as well as accounting for 
stiffness and strength degradation. This matrix can now substitute the classic elasticity matrix 
in (6) and extend the MPM to account for plasticity and degradations. 

4 NUMERICAL EXAMPLES 
In order to verify the proposed model within the MPM framework a cantilever beam is 

considered. Material is steel with E=210GPa, and yield strength of sy=240MPa. The 
dimensions of the beam are 1m by 0.2m. In this analysis the beam was discretized with 320 
material points using 4 points per element. The discretized beam and the employed background 
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grid can be seen in Figure 3. A sinusoidal force is applied at the free end of the beam during a 
time of 5 secs with a maximum value ok 375kN and a period of 2π to simulate one full cycle. 
The results are plotted in Figure 4 regarding the stress strain diagram of the material point 
closest to fixed end both with and without degradations. In addition, the Von Mises stresses of 
the beam at its maximum displaced position are plotted in Figure 5. Results show that the 
formulation is able to capture accurately the main features of plasticity together with 
degradation phenomena. 

 
Figure 3: MPM discretization of the beam with 320 material points. 

 
Figure 4: Stress strain diagram for the material point closest to the fixed end. 
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Figure 5: Von Mises stresses. 

5 CONCLUSIONS 
- The Material Point Method is used in an explicit formulation scheme to model 

plasticity with degradation phenomena. 
- Use of higher order cubic B-Splines effectively minimizes the grid crossing errors and 

improves the accuracy of the MPM method. 
- The hysteretic - plasticity model for nonlinear analysis accounts for smooth transition 

from the elastic to the inelastic regime. 
- The model accounts for stiffness degradation and strength deterioration. and has been 

incorporated into the MPM framework by modifying the tangent modulus of elasticity. 
- Numerical examples are presented that verify the proposed model ability to simulate 

plastic and damage phenomena. 
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