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Abstract. In this study, the constitutive modeling of loading state dependent strain
hardening and martensite evolution of high alloyed TRIP-steels are addressed, which
are experimentally observed comparing uni-axial tension and compression test results.
Furthermore, a damage mechanics extension of the model is proposed, which is based
on the continuum damage mechanics framework. An implicit gradient based enrichment
method is applied to realize a non-local damage formulation. For the implementation into
the commercial FEM-software ABAQUS, the analogy between the additional Helmholtz-
type equation of implicit gradient enrichment and the already built-in heat conduction
equation is used. Finally, the developed model is fitted to experimental data and cell
model calculations. A convergence study using the non-local extension is discussed.

1 INTRODUCTION

Metastable austenitic steels exhibit outstanding strain hardening and ductility prop-
erties due to a martensitic phase transformation during thermo-mechanical loading. The
typical strain hardening behavior and the additional plastic deformations caused by phase
transition are often summarized as TRIP-effect (TRansformation Induced Plasticity).

In this paper, we focus on the mechanical behavior of a special TRIP-steel considering
its stress state dependent material response. Starting point is the experimental observa-
tion of asymmetric strain hardening and martensite evolution under uni-axial tension and
compression loading. We propose a model, which comprises both features. Similar effects
are extensively discussed in literature (see e. g. [1, 2]).

Furthermore, the description of the material’s failure is addressed. Existing local ap-
proaches to fracture for TRIP-steels (see [3, 4]) suffer from their well known mesh depen-
dency in finite element computations. Therefore, a continuum damage mechanics model
with non-local regularization is also proposed in this paper to include failure into the
developed constitutive model of TRIP-steel.
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The modeling approaches are successively applied: (i) The plasticity model is fit-
ted to tension and compression experiments conducted for a high alloyed TRIP-steel.
(ii) The proposed damage extension of the model is calibrated and tested with help of cell
model simulations of TRIP-steel containing micro-voids. (iii) The mentioned regulariza-
tion method is investigated by means of a convergence study.

Notation hints: Tensors are subsequently introduced. Symbolic notation is used, where
scalars are denoted italic A, first order tensors as

#»

A, second order tensors as bold sym-
bols A and fourth order tensor are highlighted calligraphically A. Single and double
contraction of tensors are denoted by ’·’ and ’:’, respectively.

2 PROPOSED MODEL

2.1 Stress-strain relation

Starting with an additive split of the rate of deformation tensor D into an elastic,
plastic and a transformation induced part

D = Del +Dpl +Dtr, (1)

we assume the following hypo-elastic relation between the Kirchhoff-stress tensor τ̂ and
the elastic part of the rate of deformation tensor:

(τ̂ )◦ = C : Del. (2)

In the previous and following equations, a hat (̂·) highlights an effective (undamaged)
value. The objective time derivative of the Kirchhoff-stress tensor is denoted by (·)◦,
where the Jaumann-rate is used in what follows. The fourth-order tensor of isotropic,
linear elastic stiffness is denoted by C. The relation between the Kirchhoff-stress tensor
τ̂ and the Cauchy-(true)-stress tensor σ̂ reads

τ̂ = det (F ) σ̂, (3)

with the deformation gradient F .

2.2 TRIP-effect: martensite evolution, kinematics and strain hardening

The evolution of strain induced martensite (volume fraction z) is based on the Olson-
Cohen-model (see [5])

ż = (1− z) βnfn−1
sb ḟsb, (4)

where ḟsb denotes the volume fraction of shear bands, which act as nucleation sites for
martensite. The probability of forming a martensite nucleus at crossing points of shear
bands is included in the parameter β, whereas n is a geometrical constant. The shear
band volume fraction is assumed to obey the evolution law

ḟsb = α (1− fsb) ε̇eq. (5)
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The entire martensite evolution is driven by the plastic deformation (equivalent plastic
strain εeq). Former studies propose a dependency of the shear band rate α and the
probability parameter β on temperature, strain rate and stress state (see e. g. [6]). We
focus on the stress state dependency only. The stress state of uni-axial tension and
compression loadings can be distinguished by the stress triaxiality h

h =
I1

3
√
3J2

(6)

and the Lode-parameter

cos (3φ) =
3
√
3

2

J3

J
3
2
2

, −1 ≤ cos (3φ) ≤ 1. (7)

The necessary invariants of the stress tensor τ̂ to calculate the former values are the first
invariant of the stress tensor I1 as well as the second and third invariant of the stress
deviator Ŝ, J2 and J3, respectively. At this stage of investigation, a primary influence of
the stress triaxiality h on martensite formation is considered. The ansatz for the triaxiality
dependent parameter α reads:

α (τ̂ ) = α0 + α1

(
2

π
arctan (hα2) + 1

)
. (8)

To ensure α ≥ 0, the restrictions α0 ≥ 0 and α1 ≥ −α0

2
apply. An analogous term is

used to define β (τ̂ ) with upcoming parameters β0, β1 and β2. Therewith, a triaxiality
influence occurs, but the values of α and β are limited for h → (−∞,+∞). An additional
term containing the Lode-parameter cos (3φ) can be added to delineate further loading
states (see [1]).

The martensite evolution leads to additional inelastic deformations on the macroscopic
scale (TRIP-strains). Besides deviatoric contributions, also a volume change can be de-
tected. The rate of deformation tensor related to phase transformation is introduced
as

Dtr = MN ż +
1

3
�vδż. (9)

This postulates, that the transformation strains are proportional to the martensite volume
fraction and that the deviatoric part has the direction of the yield normal N associated
with the conventional plastic flow. The unity tensor related to the volumetric part is
denoted as δ. The amount of shearing and volume change due to martensite evolution is
controlled by the parameters M and �v.

The martensite formed during deformation apparently affects the strain hardening be-
havior (i. e. typical sigmoidal hardening curves). The physical hardening mechanisms
resulting from dislocation-martensite interactions are illustrated elsewhere for the consid-
ered steel (see [7]). A phenomenological contribution to the isotropic hardening of the
material is applied

τm (z) = Z1 (exp (Z2z)− 1) , (10)

containing two parameters (Z1, Z2).
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2.3 Elasto-plasticity with asymmetric strain hardening

From multi-axial testing of the considered TRIP-steel, the von Mises yield criterion
was found to be appropriate to describe the initial yield stress (see [8]). Therefore, the
modeling is based on the yield function

y = τeq −R (r)− τm (z)− τ0 ≤ 0, (11)

in the framework of rate independent plasticity. Only an isotropic hardening is considered
with contributions due to martensite evolution τm (z) and dislocation based mechanisms
R (r). An asymmetry of the strain hardening between uni-axial tension and compression
can be caused by the martensite contribution. Due to the proposed martensite evolution
approach, more martensite is formed during tensile loading, i. e. the flow stress should be
higher than under compressive loading at comparable strains. But a higher flow stress is
experimentally observed during uni-axial compression (see Fig. 1). Therefore, the hard-
ening variable r is defined as follows: Firstly, an associated flow rule for the plastic rate
of deformation tensor is utilized

Dpl = Λ̇
∂y

∂τ̂
= Λ̇N (12)

N =
3

2τeq
Ŝ. (13)

One finds an expression for the equivalent plastic strain rate and the relation to the
Lagrangian multiplier Λ̇ in the well known manner:

ε̇eq =

√
2

3
Dpl : Dpl = Λ̇. (14)

The hardening variable is now introduced as

ṙ = (1−G)) ε̇eq ≥ 0, (15)

where G is assumed to be a function of the Lode-parameter cos (3φ):

G (cos (3φ)) =
B

2
(1 + cos (3φ)) , with 0 ≤ B,G < 1. (16)

Just the additional parameter B appears. The uni-axial compression test can be seen
as reference, because G vanishes. The strain hardening during uni-axial tension can be
decreased by finding an appropriate value of B < 1. The hardening rule is very flexible,
because it can be easily extended by dependencies on z or εeq. Considering an effect of
the Lode-parameter on strain hardening implies an orientation influence, which has to be
clarified in future investigations.

The hardening function is assembled by the case differentiation

R =

{
Hrq , r ≤ rc

Hrqc +R∞

(
1− exp

(
−H q rq−1

c

R∞
(r − rc)

))
, else.

(17)
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with the four parameters H, q, rc and R∞. This extends the typical power law for
hardening to incorporate a saturation after exceeding a critical value rc.

The elasto-plastic model for TRIP-steel is completed by the Kuhn-Tucker-conditions

Λ̇ ≥ 0, Λ̇ y = 0, y ≤ 0 (18)

and the consistency condition

ẏ = 0. (19)

The derived model equations can be numerically solved by standard methods (see [9]).
The finite strain formulation, which is based on an updated Lagrange-method combined
with an integration of the hypo-elastic equation, is directly provided by the FEM-software
(ABAQUS/standard version 6.14).

2.4 Damage model

Starting point of continuum damage mechanics is the effective stress concept leading
to

σ = (1−D) σ̂, (20)

where σ is the macroscopic stress, σ̂ is the effective stress acting on the undamaged
material and D is an isotropic damage variable with 0 ≤ D ≤ 1. The damage variable D
is typically considered as ratio of damaged area over net area, whereby also the meaning
of a porosity is possible.

Damage evolves until reaching a critical value of Dc � 1. We interpret this as the
beginning of a void coalescence mechanism leading rapidly to the failure of the material.
A phenomenological acceleration of damage is taken into account by introducing the
modified damage variable D∗:

D∗ =

{
D ,D < Dc

D + κ (Dc −D)2 , else.
(21)

The acceleration is driven by κ > 0. In order to realize a smooth transition to the total
failure state, a second modification is used after a critical value near failure D∗

t is reached.
An exponential type function

D∗ = D∗
max (1− exp [−D2 (D −D3)]) , D∗ > D∗

t (22)

is utilized, where the maximum damage value D∗
max and the transition D∗

t can be chosen
(choice: D∗

max = 0.9999, D∗
t = 0.8). The other parameters are determined by demanding

smooth differentiability at D∗ = D∗
t considering Eqn. (21) and (22):

D1 =
2Dcκ− 1 +

√
1 + 4κ (Dt −Dc)

2κ
(23)

D2 =
1 + 2κ (D1 −Dc)

D∗
max −Dt

(24)

D3 = D1 +
1

D2

ln

[
1− Dt

D∗
max

]
. (25)
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When damage at a material point attains a value D∗ = 1, a crack is assumed to be
initiated. For technical reasons, we declare the criterion D∗ ≥ 0.99 as initiation point.

Typically, failure of steels originates from nucleation, growth and coalescence of micro-
voids. Therefore, the Rice and Tracey model of void growth is taken into account (see
[10]). The damage (porosity) evolves as

Ḋ = (1−D) ε̇d, (26)

where the damage driving strain rate ε̇d is formulated to yield :

ε̇d =

{
D∗K1 exp

(
h
h1

)
ε̇dev , h < ht and D < Dc

D∗K1esmooth (h) ε̇dev , h ≥ ht and D < Dc.
(27)

Damage is then a function of stress triaxiality h. A scalar measure of deviatoric deforma-
tion ε̇dev is introduced, which combines plastic and TRIP-contributions. Its formulation is
discussed subsequently. K1 and h1 are adjustable parameters. To avoid numerical prob-
lems, the exponential term of the Rice and Tracey model is restricted by determining a
cut-off triaxiality ht. The function esmooth provides a finite value for h → ∞ and contains
one additional parameter hmax (see Appendix).

Results of cell model simulations on porous metals show, that a uni-axial straining
state occurs after exceeding the critical damage Dc (see e. g. [4]). Therefore, the damage
driving strain rate switches to

ε̇d =
3

2
ε̇dev, D ≥ Dc. (28)

We suggest an approximation of the rate of equivalent inelastic strain ε̇dev by the value
calculated from the deviatoric part Ddev of the whole rate of deformation tensor D as:

ε̇dev =

{√
2
3
Ddev : Ddev , Λ̇ > 0

0 , else.
(29)

As a result, after computing the effective stress response, damage can be evaluated sepa-
rately by integrating Eq. (26). Regarding all modifications, Eq. (20) is rewritten as

σ = (1−D∗) σ̂. (30)

2.5 Non-local damage model

An implicit gradient regularization method is used to obtain a non-local spatial average
of a damage related variable (see e. g. [11]). The deformation and stress dependent
damage driving strain rate ε̇d is chosen to be replaced by its non-local counterpart ˙̄εd in
the damage evolution law Eq. (26). This ensures, that a fully damaged state D∗ → D∗

max

can be achieved. The non-local variable is determined by solving the additional field
equation of Helmholz-type (∇2 - Laplacian,

#»∇ - Nabla-operator):

ε̄d − L2∇2ε̄d = εd. (31)
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The regularization involves an additional internal length parameter L. The boundary
conditions are chosen as

#»∇ε̄d · #»n = 0, (32)

according to [11] ( #»n - normal to current boundary).
At this point, some remarks on possible implementation strategies using the FE-code

ABAQUS/standard (version 6.14) should be given. The constitutive law is defined via
subroutine UMAT. The similarity between the field equation Eq. (31) and the stationary
heat equation can be used to avoid implementing a user defined finite element (subroutine
UEL). The temperature degree of freedom changes its meaning to the non-local variable
ε̄d. Firstly, a fully thermal-displacement-coupled simulation step with stationary heat
transfer has to be defined. Declaring a ’heat generation’ rpl in subroutine HETVAL as

rpl = −ε̄d + εd (33)

changes the heat equation into the desired Helmholtz-equation. The implementation re-
quires also additional material tangent entries, which can be defined in subroutines UMAT
and HETVAL. The internal length is provided by defining the ’conductivity’ L2. For the
considered 2D-plane strain-problems in section 3.3 we use quadratic shape functions to
approximate the displacements and linear shape functions for the non-local variable. A
reduced integration scheme is applied (ABAQUS element CPE8RT).

3 RESULTS AND DISCUSSION

Firstly, the results of fitting the TRIP-steel model to experimental data is discussed.
No damage is considered at this stage. The chemical composition of the considered TRIP-
steel is given in Tab. 1. The uni-axial tensile and compressive tests were conducted at a
low temperature (273.15 K) to generate a high amount of martensite during mechanical
loading; the experimental techniques can be found in [12]. For measuring the martensite
content, the setup described in [13] was used.

Secondly, the local damage model is fitted to cell model simulations of TRIP-steel with
micro-voids (porosity=1 %). Cell model simulations of porous metals are well known,
general information can be found in [14]. The simple case of an axi-symmetric unit
cell is used here. During loading, the stress triaxiality h is held constant. Macroscopic
stress-strain curves can be extracted. As material model for the metal matrix, the fitted
TRIP-steel model without damage is utilized.

Finally, a convergence study using the non-local damage model is presented. The con-
sidered 2D boundary value problem of a plate with a hole and some kinematic restrictions
are sketched in Fig. 2 (symmetry conditions are applied, plane strain state, displacement
controlled).

3.1 Fit to uni-axial experiments

As illustrated in Fig. 1, the stress-strain response as well as the martensite evolution
of uni-axial compression and tension tests are captured by the proposed model. Espe-

7
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Table 1: Chemical composition of the investigated 16Cr-7Mn-7Ni TRIP-steel (in mass-%)

Fe C Cr Mn Ni Al Si Mo Ti N

bal. 0.02 15.9 7.1 6.9 0.015 1.16 0.025 0.01 0.08

Figure 1: Fitting results of the model (sim.) to uni-axial tension (ten.) and compression (comp.) results
(exp.): true stress-strain-curves (lhs) and martensite evolution (rhs)

cially the asymmetric hardening is matched well. During parameter optimization, the
martensite evolution parameters can be fitted prior to the hardening parameters.

3.2 Fit to cell model simulation

Prior to the fitting procedure, a convergence study regarding the permissible strain
increment during loading was performed. After exceedingDc, a high sensitivity concerning
the strain increment was found. In all upcoming simulations, the possible crossing of Dc is
checked during computation at every integration point. The (absolute) biggest component
of the strain increment tensor must not exceed 0.001 for D ≥ Dc.

An initial damage ofD0 = 0.01 is applied during the calibration of the damage model to
the cell model results. The hardening and martensite evolution parameters are optimized
to fit the uni-axial cell model result (h = 1/3, see Tab. 2), where damage has a minor
influence. Afterwards, the damage parameters K1, h1, Dc and κ are calibrated to match
the stress-strain behavior of the cell model at higher stress triaxialities (see Tab. 2).
According to Fig. 2 (lhs), the qualitative behavior is reasonable. A good agreement is
found for h = 2, whereas a slight mismatch is visible for h = 1 and h = 3.

3.3 Numerical example and convergence study

For the convergence study concerning the spatial discretization, the boundary value
problem depicted in Fig. 2 (rhs) with the parameter set of Tab. 2 is considered. Five dis-
cretization variants are realized, where the ratio of a characteristic element length le over

8
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Figure 2: Fitting results of the local damage model to cell model results at three different triaxialities
h (equivalent stress - equivalent strain curves of model and cell simulations, lhs) and boundary value
problem of the convergence study (plate with hole, rhs)

Table 2: Model and material parameters found from cell model fit (E - Young’s modulus, ν - Poisson’s
ratio, τ0 - initial yield stress)

E [GPa] ν [-] τ0 [MPa] H [MPa] q [-] rc [-] R∞ [MPa] Z1 [MPa] Z2 [-]

192 0.24 264.216 2427.952 0.753 0.199 428.93 177.96 1.864

B [-] M [-] �v [-] α0 [-] α1 [-] α2 [-] β0 [-] β1 [-] β2 [-]

0.535 0.12 0.02 0.101 7.006 0.083 0.517 0.272 294.679

n [-] D0 [-] K1 [-] h1 [-] Dc [-] κ [-] ht [-] hmax [-] L [mm]

6.037 0.01 1.507 1.21 0.085 30 3 5 0.4

internal length L is systematically varied: le/L = 1/16...1. Quadrilateral finite elements
are utilized; the prescribed edge length is chosen as le. The simulation is interrupted,
if crack initiation is reached anywhere. Fig. 3 (lhs) shows the global response of the
structure for different meshes. A sharp load drop prior to crack growth can be observed.
No mesh size dependency exists, where the load drop would clearly occur at different
displacements.

The magnified view of the load drop highlights the convergent behavior. The curves for
le/L ≤ 1/4 seem to coincide. A quantitative error analysis is performed through defining
a relative error

∆U =
|Uci − Uci,le=1/16|

Uci,le=1/16

(34)

of the nominal displacement at crack initiation U = Uci with respect to the finest mesh.
Fig. 3 (rhs) reveals that a convergence exists, where the relative error for le/L = 1/4 is
already smaller than 0.1%. This confirms the recommendation to use le/L = 1/4, which
can be found in [11].
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Figure 3: Convergence study results: force-displacement response until crack initiation of different
discretization le/L (lhs) and relative error analysis of the displacement at crack initiation (rhs)

(Dc)
(D0)

D* [-]

le/L=1/4 le/L=1/8

Figure 4: Convergence study results: contour plot of damage D∗ at crack initiation point for two meshes
le/L = 1/4 (lhs) and le/L = 1/8 (rhs)

Remark: For the previous convergence study, the change of the damage driving force
ε̇d beyond Dc is neglected (see Eq. (28)). We found also mesh independent results for
activating this switching, but the convergence behavior was not as ’beautiful’ as for the
non-switching case.

The local convergence behavior is illustrated by a closer view to the damage distribution
at the point of crack initiation (Fig. 4). Two mesh sizes are compared: le/L = 1/4 and
le/L = 1/8. Firstly, the location of damage should be mentioned, which is not directly
near the hole, but rather at the right boundary, because higher triaxiality values occur

10
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at this position. Both meshing variants show a qualitatively and quantitatively similar
distribution of damage. It can be clearly seen, that the zone of massive damage (D∗ > 0.9)
is spread over some layers of elements, especially for the fine mesh le/L = 1/8. No damage
localization in single element layers for fine meshes is detected, which indicates the non-
local character of the regularized damage model.

4 CONCLUSIONS

A rather simple model to express the asymmetric behavior (strain hardening, mar-
tensite evolution) during monotonic, uni-axial tension and compression loading of TRIP-
steel is proposed. Experimental data can be fitted well.

A local damage model based on the effective stress concept is applied. Damage evo-
lution is modeled by a modified Rice and Tracey [10] description of void growth. Void
coalescence and the linked accelerated damage evolution up to crack initiation are tackled
by a phenomenological approach. Cell model predictions of damaged TRIP-steel can be
successfully fitted in terms of macroscopic stress-strain curves.

A non-local extension based on a regularization technique is incorporated. A conver-
gence study proves the non-local properties of the proposal.
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APPENDIX

The definition of esmooth in Eq. (27) should ensure a transition at triaxiality h = ht

which is smooth differentiable with respect to h. A saturation of the exponential term in
Eq. (27) is desired, which starts at h = ht and reaches its final value emax at the prescribed
triaxiality parameter hmax:

esmooth = emax

(
1− exp

(
ec

h1 (emax − ec)
(ht − h) + ln

(
(emax − ec)

emax

)))
,

emax = exp (hmax/h1) ,

ec = exp (ht/h1) .
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