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Abstract. The paper treats the formulation of the shakedown problem and, as special
case, of the limit analysis problem, using solid shell models and ES-FEM discratization
technology. In this proposal the Discrete shear gap method is applied to alleviate the
shear locking phenomenon.

1 INTRODUCTION

Shakedown analysis plays an important role in assessing the safety of structures in
presence of many independent load combinations [1] against plastic collapse, loss in func-
tionality due to excessive deformation (ratcheting) or collapse due to low cycle fatigue.

Nowadays, due to the growing attention of the scientific community, solid-shell elements
have reached a high level of efficiency and accuracy. It has been shown that solid-shell
finite elements give some advantages in linear and nonlinear context of analysis [2]. When
compared to shell elements, solid-shell formulations present a simpler structure since only
displacement degrees-of-freedom are employed. They can automatically account for 3D
constitutive relations and are able to model through the thickness behaviours more ac-
curately without the need to resort plane-stress assumptions, which often occurs in shell
elements including rotation degrees-of-freedom. Solid-shell formulations also present im-
portant advantages when considering double-sided contact situations and in treating large
deformations, since no rotation degrees-of-freedom are involved. However in addition to
the classical shear, membrane and volumetric lockings, in the solid-shell exhibits thickness
and trapezoidal locking. The latter is typical only of low order FEM. Assumed Natural
Strain, Enhanced Assumed Strain and mixed (hybrid) formulations have been proposed
for resolving these locking phenomena. In the context of triangular grids, the Assumed
Natural Strain doesn’t solve at all the shear locking [3] and a good alternative seems
to be the so-called Discrete Shear Gap method [4]. Particularly for these models, to be
competitive, it is better to improve the behaviour of lower-order finite elements due to
its low computational cost when moderately fine meshes are required. To this aim linear
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triangular (T3) discretization [5] is highly suitable for describing complicated data and
shows little sensitivity to the mesh distortion.

In order to alleviate the overstiffness of lower order FEMs various solutions have been
proposed in the literature and smoothed finite element methods (SFEM) represent a
a quite recent and effective numerical strategy. It is based on the idea of defining a
smoothing domain through the discretization with different patterns, i.e. cells, nodes,
edges or faces of a background mesh. More recently, the smoothing concept has been
extended to elements with higher order shape functions [6, 7] simply obtained by using a
mixed method. For an exhaustive description of the S-FEM method and a complete list
of references, the authorship can find in [8].

Obviating the need to perform a cumbersome incremental elasto-plastic analysis [9, 10,
11], direct methods has been proved to be one of the most powerful tools to estimate the
shakedown safety load of practical engineering structures.

The aim of this paper is to present a mixed shakedown (limit) analysis formulation
for solid-shells. The proposed mixed element is based on a Edge Smoothed represen-
tation of the displacement field and piece-wise constant description of the stress field.
The mixed nature of the element gives coherent equilibrium equations suitable for the
simple application to the shakedown analysis and prevents volumetric locking problem.
The assumed piece-wise constant description of the stress field allows the discontinuities
inherent in the plastic solution. Furthermore, the model is particularly simple and easy
to implement while providing accurate solutions of the plastic collapse analysis. Among
other benefits the proposed MES-FEM model resolves also the dependency of state-of-art
triangular solid shell elements on the adaptation of the cross-diagonal mesh. It is con-
structed by using a mixed format as described in [6, 7], and is suitable to perform well
also in geometrically nonlinear context [12, 2, 13].

The yield criteria are borrowed from classical shell shear deformable shell models rewrit-
ten in terms of the variables used in defining the solid shell model used.

Another FEM model based on the so-called composite concept [14, 15, 16] is derived
and compared with the ES-FEM ancestor.

2 THE SOLID-SHELL FINITE ELEMENT

In this section we briefly recall the kinematics of solid-shell finite element following the
description of Sze et al. [17, 3].

2.1 Kinematics in convective frame

The convective coordinates ζ = {ξ, η, ζ} are used to express the FE interpolation. A po-
sition vector in the initial or current configuration are denoted byX[ζ] ≡ {X1[ζ],X2[ζ],X3[ζ]}
andY[ζ] ≡ {Y1[ζ],Y2[ζ],Y3[ζ]} respectively and are linked by the displacement field d[ζ]

Y[ζ] = X[ζ] + d[ζ] (1)

Adopting the convention of summing on repeated indexes, the covariant Green-Lagrange
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Figure 1: Linear triangular based solid-shell element

strain measure components are

ε̄ij =
1

2
(X,i ·d,j +d,i ·X,j +d,i ·d,j ) with i, j = ξ, η, ζ (2)

where a comma followed by k denotes the derivative with respect to kth component of ζ
and (·) denotes the scalar product.

The shell, with constant thickness, is conveniently described using a bi-dimensional
frame

X[ζ] = X0[ξ, η] + ζXn[ξ, η] = Nd[ζ]Xe, d[ζ] = d0[ξ, η] + ζdn[ξ, η] = Nd[ζ]de (3)

where vectors de and Xe collect the element nodal displacements and coordinates. The
matrix Nd[ζ] collects the interpolation functions

Nd[ζ] ≡
[
N, ζN

]
= Nd0 + ζNdn (4)

where ζ ∈ [−1,+1], Nd0 = [N[r, ξ, η],0] andNdn = [0,N[r, ξ, η]] that for linear triangular
grids, the bi-dimensional shape functions N ≡

[
N1, N2, N3

]
are as usual

N1 = r = 1− ξ − η, N2 = ξ, N3 = η (5)

Adopting a Voigt notation the infinitesimal covariant strain components in Eq.(2) are
collected in vector ε̄ ≡ [ε̄ξξ, ε̄ηη, 2ε̄ξη, ε̄ζζ , 2ε̄ηζ , 2ε̄ξζ ]

T that, exploiting Eq.(3), becomes

ε̄ ≡




XT
e Nd,

T
ξ Nd,ξ

XT
e Nd,

T
η Nd,η

XT
e (Nd,

T
ξ Nd,η +Nd,

T
η Nd,ξ )

XT
e Nd,

T
ζ Nd,ζ

XT
e (Nd,

T
ζ Nd,η +Nd,

T
η Nd,ζ )

XT
e (Nd,

T
ξ Nd,ζ +Nd,

T
ζ Nd,ξ )



de, (6)
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The covariant strains can be conveniently linearized with respect to ζ in the following
form

ε̄ ≈



ē[ξ, η] + ζ χ̄[ξ, η]

ε̄ζζ [ξ, η]
γ̄[ξ, η]


 (7)

and collected in the vector ρ̄[ζ] = ρ̄[ξ, η] ≡ [ē, ε̄ζζ , χ̄, γ̄]
T

where

ē[ξ, η] ≡



ε̄ξξ
ε̄ηη
2ε̄ξη


 χ̄[ξ, η] ≡



ε̄ξξ,ζ
ε̄ηη,ζ
2ε̄ξη,ζ


 γ̄[ξ, η] ≡

[
2ε̄ηζ
2ε̄ξζ

]

By partitioning the vectors de = [d0e,den]
T and de = [Xe0,Xne]

T the components of
generalized covariant strains (7) have the following form

ē1 = XT
e Q

m
ξξde, ē2 = XT

e Q
m
ηηde, ē3 = XT

e Q
m
ξηde

χ̄1 = XT
e Q

b
ξξde, χ̄2 = XT

e Q
b
ηηde, χ̄1 = XT

e Q
b
ξηde

ε̄ζζ = XT
e Qζζde, 2ε̄ξζ = XT

e Qξζde, 2ε̄ηζ = XT
e Qηζde

(8)

It can be shown that the operators involved in previous equations are of compact shape.

2.2 Remedies for shear and trapeziodal locking

A way of resolving shear locking is the Assumed Natural Strain method in which the
natural transverse shear strains are sampled at some discrete element points and then
interpolated. As shown in [3, 18] also after this treatment triangular elements based on
ANS still have a moderate chance of exhibiting shear locking.

The so-called Discrete Shear Gap method [4] that can be classified as an ANS method
is another effective strategy of resolving shear locking gives some advantage. The element
formulation is automatic for any kind of element, regardless of shape and polynomial
order, there is no need to choose an interpolation for the shear strains or to specify
any sampling points. The process to construct DSG is similar for both triangles and
quadrangles whereas in applying the ANS to triangles a proper choice of feasible sampling
points proves to be more problematic than for rectangles [4].

The DSG algorithm is employed in this finite element formulation

• Evaluation of the discrete shear gaps by integrating the transverse shear strains, or
equivalently the corresponding matrices Qs (8)

∆γ1
ξz = 0, ∆γ2

ξz =

∫ ξ2

ξ1

Q̄ξζdξ, ∆γ3
ξz =

∫ ξ3

ξ1

Q̄ξζdξ

∆γ1
ηz = 0, ∆γ2

ηz =

∫ η2

η1

Q̄ηζdη, ∆γ3
ηz =

∫ η3

η1

Q̄ηζdη

(9)

Q̄ξζ and Q̄ηζ are obtained from compatibility relations (3). It is worth mentioning
that these integrals are carried out apriori analitically
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• Interpolation of the discrete shear gaps across the element in order to obtain the
suitable discrete form

Qξζ =
∂N2

∂ξ
∆γ2

ξz +
∂N3

∂ξ
∆γ3

ξz

Qηζ =
∂N2

∂η
∆γ2

ηz +
∂N3

∂η
∆γ3

ηz

(10)

Similarly to shear locking, the excessive number of sampled thickness strains lead to
trapezoidal locking. It can be reduced in the system level by sampling the strain along
the element edges [19], namely

Qζζ = rQ̄
∣∣
ξ=0,η=0

+ ξQ̄
∣∣
r=0,η=0

+ ηQ̄
∣∣
ξ=0,r=0

(11)

In this way the element is free from trapezoidal locking and is immune to shear locking
as the other standard three-node degenerated shell elements [18, 20]

2.3 Dual variables of generalized strain components

Once the kinematic model is assumed (or vice versa) the related stress variables are
automatically given by assuring the invariance of the internal work. By collecting the
contravariant stress components σ̄ ≡ [σ̄ξξ, σ̄ηη, 2σ̄ξη, σ̄ζζ , 2σ̄ηζ , 2σ̄ξζ ]

T the work conjugate
variables with ρ̄ are obtained by

W =

∫

V

ε̄T σ̄dV =

∫

Ω

(
N̄ T ē+ M̄T χ̄+ s̄ζζ ε̄ζζ + T̄ T γ̄

)
(12)

The generalized contravariant stresses are then

N̄ ≡ 1

2

∫ 1

−1

σpdζ M̄ ≡ 1

2

∫ 1

−1

ζσpdζ s̄ζζ ≡ 1

2

∫ 1

−1

σζζdζT̄ ≡ 1

2

∫ 1

−1

τdζ (13)

with

σ̄p =



σ̄ξξ

σ̄ηη

σ̄ξη


 τ̄ =

[
σ̄ξζ

σ̄ηζ

]
and t̄ ≡

[
N̄ , s̄ζζ ,M̄, T̄

]T

The way of performing the integral
∫
Ω
(· · · ) defines the finite element formulation.

2.4 The mapping to physical coordinates

A physical coordinate system is used to describe the material properties that can be
different for each patch (subdomain) in which the domain may be partitioned. It is
assumed that x− y plane is coincident with the mid-plane of the shell (ζ = 0, ζ parallel
to z). With these assumptions the generalized Cartesian strain and stresses are obtained
from the natural ones as

t =Tσ t̄

ρ =Tερ̄ = T−T
σ ρ̄

with Tσ =



Tp 0 0 0
0 Tz 0 0
0 0 Tp 0
0 0 0 Tt


 (14)
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where Tz = z2,ζ =
h2

4
and where h is the thickness of the shell and

Tp =




x2
,ξ y2,η 2x,ξx,η

y2,ξ y2,η 2y,ξy,η
x,ξy,ξ x,ηy,η x,ξy,η + x,ηy,ξ




Tt = z,ζ

[
x,ξ x,η

y,ξ y,η

] (15)

and xξ = RX0,ξ, xη = RX0,η. The matrix R = [iTx , i
T
y , i

T
z ]

T collects by row the unit
vectors along the axis of the local Cartesian coordinates

ix =
X0,ξ

‖X0,ξ‖
or provided as input, iy =

X0,η

‖X0,η‖
, iz = ix × iy

Being the Jacobian matrix J

J0[ξ, η] =
[
X0,ξ X0,η X0,ζ

]
=



x,ξ y,ξ 0
x,η y,η 0
0 0 h/2


 (16)

constant with ζ its determinant can be evaluated as det(J) = Ah where 2A = x,ξy,η−y,ξx,η

2.5 Edge smoothed element topology

The solid shell model is based on a description of a bi-dimensional domain using three-
dimensional strain measure. Many advantages in employing Smoothed FEM (S-FEM)
have been proven [8, 21] but standard formulation still show some drawback. Is the
authors opinion that the generation of the mesh for S-FEM-type elements, including
edge imbricate FEM (EI-FEM) [22] is not trivial. Recently in [23] a nice method for an
automatic mesh generation for S-FEM have been developed. It is also the authors opinion
also that the simplest, automatic and costless way to describe the S-FEM models based
on first order grids (T3 or Q4) is to use a quadratic grids and stress assumption [6] instead
of strain assumptions. In this way the method can be easily generalized to higher shape
functions and the preprocessing is simple.

Similarly to ES-FEM, we start from a geometrical discretization of the two-dimensional
domain (grid), by means of three node triangles (parts). Each part can be subdivided
into three triangular subparts identified by each edge and the centroid of the part. On
this grid the element is defined by the union of the subparts adjacent to each edge of the
grid (see [6]). The union of all the elements defines the mesh. Each part contributes to
the elements corresponding to its sides, so the mesh (of the elements) is not coincident
with the grid (of the parts).

To obtain the numerical model in each part the stress components are collected as

te = [t1e, t
3
e, t

3
e] with ti =

[
N i, siζζ ,Mi, T i

]T
, where superscripts denote each triangle

subpart, and the displacement parameters are collected as

de = [u1...u3,v1...v3,w1...w3,un1...,un3,vn1...,vn3,wn1...,wn3]
T (17)

where subscripts 1, 2, 3 denote the vertex of the triangular part. With the same shape is
assumed the vector Xe
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3 CONSTITUTIVE EQUATIONS AND YIELD CRITERIA

The perfectly-plastic material assumption restrains the stress σ to belong to a fix
admissible domain

E ≡ {σ : f [σ] ≤ 0,withf [0] < 0} (18)

where the function f [σ] is a convex yield function. Exploiting its convexity the constitutive
relation follows

ε̇p = µ̇
∂f [σ]

∂σ

∣∣
f(σ)=0 (19)

due to Drucker condition
(σy − σ)Tε̇p ≥ 0 ∀σ ∈ E

3.1 Von Mises yield criterion

The classical H. V. Mises yield criterion for metal shells, generalized in terms of stress
resultants (13) can be expressed as [24]

1

2
tTPet ≤ σ2

y (20)

where

Pe =




2 −1 · −1 · · · · ·
−1 2 · −1 · · · · ·
· · 6 · · · · · ·
−1 −1 · 2 · · · · ·
· · · · 2h2 −h2 · · ·
· · · · −h2 2h2 · · ·
· · · · · · 6h2 · ·
· · · · · · · 3h2

2
·

· · · · · · · · 3h2

2




, (21)

Note that the terms of 3h2

2
in the matrix P are the transverse shear components.

4 SHAKEDOWN ANALYISIS

We refer to the analysis of a body subjected to volume forces ∂Ω and tractions f, both
increasing with the same load multiplier λ.

The proncipal virtual work equation becomes

W [σ,u] =

∫

Ω

σTDu dΩ−
∫

Ω

bTu dΩ−
∫ T

Γ

u dΓ (22)

where D is the compatibility operator. By introducing the interpolation the part contri-
bution to the

We[βe,de] = βT
e Dede − dT

e pe (23)
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and De is the discrete compatibility operator, pe is the load vector furnished by the
integration of the external load components weighted with the shape functions of the
displacement interpolations.

The global compatibility operator Q and load vector p are obtained by assembling the
element contributions through the element incidence operators for displacements ue =
Tuq and stresses βe = Tββ, where β is the global stress vector and q is the global
displacement vector.

The material is assumed to be elastic-perfectly plastic, therefore the stress field is con-
strained to satisfy plastic admissibility inequalities which are independent of the plastic
strain. The shakedown analysis can be solved using an evolutive analysis through the
solution of a sequence of incremental elasto-plastic problems [9] and the shakedown mul-
tiplier λs is evaluated as the limit value for the equilibrium path. The shakedown analysis
theorems offer an alternative way which is directly addressed to compute the lower and
upper approximations of the safety multiplier. In this case, following [9] the shakedown
multiplier is individuated as a solution of the nonlinear mathematical programming prob-
lem

maximize λ

subject to QTβ − λp = 0

φ[β] ≤ 0

(24)

where the equality constraints are represented by the equilibrium equations, described
through the global equilibrium operator QT and the load vector p collecting the body
forces and tractions. The plastic admissibility inequalities are expressed through the
vector φ, which collects the local restrictions imposed by the assumed yield condition
over the stress state ti of the Nr regions of the domain

φi[t
i, λ] ≤ 0, i = 1..Nr (25)

For more details in the formulation of the shakedown problem the reader is encouraged
to see [9].

5 NUMERICAL RESULTS

The performances of the proposed mixed finite element model in evaluating plastic
collapse states have been tested by the numerical experiments reported in the following
subsections.

5.1 Cook membrane

The well-known Cook’s membrane, depicted in Figure 2 is used to show some prelim-
inary results of the in-plane behaviour. The convergence of the numerical solution has
been tested by using three meshes obtained by successive refinements initiated by a coarse
mesh of 2 elements for each side.

Table 1 reports a comparison of the computed values of the plastic collapse multiplier.
The reference result [11] was obtained using a mesh having 1024 elements and 2178 dofs
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while the finest mesh used in the present analysis has 512 triangular elements and 1649
dofs.

Figure 2: Cook membrane data.

Table 1: Cook membrane. Plane stress limit analysis.

mesh 1 mesh 2 mesh 3
λ λ λ

Present 0.4151 0.4012 0.3970
N − S 0.3888 0.3883 0.3935
ref. [11] 0.3956

5.2 Square plate under uniform transverse load

The transverse performances are tested by exercising the simply supported (SS) and
clamped (CL) square plates as described in Fig. 3 subject to uniform transverse load
q = 1. Owing to its symmetry, only a quarter of the plate is modelled with respectively
8, 12 and 16 elements for each side. To appreciate the effectiveness in resolving the

shear locking, different ratios L/h are considered. A unitary yield moment my = σyh2

4
is

considered. The collapse multipliers are given normalized with respect the yield moment
divided by qL2 where q = 1 is the transversal uniform load.

Tables 2 and 3 compare the present results with those obtained in [25], showing good
agreement between solutions obtained by two methods.

6 CONCLUSIONS

The paper proposes an MES-FEM solid shell element for application in shakedown
and limit analysis. The model is adapt, simple and accurate, to solve the problem also

9
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Figure 3: Square plate data. L = 10.

Table 2: Clamped square plate: computed plastic collapse load using uniform meshes

L/t mesh 1 mesh 2 mesh 3
λ λ λ Uniform mesh [25]

1 9.29 9.09 9.00 9.02
4 32.03 31.11 30.64 31.46
10 44.81 43.16 42.37 43.37
40 49.43 47.35 46.41 46.57
50 49.69 47.50 46.54 -
100 50.73 47.90 46.78 46.84

in conic formulation of mathematical programs. The main features of the model are its
simplicity and easy implementation within existing computational tools. Nevertheless
fully capitalizes its features in the analysis of plastic problems. The piece-wise constant
description of the stress field address the discontinuities inherent in the plastic solution.

The numerical experiments show the good performance of the proposed model. It
is worth noting that the model proves to be able to furnish very accurate results by
employing moderately fine meshes using few variables and nonlinear constraints in the
formulation of the mathematical program used to perform the analysis, and this is of
great interest in technical applications.

The accurate results achieved in the evaluation of the collapse multiplier and in the
description of the collapse mechanism demonstrate that the element is able to approximate
well the discontinuous fields generated by the plastic behaviour without drawbacks and
locking phenomena also for small thickness.
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