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Abstract. In the present work a return mapping algorithm is discussed for small strain
elastoplasticity boundary value problems with an exact closed form solution of the local
constitutive equations. Nonlinear kinematic hardening rules are adopted in modelling
kinematic hardening behavior of ductile materials. The local solution of the constitu-
tive equations is expressed by only one nonlinear scalar equation which is subsequently
reduced to a single variable algebraic equation. Due to the straightforward form of the
nonlinear scalar equation the analytical solution of the algebraic equation is found in
exact closed form. A remarkable advantage of the present approach is that no iterative
solution method is used to solve the local constitutive equations in three-dimensional
elastoplasticity. Numerical applications and computational results are reported in order
to illustrate the robustness and effectiveness of the proposed algorithmic procedure.

1 INTRODUCTION

In the present work a return mapping algorithm is discussed for small strain elastoplas-
ticity boundary value problems with an exact closed form solution of the local constitutive
equations, see De Angelis and Taylor [1]. Nonlinear kinematic hardening rules are adopted
in modelling kinematic hardening behavior of ductile materials, see e.g. Armstrong and
Frederick [2]. In fact, saturation hardening rules of the exponential type do not properly
represent nonlinear kinematic hardening behavior since upon unloading and reloading
the simulation does not suitably reproduce the material behavior in which it is exhibited
renewed plasticity prior to the state at which unloading occurred.
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One of the advantages of the present algorithmic procedure is to reduce the local solu-
tion of the constitutive equations to only one nonlinear scalar equation. In the literature
other proposals have been presented which reduce the local constitutive equations to one
nonlinear scalar equation. However in the present work a particularly simple form of
nonlinear scalar equation is derived. In fact, herein the local constitutive equations are
reduced to a single variable algebraic (polynomial) equation. Moreover, in the present
approach due to the straightforward form of the nonlinear scalar equation the analytical
solution of the algebraic equation is found in exact closed form. Accordingly, a remarkable
advantage of the present approach is that no iterative solution method is used to solve
the local constitutive equations in three-dimensional elastoplasticity.

The consistent tangent operator associated to the proposed formulation is derived for
elastoplasticity models, thus ensuring a quadratic rate of asymptotic convergence when
used with the Newton Raphson iterative method for the global solution procedure of the
structural problem, see e.g. Zienkiewicz Taylor and Fox [3] and Simo and Hughes [4].

Numerical applications and computational results for cyclic loading conditions are fi-
nally reported in order to illustrate the robustness and effectiveness of the proposed al-
gorithmic scheme. Accordingly, the robustness and effectiveness of the proposed compu-
tational procedure is illustrated with specific numerical examples.

2 THE CONTINUUM MODEL

We assume the body B in the reference configuration Ω ⊂ ℜn, with 1 ≤ n ≤ 3, and we
denote with T ⊂ ℜ+ the time interval of interest and with V the space of displacements,
D the strain space and S the dual stress space. Let us also indicate with u : Ω×T → V
the displacement and with σ : Ω×T → S the stress tensor. The compatible strain tensor
is defined as ε = ∇su : Ω × T → D, where ∇s is the symmetric part of the gradient
operator. We consider the stress tensor as additively decomposed into a deviatoric and

a spherical part so that σ = s + p1, where s
def
= devσ = σ − p1 is the stress deviator,

p
def
= 1

3
tr(σ) is the pressure of the spherical part p1 and 1 is the rank two identity

tensor. The strain tensor is similarly decomposed into the deviatoric and volumetric

parts ε = e + 1
3
θ 1, where e

def
= devε = ε − 1

3
θ 1 is the strain deviator and θ

def
= tr(ε)

is the change in volume. The relation between the spherical part of the stress and the
volumetric part of the strain is described by p = K θ, where K is the bulk modulus.

The linear elastic relation between the stress deviator and the elastic deviatoric strain
is expressed by

s = 2G ee = 2G[e− ep], (1)

in which G is the shear modulus, and the deviatoric part of the total strain has been
additively decomposed into an elastic and a plastic part e = ee + ep. The relative stress
Σ is also expressed by

Σ = s−α, (2)

where α represents the deviatoric back stress.
A J2 material behavior is assumed herein. Accordingly, a von Mises yield criterion is

2

816



Fabio De Angelis and Robert L. Taylor

adopted in the form

f (σ,α, κ) = ∥devσ −α∥ − κ(χiso) = ∥s−α∥ −
√

2
3
(σyo + χiso) ≤ 0, (3)

where κ(χiso) =
√

2
3
σy =

√
2
3
(σyo + χiso) is the current radius of the yield surface in the

deviatoric plane and σyo is the uniaxial yield stress of the virgin material. The static
internal variable for isotropic hardening is specified by χiso = Hisoe

p, where Hiso is the

isotropic hardening modulus and where we assumed χiso
def
= R, being R the increment

of the yield stress with respect to the uniaxial yield stress of the virgin material and ep

representing the equivalent (accumulated) plastic strain ep
def
=

∫ t

0

√
2
3
∥ėp∥d t. For a finer

representation of the isotropic hardening it is often assumed

χiso = Hiso(e
p)m, or R = R∞(1− e−b ep), (4)

where m, R∞ and b are material parameters.
The evolutive flow law for the deviatoric plastic strain rate is expressed by

ėp = γ̇
∂f

∂σ
= γ̇

∂f

∂Σ
= γ̇ n, (5)

where γ̇ is the plastic rate multiplier and n
def
=

Σ

∥Σ∥
is the normal to the yield surface.

Consequently, the equivalent plastic strain rate is supplied by ė
p
=

√
2
3
γ̇.

The rate of the back stress can be expressed by the Prager law [5]

α̇ = 2
3
Hkin ė

p, (6)

where Hkin is the kinematic hardening modulus. For a nonlinear kinematic hardening
behavior it is often adopted the model proposed by Armstrong and Frederick [2]

α̇ = 2
3
Hkin ė

p −Hnl ė
p
α, (7)

where Hnl is a non-dimensional material dependent parameter. The second term of equa-
tion (7) is a recall term and Hnl = 0 stands for a linear kinematic hardening behavior.
For a better approximation several models can be added with different recall constants
(see e.g. [6])

α =
M∑
i=1

αi, α̇i =
2
3
Hkin,i ė

p −Hnl,i ė
p
αi. (8)

The Kuhn-Tucker optimality conditions

γ̇ ≥ 0, f (σ,α, κ) ≤ 0, γ̇f (σ,α, κ) = 0, (9)

represent the loading-unloading conditions and they complete the evolutive model in
plasticity, see e.g. [3] and [4].
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3 Algorithmic formulation

In the finite element formulation we adopt a strain driven approach. Accordingly, by
knowing the strain and the solution at time tn, represented by the set (sn, en, e

p
n, e

p
n,αn),

we need to determine the solution at time tn+1 represented by the set (s, e, ep, ep,α). By
adopting a backward Euler integration scheme, the evolutive equation for the deviatoric
plastic strain rate (5) and the equivalent plastic strain rate are given respectively by

ep = epn + λn, ep = epn +
√

2
3
λ, (10)

where we have set λ
def
= ∆γn+1 = γ̇n+1∆t.

The discrete form of the evolution law for the back stress is given by

α−αn = 2
3
Hkinλn−Hnl

√
2
3
λα, (11)

which can be expressed as
α = T λαn +

2
3
HkinT

λλn, (12)

where we have set

Rλ = (1 +
√

2
3
Hnlλ), T λ =

1

Rλ
=

1

(1 +
√

2
3
Hnlλ)

. (13)

In the above expressions we have adopted the superscript λ to denote a dependence on
the increment of the plastic rate multiplier in the step tn → tn+1.

Taking into account equation (10)1 the deviatoric stress is given by

s = 2G[e− epn]− 2Gλn, (14)

and, by considering equation (12), the relative stress is expressed by

Σ = s−α = 2G[e− epn]− T λαn − Uλn, (15)

where we have set

Uλ = [2G+ 2
3

Hkin

Rλ
]λ = [2G+ 2

3
HkinT

λ]λ. (16)

An elastic predictor-plastic corrector scheme is adopted by means of a return mapping
algorithm. By enforcing the satisfaction of the limit equations at time tn+1 the increment
λ of the plastic rate parameter is computed. The variables are then updated according
to the equations 



ep = ep, TR + λn

ep = ep, TR +
√

2
3
λ

α = T λαTR + 2
3
HkinT

λλn

s = sTR − 2Gλn

Σ = sTR − T λαTR − Uλn.

(17)
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The relative stress (17)5 is also expressed by

Σ = ΣTR + (1− T λ)αTR − Uλn, (18)

where ΣTR def
= sTR − αTR is the trial value of the relative stress typically adopted in

plasticity with linear kinematic hardening.
In the proposed approach for plasticity with nonlinear kinematic hardening rules we

find useful to introduce a trial-like value of the relative stress

Σλ
NLK

def
= sTR − T λαTR (19)

Accordingly, equation (18) can be expressed by

Σ = Σλ
NLK − Uλn, (20)

Herein, we emphasize that for plasticity with nonlinear kinematic hardening the trial-
like value Σλ

NLK depends upon λ, whereas the conventional trial value ΣTR adopted in
plasticity with linear kinematic hardening is independent of λ. The second rank tensor n
is expressed by

n =
∂f

∂σ
=

∂f

∂Σ

∂Σ

∂σ
=

∂f

∂Σ

∂(devσ −α)

∂σ
=

∂∥Σ∥
∂Σ

Idev =
Σ

∥Σ∥
Idev =

Σ

∥Σ∥
, (21)

where Idev = I− 1
3
(1⊗1). Given the expressions (19) and (20), the tensor n also depends

upon λ. This is at variance with respect to plasticity with linear kinematic hardening,
where n is independent from λ. Accordingly, the algorithmic procedure for plasticity with
nonlinear kinematic hardening is more complex.

We note from equation (21) that Σ is collinear with n. From equation (20) we also de-
rive that Σλ

NLK must be collinear with n, and therefore Σλ
NLK = ∥Σλ

NLK∥n. Accordingly,
we observe that in plasticity with nonlinear kinematic hardening it results

n(λ) =
Σ(λ)

∥Σ(λ)∥
=

Σλ
NLK(λ)

∥Σλ
NLK(λ)∥

. (22)

Consequently, the present approach to plasticity with nonlinear kinematic hardening has
the advantage that the equation (20) preserves a nonlinear scalar equation in λ

∥Σ∥ = ∥Σλ
NLK∥ − Uλ. (23)

As shown in the following section the above equation represents an algebraic (polyno-
mial) equation in the single variable λ. Once the increment λ of the plastic rate parameter
is determined the variables are updated at time tn+1 by considering equations (17) and
taking into account equation (22).
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4 Nonlinear scalar equation in λ

Equation (23) yields the novel expression of the nonlinear scalar equation which is
solved for determining the increment λ of the plastic rate parameter. Accordingly, in
the present approach the local solution of the constitutive equations reduces to only one
nonlinear scalar equation. In the literature other proposals have been presented in which
the constitutive equations are reduced to a nonlinear scalar equation, see e.g. Hartmann
Luhrs and Haupt [7] and Kobayashi and Ohno [8]. With respect to such proposals, the
present approach has the advantage that the constitutive equations are reduced to only
one single variable algebraic (quartic) equation which is a particularly simple form of non-
linear scalar equation. Remarkably, in the present approach no numerical procedures are
required to accelerate convergence for the solution of the nonlinear scalar equation, such
as for instance the Aitken’s process adopted in [8]. In fact, in the proposed formulation
the search for the analytical solutions of the nonlinear scalar equation is pursued in exact
closed form, i.e. with no recourse to iterative methods. This particular feature ensures
efficiency and robustness to the overall computational procedure.

The limit function (3) is expressed as ∥Σ∥ −
√

2
3
σy = 0. Accordingly, the equation (23)

supplies

∥Σλ
NLK∥ − Uλ −

√
2
3
σy = 0, (24)

and by setting
Sss = sTR . sTR = ∥sTR∥2

Ssα = sTR . αTR

Sαα = αTR . αTR = ∥αTR∥2,

(25)

after some algebra (see De Angelis and Taylor [1]) we obtain the quartic algebraic equation

g(λ) = C1λ
4 + C2λ

3 + C3λ
2 + C4λ+ C5 = 0, (26)

where the coefficients of the quartic equation are given by De Angelis and Taylor [1].
For more details see De Angelis and Taylor [1] and De Angelis and Taylor [9] where a
comprehensive treatment of the present approach is illustrated.

The present form of nonlinear scalar equation is at variance from the nonlinear scalar
equation presented by Auricchio and Taylor [10] since it is generated by a different al-
gorithmic scheme. Further, in [10] the solution of the nonlinerar scalar equation was
performed by a Newton’s iterative method, which for complex constitutive equations and
highly nonlinear scalar equations sometimes experiences failures due to the occurring high
gradients and the resulting round-off errors. One of the advantages of the present algo-
rithmic scheme is that the local constitutive equations condense in a particularly simple
form of nonlinear scalar equation, that is a quartic algebraic equation. Consequently, in
the present approach the solutions of the quartic algebraic equation are determined in
exact closed form, see among others Abramowitz [11], Beyer [12], and Hacke [13], and
no iterative procedure is required to solve the local constitutive problem. Accordingly,
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the increment λ of the plastic rate parameter in the step tn → tn+1 is evaluated as the
smallest positive real root of the quartic algebraic equation (26).

For more details see De Angelis and Taylor [1]. An alternative formulation resulting in
a different algorithmic scheme associated to a different algorithmic form of the consistency
condition and a different consistent tangent operator has also been presented by De Angelis
and Taylor [9].

5 Consistent tangent operator

In the present section we illustrate the expression of the consistent tangent operator
associated to the present algorithmic scheme which ensures a fast and robust numerical
solution procedure for the iterative solution of the structural problem in elastoplasticity.
The proposed numerical scheme ensures a quadratic rate of asymptotic convergence to
the Newton Raphson iterative method for the solution of the global structural problem.

The linearization of the discrete forms of the evolutive equations for the stress deviator
and the back stress yields a consistent tangent operator expressed by

Ddiscr =
{
K(1⊗ 1) + [2G (1− CNLK

discr )] Idev + [2G (CNLK
discr − ANLK

discr )

+BNLK
discr (n . α)](n⊗ n)− BNLK

discr (α⊗ n)
}
,

(27)

where we have set

a =
2Gλ

∥Σ∥
, b = 2

3

Hkinλ

∥Σ∥
,

Rλ = (1 +
√

2
3
Hnlλ), T λ =

1

Rλ
, W λ = b+Rλ + aRλ,

ANLK
discr =

2G

[2G+ 2
3
Hiso +

2
3
HkinT λ −

√
2
3
HnlT λ(n . α)]

,

BNLK
discr = ANLK

discr T
λCNLK

discr

√
2
3
Hnl, CNLK

discr = a
Rλ

W λ
.

(28)

The expression of the consistent tangent operator results to be non-symmetric due to
the last term of equation (27), as is typically in elastoplasticity with nonlinear kinematic
hardening rules. For more details on the development of the consistent tangent operator
see De Angelis and Taylor [1].

For the derivation of the consistent tangent operator associated to the algorithmic pro-
cedure it is necessary to perform matrix inversions. At variance with respect to such usual
approach, an alternative algorithmic formulation which is able to provide a consistent tan-
gent operator without the necessity to perform matrix inversions has been presented by
De Angelis and Taylor [9].

Other various algorithmic formulations have been presented e.g. by Nukala [14], Artioli
Auricchio and Beirao da Veiga [15], De Angelis and Cancellara [16], De Angelis and Taylor
[17], Artioli and Bisegna [18], Artioli Castellazzi and Krysl [19], Castellazzi Artioli and
Krysl [20].
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Figure 1: Perforated strip. Geometry and finite element mesh.

6 Computational results

The algorithmic formulation illustrated in the present work may be used for any 2-d
or 3-d element which accepts a strain-driven approach. In our analysis we use 4-node
quadrilateral elements with 2×2 Gaussian quadrature and the mixed approach described
in Sec. 2.6.2 of Zienkiewicz Taylor and Fox [3]. The numerical scheme is implemented
into the Finite Element Analysis Program (FEAP), see Zienkiewicz Taylor and Fox [3],
and Taylor [21].

6.1 Numerical example: perforated strip

In the numerical example we consider the problem of an infinitely long rectangular strip
with a circular hole in its axial direction, subject to increasing extension in a direction
perpendicular to the axis of the strip and parallel to one of its sides. The geometry of the
problem is illustrated in Fig. 1. For symmetry reasons only 1/4 of the strip needs to be
considered. The dimensions of the rectangular section containing 1/4 of the strip are 18
mm for the long side and 10 mm for the short side. The radius of the circular hole is 5
mm. The adopted mesh consists of 91 nodes and 72 elements.

The mechanical properties of the material are: elastic modulus E = 208000 MPa,
Poisson’s ratio ν = 0.3, yield limit σyo = 170 MPa, kinematic hardening modulus Hkin =
41080 MPa, nonlinear kinematic hardening parameter Hnl = 525, isotropic hardening
modulus H iso = 2100 MPa. The prescribed displacement at the top boundary is uo =
0.0025 mm. The evolution with time of the proportional load coefficient p(t) amplifies
the prescribed displacement and illustrates the loading history according to equation
u(t) = p(t)uo.

In the numerical example we consider a cyclic loading program in tension with increas-
ing mean value of the loading. The assumed loading program is illustrated in Fig. 2. For
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Figure 2: Cyclic loading program in tension with increasing mean value of the loading.
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Figure 3: Average end stress versus average strain for the cyclic loading program given in Fig. 2. In
the analysis a doubled time increment ∆ t = 2 has been adopted with tmax = 260.
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Figure 4: Contour plot of vertical stress in the strip for tmax = 260. Cyclic loading program in tension
with loading program given in Fig. 2.

this loading program the average end stress versus the average strain is illustrated in Fig.
3. Herein the stress is averaged as the sum of the reactions on the boundary upper edge
over the related area, the strain is averaged as the displacement at the boundary upper
edge over the height. By exploiting symmetry properties, the final contour plot of the
vertical stress in the strip is illustrated in Fig. 4 for tmax = 260.

The computational analysis of the Newton Raphson iterative procedure for the global
structural problem shows a quadratic rate of asymptotic convergence. For more details
on the convergence properties of the proposed algorithmic scheme, see De Angelis and
Taylor [1] where a comprehensive treatment is presented.

7 CONCLUSIONS

In this work we presented an exact closed form solution of the return mapping algo-
rithm in elastoplasticity with nonlinear kinematic hardening behavior, see also De Angelis
and Taylor [1]. Nonlinear kinematic hardening rules have been adopted for modelling
kinematic hardening behavior of ductile materials, see e.g. [2].

One of the advantages of the proposed formulation is to reduce the local constitu-
tive equations of three-dimensional elastoplasticity problems to only one nonlinear scalar
equation which ultimately condenses in a quartic algebraic equation. The formulation
allows to find the analytical solution of the algebraic equation in exact closed form and,
consequently, no iterative method is required to solve the local constitutive equations
in three-dimensional elastoplasticity. The consistent tangent operator associated to the
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proposed algorithmic scheme has been derived. The algorithmic formulation ensures a
quadratic rate of asymptotic convergence for the global structural problem in elastoplas-
ticity. The effectiveness of the proposed algorithmic scheme has been suitably illustrated
by reporting numerical applications and computational results for complex and cyclic
loading conditions.
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