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Abstract. The paper presents the flexibility of approximation in PIES applied for solving 
elastoplastic boundary value problems. Three various approaches to approximation of plastic 
strains have been tested. The first one bases on the globally applied Lagrange polynomial. 
The two remaining are local: inverse distance weighting (IDW) method and approximation in 
different zones by locally applied Lagrange polynomials. Some examples are solved and 
results obtained are compared with analytical solutions. Conclusions on the effectiveness of 
presented approaches have been drawn.  

 
 
1 INTRODUCTION 

The main issue of solving boundary value problems by the finite element method (FEM) 
[1,2] and the boundary element method (BEM) [3,4] is discretization. The approach called 
parametric integral equation system (PIES)[5] has been developed as an alternative to 
mentioned methods. It is characterized by analytical incorporation of curves and surfaces into 
the integral equation, which results in separation of approximations: the shape from the 
solutions. It means that more effective methods for both approximations can be applied. PIES 
with mentioned advantages has been applied for solving various problems e.g. acoustic [6], 
elastic [7,8] or lately elasto-plastic [9].  

Solving elasto-plastic problems, in PIES like in BEM, only the plastic region has to be 
modelled. It is defined globally using surface patches known from computer graphics [10,11]. 
In most cases only single surface is enough. For this reason also approximation of plastic 
strains is done globally using various polynomials (e.g. the Lagrange polynomial). Such an 
approach has pros and cons. Advantageous is simple global integration with a bit more 
number of weights in the quadrature and without the necessity of calculating integrals over 
small regular areas and summing them. The second benefit is flexibility of obtaining plastic 
strains at any point of the considered domain, because it is done continuously using only one 
formula. On the other hand, it is known that plastic strains occur locally. Even if the defined 
surface covers only the estimated plastic zone, a part of it is characterized by a zero plastic 
deformations. Using global approximation every calculated value is more or less affected by 
values from all interpolation nodes. It means that there is no possibility to obtain exactly zero 
at nodes which are not plastic, but only a value that oscillates around zero. The accuracy of 
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the results obtained using the global approach depends on the number of interpolation nodes. 
The more interpolation nodes with zero plastic strains, the more accurate results in the vicinity 
of zero can be obtained between them. When a lot of nodes have to be taken in order to 
guarantee appropriate accuracy, a local approximation should be considered. However, in 
order not to lose the main advantage of PIES, local approximation cannot be associated with 
shape discretization. 

The main aim of this paper is to develop and test various methods of local approximation 
without the necessity of dividing the domain into elements or cells. At the beginning, 
approximation is separated into two or more zones depending on the distribution of plastic 
strains. This division is done only on the interpolation nodes level. However, there are also 
problems that require totally local approach around the considered node only. The inverse 
distance weighting (IDW) method is an example of the method using this approach and it can 
be easily adapted to PIES. Some examples are solved using both approaches. The results 
obtained confirm the effectiveness of proposed methods of approximation. 

2 PIES AND THE INTEGRAL IDENTITY FOR STRESSES 
The parametric integral equation system (PIES) in the initial-strain approach was derived 

and presented in [9]. The resulting form of PIES is given by 
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where ,, 11 jjll ssssss   dddd wwwvvv   11 , . Variable n  is the number of segments that 
built a boundary, while m  is the number of surfaces that built a domain, therefore nl ,.....2,1  
and md ,.....,2,1 . 

As is stated in the introduction, boundary segments in PIES can be defined by any curves 
)(sjΓ  (e.g. Bézier, Hermite, B-spline or NURBS curves) and 1ls  and 1js  correspond to the 

beginning of l th and j th segments, while ls  and js  to the end of these segments. 
Consequently, a domain in PIES can be defined by surface patches (e.g. Bézier surface 
patches) and dddd wwvv ,,, 11   are respectively the beginning and the end of the domain of d th 
surface. For the sake of simplicity, it should be remembered that the domain of the surface is a 
unit square ]1,0[]1,0[  . Mapping integral intervals require introduction of scaling factors 
(Jacobians), which can be presented as follows 
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where functions      wvAwvAwvA ,,,,, 321  represent the combination of the partial derivatives of 
mathematical functions that describe surfaces [10,11].  
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Functions )(),( ss jj up   from (1) are parametric boundary functions defined or searched on 
each segment of the boundary, while ),( wvpε are plastic strains. Since PIES is solved using the 
collocation method, s  stands for a collocation point. 

Equation (1) contains three kernels. The first kernel ),(* ssljU  for the plane strain case is 
presented in the following matrix form [9] 
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a shear modulus. 
The next kernel ),( sslj

P  in (1) can be presented by the expression [9] 
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and )(1 sn  and )(2 sn  are the direction cosines of the external normal to jth segment of the 
boundary.  

Both kernels (4) and (5) take into account (in their mathematical formalism) the shape of 
the boundary defined by any parametric curves )(sΓ . The shape of the domain defined by any 
parametric surfaces ),( wvB  is integrated into the integrand ),,(* wvslσ  from (1). For the plane 
strain case that function can be presented as follows [9] 
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Formula (1) allows obtaining displacements and forces on the boundary. To determine 
other quantities within the domain the integral identity is required. In order to calculate 
stresses the following expression has to be used 
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Kernels ),(ˆ * sj xD , ),(ˆ * sj xS , ),,(ˆ * wvxΣ  and also a free term are given in explicit form in [9].  

3 DEFINING THE DOMAIN 
As is stated in section 2, the domain in the proposed method is modeled globally using 

surface patches [10,11]. Till now only Bézier surfaces were applied, but the approach gives 
flexibility in choosing the type of patch. In PIES, like in BEM, only the yield region is 
defined, because the domain integrals are zero elsewhere. In order to show the way of 
modeling in PIES two different shapes are considered. The first domain is polygonal, the 
second curvilinear and both of them are presented in [12]. Figure 1 and 2 present them 
discretized in BEM and defined in PIES. White circles ○ represent nodes required to define 
the boundary, while black ● are those which are necessary for the yield region modeling. 
 

      
 a) b) 

Figure 1: Modeling a cantilever beam in: a) BEM, b) PIES 

 

    
 a) b) 

Figure 2: Modeling a circular hole in an infinite domain in: a) BEM, b) PIES 
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As can be seen in Fig. 1a and 2a, the discretization requires division of yield region into 
cells. They model the geometry, but also their number and type are responsible for the 
accuracy of obtained solutions. Therefore, even if the shape can be modeled using smaller 
number of cells, sometimes (or even very often) they have to be multiplied in order to 
maintain satisfactory level of results. Thus, the yield region in the cantilever beam (Fig. 1a) in 
BEM is defined by 12 linear cells and 21 nodes, while in fact it can be modeled using only 
one bilinear surface and 4 corner points (Fig. 1b). The same situation is when the curved 
shape is defined. In BEM there is the necessity of applying 6 linear cells (Fig. 2a), while PIES 
requires only one bicubic surface (Fig. 2b).  

Concluding, the number of data required for modeling the domain in PIES depends only on 
the complexity of a shape. The accuracy of approximation is guaranteed by the number of 
expressions in approximation series presented in the next section. Proposed method solves 
also another complication occurring in BEM. The extent of the yield region is not known a 
priori, therefore very often generous proportion of it are assumed initially. For this reason the 
greater number of cells has to be defined. In PIES that problem does not exists, because as it 
is presented in Fig.1b using the same number of nodes even entire domain can be modeled as 
an initial yield region. Thus, it is more effective to assume quite large proportions than 
performing pilot studies. 

4 APPROXIMATION OF PLASTIC STRAINS 

4.1 Global approximation using Lagrange polynomials 
As is mentioned in section 3, approximations of the shape and solutions in PIES are 

performed independently. Therefore, the domain can be modeled globally using only minimal 
number of data needed for accurate definition of the shape. A consequence of the global 
modeling of the plastic zone is the possibility of global approximation of plastic strains. For 
this purpose any 2D method can be used. Till now I have applied the approximation series 
with Chebyshev basis functions and Lagrange polynomials. The first approach has one 
disadvantage i.e. it requires solving of the system of equations. This feature can be 
unfavorable especially when the system is ill-conditioned. The second way is not 
characterized by this defect, and therefore is more efficient.  

Using the Lagrange polynomials the plastic strains )(xε p  can be approximated by the 
following approximation series 
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and 21 RRN   is the given number of interpolation nodes, while )(, xε rwp  is the value of plastic 
strain at the node ),( 21 wr xx .  

One of the most crucial elements of the approximation is arrangement of interpolation 
nodes. Taking into account the domain of approximation – a unit square – it is very easy to 
distribute nodes in any order. Some orders that were previously successfully used are: 
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uniform and at zeros of Chebyshev polynomial. Using the first method and quite large 
number of interpolation nodes Runge's phenomenon may occur. Therefore, the most efficient 
and safe is the second proposition. Nodes placed in the unit square have to be transformed 
into the actual domain in order to obtain values of plastic strains for approximation. This is 
also simple, because each surface is described by some formulas, which translate coordinates 
from the parametric domain of the surface to Cartesian coordinate system.  

After substituting formula (8) into (1) and using approximating series for the boundary 
functions (presented in [9]) we obtain approximating form of PIES for elastoplastic problems 
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As can be seen in (9), the domain integral is calculated on the basis of values returned by 
the formula (8), which is used globally (one formula for the whole surface). The advantage of 
the approach is that we have only one polynomial by which plastic strains at arbitrary points 
of the plastic region can be obtained. On the other hand, this approach may not reflect the 
local character of strains. It means that every point which does not yield has plastic strains 
only around zero, but not exactly zero. It comes from the fact, that all interpolation nodes 
have influence on searched values. Therefore, maybe it is reasonable to separate 
approximation into two or more zones depending on the distribution of plastic strains. 

4.2 Local approximation 

4.2.1 Different Lagrange polynomials in different zones 
In PURC separation of approximations is very easy, because approximation of the domain 

and approximation of the plastic strains are independent. Thus, the shape still is modeled by 
the surface, interpolation nodes are generated in its domain (the unit square) and 
approximation is done by manipulating these nodes. Such an approach allows to separate two 
sets of nodes and for approximation of strains to use two approximation polynomials. Most 
expected division is the one, which separates zone with nonzero plastic strains from that 
where they are zero. The example of such a division for the Lame problem is presented in Fig. 
3. The analytical solution for this problem is known, therefore the boundary of the division is 
drawn as the boundary between elastic and plastic regions.  
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 a) b) 
 

Figure 3: a) An arrangement of interpolation nodes, b) split into two sets of nodes 

Each point for which plastic strains are required has to be assigned to one of the 
approximation zones and depending on the choice its value should be approximated with the 
appropriate polynomial. Zone boundaries can be arbitrarily chosen, however, it seems 
intuitively that it should divide the domain evenly between the extreme nodes of the 
designated sets of nodes. Dividing a plastic region into zones is straightforward in the 
proposed method, since approximation takes place in the unit square, which is a domain of the 
surface. An example of division into zones of influence of individual approximation 
polynomials is shown in Fig. 4. 

 

 
 

Figure 4: Two zones for which are used different approximation series 

As can be seen in Fig. 4, for all points included in the red and blue zones different 
polynomials have to be used. 

The PIES approximation form described by (9) has to be modified, and the last term of the 
equation 
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where 21,TT  are numbers of interpolation points assigned to the corresponding Lagrange 
polynomial. Considering the example presented in Fig.4 the first polynomial is characterized 
by 31 T  and 72 T , while the second by 41 T  and 72 T . Which of the polynomials will be 
used to approximate ),( wvpε  in (10) depends on the location of point x .  

Similar modifications should also be made to the last element of the approximation form of 
the integral identity for stress (7). The situation is a little more complicated here, because the 
integral over the domain is strongly singular. In [9], the algorithm described in [13] was used 
for its determination. It consists in transforming the singular integral into two 
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The first integral is weakly singular and can be evaluated by subdivision technique, while 
the second has been transformed into a boundary integral with no singularity. In both integrals 
it is necessary to use the approximation series (8) twice to calculate the plastic strains at the 
point x  and for all points ),( wv . And again like in (10), one should use polynomials that 
correspond to positions of both points. 

The advantage of the proposed strategy is that the number of interpolation nodes in a 
polynomial can be quite effectively controlled. For example, if one of the polynomials is used 
to approximate strains where most of them are zero, it can be built with smaller number of 
nodes. An example of the strategy is presented in Fig. 5. 

 

 
 

Figure 5. Interpolation nodes used in two approximation series 

As shown in Fig. 5, green nodes have been used in one of the polynomials, while in the 
second is considered only every second row of nodes marked by orange.  

The strategy described in this section, despite being based on globally generated nodes and 
a globally modeled plastic region, is zonally local. However, there are issues that require 
approximation to be completely local to the selected point. There are many local 
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approximation algorithms, most of which can be easily adapted to PIES. One of the simplest 
examples is the inverse distance weighting (IDW) method. 

4.2.2 Inverse distance weighting 
Inverse distance weighting (IDW), also known as the Shepard method, is used for 

interpolation with an irregularly-spaced interpolation nodes [14]. Unknown values are 
calculated with a weighted average of the values available at the known nodes. A general 
form of finding an interpolated value )(xε p  at a given point x  based on plastic strains )( r

p xε   
( Rr ,...1,0 ) at R  interpolation points using IDW is  
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where 
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is a simple IDW weighting function, d  is a given distance from the known point rx  to the 
unknown point x  and p  is a positive real number, called the power parameter. 

The main idea of IDW is that things that are close to one another are more alike than those 
that are farther apart. To predict a value for any unmeasured location, IDW uses the measured 
values surrounding the prediction location (from so-called neighborhood of influence). It is 
known that using such an approach the accuracy depends on the arrangement of interpolation 
nodes and the way of determination of the mentioned neighborhood. In the simplest case the 
neighborhood of influence can be specified using maximal distance from point of interest and 
it is just a spatially fixed shape e.g. circle. Selection of interpolation nodes could be much 
more complex, but also more effective especially in cases with highly nonregularly distributed 
nodes [15].  

In the paper, the simplest method of determining the neighborhood of influence is used. 
Fig. 6 presents nodes used for approximation of plastic strain at point x . 
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Figure 6: Neighborhood determines nodes for approximation at points x  

Another factor affecting the accuracy of the approximation in IDW is the power parameter 
p . Greater values of p  assign greater influence to values closest to the approximated point.  

5 RESULTS 

5.1 Different Lagrange polynomials in different zones 
 
The first example concerns a thick-walled cylinder subjected to internal pressure under 

plain strain conditions. The radius of inner face is 100a , while outer face is 200b . The 
whole domain is defined by one bicubic Bézier surface. The Von-Mises yield criterion with 
perfect plasticity and the following material constants MPaY 30 , MPaE 21000 , 3.0v  are 
assumed.  

Initially, the problem was solved using global approach with 25 and 36 interpolation nodes 
placed at roots of Chebyshev polynomials. For those two cases, radial and circumferential 
stress distribution for a specific ( MPap 9.20 ) internal pressure were calculated. Values 
obtained at 100 internal points are used to calculate a norm 2L  

 %100)(
100

11 100

1

2

max

 
w

w
r

w
rw

r

e 


, (14) 

where w
r  represents radial stresses obtained by PIES at 100 interior points, while w

r  are 
exact solutions [16]. Values of norm for two assumed numbers of interpolation nodes are 
presented in Table 1. 
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Table 1: Norms for radial and circumferential stress distribution – global approximation 

 25 36 

r

e


 0.4432 0.1923 

q

e


 2.4478 1.4653 

 
As can be seen in Table 1 value of norm is smaller for higher number of interpolation 

nodes, but it still can be better (especially for q ). For this reason the first technique described 
in section 4.2.1 is applied. Three different cases are considered: two of them with 36 and one 
with 25 interpolation nodes. Figure 7 presents nodes used to create two approximation 
polynomials and also the division of the domain into zones for which different polynomials 
have to be applied.  

 

     
 a) b) c) 

Figure 7: Different approaches for zonally local approximation 

Figure 7a present arrangement of 36 interpolation nodes, which are divided into two 
groups for two approximation polynomials. In both of polynomials 31 T  and 62 T . Values of 
plastic strains at points from the zone with outer face with 145r  are calculated using the first 
polynomial, while the rest using the second one. In the case presented in Fig. 7b the first zone 
of influence is reduced to favor the other ( 139r ). This test is to check whether the maximum 
reduction of the zone with non-zero plastic strains affects the final results. The last from 
presented cases concerns approximation with 25 nodes. The first polynomial has 31 T  and 

52 T , while the second 21 T  and 52 T . Zones of influence of individual polynomials are 
defined by the radius 160r . 

For the individual cases described above, the value of norm (14) has been determined. The 
results are presented in Table 2. 

Table 2: Norms for radial and circumferential stress distribution – local approximation 

 25,r=160 36, r=145 36,r=139 

r

e


 0.3235 0.1561 0.1613 
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q

e


 1.5861 1.0146 0.9195 

 
Comparing the results presented in Tables 1 and 2, the following conclusions can be 

drawn: 
a) the norm for radial stress reduces its value by 27%, while for circumferential stress by 

35% when dividing into two polynomials and using totally 25 interpolation nodes, 
b) for 36 nodes and the boundary between zones in 145r  norms are reduced by 19% and 

30% respectively for radial and circumferential stress (comparing to the global approach),  
c) moving the boundary to 139r  only affects the improvement of the norm for 

circumferential stress (in comparison to values obtained for 145r ). 
As can be seen, there is an improvement in the results after dividing the domain into two 

approximating zones. Another important benefit is the shortening of calculation time. Thus, 
the calculations for 25 interpolation node divided into two polynomials is about 2.5 times 
shorter than for the global case. Taking into account the 36 interpolation nodes, the time is 
even shorter by 3.5 times. 

 

5.2 Inverse distance weighting 
Second example concerns the cantilever beam presented in Fig. 8. The beam is end-loaded 

and is considered as plane stress. The material parameters for this example are: PaE 1110*2  
and 25.0v . The Von Mises yield criterion is assumed to apply with PaY 20  and 0' H . 

 
Figure 8: The considered cantilever beam 

In the proposed method, like in BEM, only the plastic region is modeled. The considered 
example is described by the analytical solution, therefore the spread of that region is known a 
priori. Thus, not the whole domain must be defined, only its part presented in Fig. 8 (filled 
with gray). This requires only one Bézier bilinear surface with four corner points.  

In [17] analytical formulas for elastic-plastic boundary and tip deflection are presented. In 
order to obtain those quantities using PIES 64 interpolation nodes are placed at roots of 
Chebyshev polynomials. Two methods of approximation are applied: the global 
approximation using Lagrange polynomial and IDW method. The power parameter is 
assumed as 2p , while the radius of the neighborhood of influence are 3.0  and 0.4 (they are 
marked in Fig. 8 by green and red circles respectively). Of course it should be remembered 
that both radii are defined in the basic unit area. Obtained force-deflection values are 
presented in Fig. 9. 
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Figure 9: Force-deflection values for the cantilever beam 

As can be seen in Fig. 9 solutions obtained by IDW with larger radius of neighborhood are 
slightly more accurate than those with a smaller radius. Both of them are more closer to 
analytical than those generated using global approximation with Lagrange polynomial. The 
latter reflect those obtained by FEM in [17]. 

Taking into account that slightly better results are obtained using larger radius of 
neighborhood in IDW method, the elastic-plastic boundary is determined using only this 
configuration. The boundary of the plastic zone determined analytically in comparison to 
plastified points obtained by PIES is presented in Fig. 10. 

 

 
Figure 10: Comparison of plastic zones obtained by various method of approximation 

As presented in Fig. 10, the spread of the plastic zone obtained by PIES with IDW method 
overlaps with analytical results. Having in mind also values of deflection shown above, it can 
be stated that the local approximation used in PIES method is very promising alternative to 
global approximation by various polynomials (e.g. Lagrange like in this paper). 

 

851



Agnieszka Bołtuć 

 14 

6 CONCLUSIONS 
The paper presents various methods of approximation of plastic strains in PIES. The PIES 

method is characterized by the global modeling of the plastic region, what gives the flexibility 
in application different approaches to approximation of solutions. Therefore, in the paper 
global and two local methods of approximation have been used. The first is zonally local, 
while the second takes into account only the influence of neighboring nodes.  

Two examples were solved and results obtained were compared with analytical solutions. 
Moreover, numerical results obtained in the global manner are compared with the local one 
using different parameters.  

It can be stated that using more than one approximation polynomial zonally is beneficial, 
because solutions obtained are more accurate. There was an improvement in accuracy up to 
35%. Moreover, the time of calculations has decreased significantly (up to 3.5 times). 
Considering the IDW method applied to cantilever beam it is also shown that solutions 
obtained by local approach are more accurate than those received using global approximation.  
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