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Abstract

We study the Oβ-hull of a planar point set, a generalization of the Orthogonal
Convex Hull where the coordinate axes form an angle β. Given a set P of n points
in the plane, we show how to maintain the Oβ-hull of P while β runs from 0 to π in
Θ(n log n) time and O(n) space. With the same complexity, we also find the values
of β that maximize the area and the perimeter of the Oβ-hull and, furthermore, we
find the value of β achieving the best fitting of the point set P with a two-joint chain
of alternate interior angle β.

1 Introduction

Let Oβ be a set of two lines with slopes 0 and tan(β), where 0 < β < π. A region in the
plane is said to be Oβ-convex, if its intersections with all translations of any line in Oβ are
either empty or connected. An Oβ-quadrant is a translation of one of the (Oβ-convex) open
regions that result from subtracting the lines in Oβ from the plane. We call the quadrants
of Oβ as top-right, top left, bottom-right, and bottom-left according to their position with
respect to the elements of Oβ, see Figure 1(a). Let P be a set of n points, and Q the set
of all Oβ-quadrants that are P -free; i.e., that contain no elements of P . The Oβ-hull of P
is the set

OβH(P ) = R2 −
⋃
q∈Q

q

of points in the plane belonging to all connected supersets of P which are Oβ-convex [3, 11].
See Figure 1(b).
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Figure 1: (a) A set Oβ-hull, the top-right, top-left, bottom right, and bottom
left quadrants. (b) The corresponding Oβ-hull of a point set.

The concept of Oβ-convexity stemmed from the notion of restricted orientations [9],
where geometric objects comply with a property (or a set of properties) related to some
fixed set of lines. Researchers have extensively studied this notion by considering restricted-
oriented polygons [9], proximity [18], visibility [17], and both restrictions and generaliza-
tions of Oβ-convexity. The particular case of orthogonal convexity [16] considers β to be
fixed at π

2 . In the more general O-convexity [15, 16], Oβ is replaced by a (possibly infinite)
set of lines with arbitrary orientations. Other restricted-oriented notions of convexity in-
clude D-convexity [8] and O-convexity [14]. The former is based in a functional (rather
than set-theoretical) definition, while the latter (unlike Oβ-convexity) always leads to con-
nected sets. For a comprehensive compilation of studies on the area please refer to Fink
and Wood [7]. Some recent computational results can be found in [1, 2, 3, 12].

In this paper, we solve the problem of maintaining the combinatorial structure of
OβH(P ) while β goes from 0 to π, and apply this result to some optimization prob-
lems. Following the lines of Bae et al. [5], we find the values of β that maximize the area
and the perimeter of OβH(P ). In addition, we include an appendix extending the results
from Dı́az-Báñez et al. [6] to fit a two-joint not-necessarily orthogonal polygonal chain to
a point set. See Figure 2.
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Figure 2: (a) Oπ
2
H(P ). (b) Oβ0

H(P ), where β0 >
π
2 . (c) A two-joint non-

orthogonal polygonal chain fitting a point set.

In all cases, our general approach is to perform an angular sweep. We first discretize
the set {β : β ∈ (0, π)} into a linear sequence of increasing angles {β1, β2, . . . , βO(n)}.
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While β runs from 0 to π, each βi corresponds to an angle where there is a change in
the combinatorial structure of OβH(P ). We then solve the particular problem for any
β ∈ [β1, β2) in O(n log n) time, and show how to update our solution in logarithmic time
in the subsequent intervals [βi, βi+1). All our algorithms run in O(n log n) time and O(n)
space.

Outline of the paper. In Section 2 we show how to maintain the Oβ-hull of P while β
goes from 0 to π. In Section 3 we extend this result to solve the optimization problems we
mentioned above. We end in Section 4 with our concluding remarks.

2 The Oβ-hull of P

In this section we introduce definitions that are central to our results. We also show how to
compute OβH(P ) for a fixed value of β, and how to maintain its combinatorial structure
while β runs from 0 to π.

2.1 Preliminaries

For the sake of simplicity, we will assume P to have no three colinear points, and no pair
of points on a horizontal line. Consider the region R obtained by removing from the plane
all top-right Oβ-quadrants free of elements of P . The top-right Oβ-staircase of P is the
directed polygonal chain formed by the segment of the boundary of R that starts at the
rightmost and ends at the topmost vertex (element of P that lies over the boundary) of
OβH(P ), with respect to the coordinate system defined by the lines inOβ. We further define
the top-left, bottom-left, and bottom-right Oβ-staircases in a similar way. See Figure 3.

β

(a) (b)

Figure 3: (a) Construction of the top-right Oβ-staircase. (b) The four Oβ-
staircases of P .

Observation 1. A point in P is a vertex of OβH(P ) if, and only if, it is the apex of at
least one P -free Oβ-quadrant free of elements of P . Conversely, a point in the plane lies
in the interior of OβH(P ) if, and only if, every Oβ-quadrant with apex on it contains at
least one point in P .
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We say that an Oβ-quadrant is maximal if its boundary joins two consecutive elements
in the sequence of vertices found while traversing an Oβ-staircase in its corresponding
direction. Two Oβ-quadrants are opposite to each other if, after placing their apices over a
common point, their rays bound opposite angles. Similarly, we say that two Oβ-staircases
are opposite to each other, if they were constructed using opposite Oβ-quadrants. It is
easy to see that OβH(P ) is disconnected when the intersection of two opposite maximal
Oβ-quadrants is not empty. In such case we say that both Oβ-quadrants overlap, and refer
to their intersection as an overlapping region. See the regions bounded by dashed lines in
Figures 1(b) and 2(b).

Observation 2. Non-opposite Oβ-staircases cannot generate overlapping regions. More-
over, only one pair of Oβ-staircases can intersect at the same time.

We will specify OβH(P ) in terms of its vertices and its overlapping regions. From
Observation 1, the set of vertices of OβH(P ) is the set of maximal elements of P under
vector dominance [4]. Thus they can be computed for a fixed value of β in Θ(n log n) time
and O(n) space [10, 13]. Note that Oβ-staircases are monotone with respect to both lines
in Oβ (they could not bound Oβ-convex regions otherwise), so any pair of them intersect
with each other at most a linear number of times. From Observation 2, in a fixed value of β
there is at most a linear number of overlapping regions. Thus, if the vertices of OβH(P )
are sorted according to either the x- or the y-axis, we can compute from them the set of
overlapping regions in linear time. We get then the following theorem where the Ω(n log n)
time lower bound comes from the fact that from OβH(P ) we can compute the convex hull
of P in linear time.

Theorem 3. For a fixed value of β, the sets of vertices and overlapping regions of OβH(P )
can be computed in Θ(n log n) time and O(n) space.

2.2 The angular sweep

The Oβ-hull of P is shown in Figure 4 at the initial increasing configuration, that is, where
β is equal to an angle βI = 0 + ε for a small enough ε. Note that every point in P
is the apex of a P -free Oβ-quadrant, and is thus contained in at least one Oβ-staircase:
both top-right and bottom-left Oβ-staircases contain the whole set P , and the top-left
and bottom-right Oβ-staircases are formed respectively, by the topmost and bottom-most
points in P . Also, the intersection between the top-right and bottom-left Oβ-staircases
generate a linear number of overlapping regions.

By performing an increasing sweep (where β goes from 0 to π), the initial increasing
configuration is gradually transformed to the initial decreasing configuration, where β is
equal to a value βD = π − ε for a small enough ε (see Figure 5). At this configuration,
the top-left and bottom-right Oβ-staircases contain P and generate a linear number of
overlapping regions, and the top-right and bottom-left Oβ-staircases contain respectively,
the topmost and bottom-most points in P . Clearly, the converse of the above discussion
holds: from the initial decreasing configuration, a decreasing sweep (where β goes from π
to 0) will gradually transform OβDH(P ) into OβIH(P ).

During the transition between initial configurations, we recognize four types of events
that modify the set of vertices and overlapping regions of OβH(P ). An insertion (resp.
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Figure 4: The initial increasing configuration.

Figure 5: The initial decreasing configuration.

deletion) event occurs when a vertex joins (resp. leaves) a Oβ-staircase. At overlap (resp.
release) events, an overlapping region is created (resp. destroyed).

Note that a vertex leaves (resp. joins) the same Oβ-staircase at most once, and thus,
there is in total a linear number of insertion (resp. deletion) events. From Observation
2, between βI and βD there is always an interval φ = [β1, β2] such that, for any β ∈ φ,
the Oβ-hull of P contains no overlapping regions. Let us consider the angular intervals
φI = [βI , βN1 ] and φD = [βN2 , βD]. An angular sweep in φI results in a linear number
of releasing events caused by the deletion of all overlapping regions present at the initial
increasing configuration. As any vertex supports at most two maximal Oβ-quadrants, an
additional linear number of region events are generated by vertex events and, therefore,
region events in φI add up to O(n). Using the same argument on φD, we can count a linear
number of these events during an angular sweep.

Lemma 1. There are O(n) events during an angular sweep.

We now show how to compute the sequence of increasing angles that mark vertex and
overlapping events during an angular sweep.

Insertion and deletion events. The set of vertices of OβH(P ) on the top-right Oβ-
staircase has a total ordering that, at any value of β is given by traversing the staircase
along its direction. At the initial configuration, the order is also given by the sequence
p1, . . . , pn of points in P labeled in ascending vertical order.

Let us consider the set α(P ) = {α1, . . . , αn−1} where for each αi, the slope of the line
through pi and pi+1 equals tan(αi). In an increasing sweep, the first point leaving the
top-right Oβ-staircase is pi. Indeed, for any β > αi, a top-right Oβ-quadrant with apex
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over pi is not P -free. This is not the case for points corresponding to any αj such that
αj > αi and αj > β. See Figure 6.

αi

pi+1

αi+1

pi

pi−1

αi−1

Figure 6: Insertion and deletion events for the top-right Oβ-staircase.

To compute the next value of β where a point will leave the top-right Oβ-staircase, we
must remove αi from α(P ), update αi−1 to the angle where the slope of the line through
pi−1 and pi+1 equals tan(αi−1), and compute the new smallest element of α(P ). A recursive
repetition of this computation allows us to obtain all deletion events corresponding to the
top-right Oβ-staircase.

Lemma 2. All insertion and deletion events can be computed in O(n log n) time and O(n)
space.

Proof. Store the points in P in a balanced search tree ordered according to the y-axis, and
the set α(P ) in a priority queue. From Lemma 1, the algorithm described above requires
O(n log n) time and O(n) space to compute the sets of insertion and deletion events, asso-
ciated with the top-right Oβ-staircase. Considering the angles shown in Figure 7, a similar
algorithm can be used to obtain the corresponding events for the remaining Oβ-staircases
in the same time and space complexity.

αi,top-right

pi+1

pi

αi,top-left

αi,bottom-left

αi,bottom-right

pi−1

Figure 7: Lemma 2.

Overlap and release events. Let Qr and Ql be respectively, a pair of overlapping
top-right and bottom-left maximal Oβ-quadrants. Consider that Qr is supported by the
vertices pj , pj+1, and Ql by the vertices pk, pk+1. Also, assume the supporting points are
labeled according to the total ordering of their corresponding staircases (see Figure 8).
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pj

pj+1

pk+1

pk

Figure 8: An overlapping region (bounded by dashed lines) generated by the
intersection between a top-right and a bottom-left maximal Oβ-quadrants.

The full overlap event for the overlapping region defined by Qr and Ql is the angle ω
for which the slope of the line through pj+1 and pk+1 equals tan(ω). If the supporting
points do not leave their corresponding staircases, this event marks the value of β where
the overlapping region disappears.

Let ω(P ) be the set of full overlap events for all the overlapping regions at the initial
increasing configuration, and αd(P ) the set of all deletion events corresponding to the
vertices over the top-right and bottom-left Oβ-staircases. Let ωm and αm be the smallest
values in ω(P ) and αd(P ), respectively. Performing an increasing sweep, to obtain the first
release event, we need to deal with the following cases:

1. αm corresponds to a supporting point, and αm ≤ ωm. In this case, αm needs to be
processed and ω(P ) needs to be updated. By removing a supporting point, at most
two overlapping regions are terminated (two release events are added to ω(P )), and
at most one new overlapping region is generated (one overlapping event and one full
overlap event are added to ω(P )). After updating ω(P ), ωm and αm are recomputed
and the test is repeated.

2. αm does not correspond to a supporting point. In this case, ωm is the first release
event.

To compute the next release event, we must remove the current release event from
ω(P ), and recompute ωm as described above. A recursive repetition of these steps allow us
to obtain all release events caused by intersections between the top-right and bottom-left
Oβ-staircases.

Lemma 3. All overlap and release events can be computed in O(n log n) time and O(n)
space.

Proof. Store the points in P in a balanced search tree ordered according to the y-axis, and
the sets αd(P ), ω(P ) in priority queues. From Lemma 1, the algorithm described above
requires O(n log n) time and O(n) space to compute the sets of overlap and release events
associated with the top-right and bottom-left Oβ-staircases. A similar algorithm can be
used to obtain the events associated to the top-right and bottom-left Oβ-staircases, with
the same time and space upper bounds.
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Maintaining OβH(P ). Considering the previous results, the maintenance of OβH(P ) is
straightforward:

1. Compute all vertex and overlap events, and store them in a list sorted by appearance
during an increasing sweep.

2. Compute OβIH(P ). Store in height balanced trees the total orders of the sets of
vertices lying over the four Oβ-staircases. Store the set of overlapping regions in any
constant-time access data structure (such as a hash table).

3. Simulate the angular sweep by traversing the list of events. At each insertion and
deletion event, update the corresponding set of vertices. At each overlap and release
event, update the set of overlapping regions.

From Lemmas 2 and 3, to compute the sets of vertex and overlap events, we require
O(n log n) time and O(n) space. As we have a linear number of elements on each set, we
can merge them into a single ordered set using O(n log n) time. Thus, item 1 requires
O(n log n) time and O(n) space.

From Theorem 3, computing OβH(P ) for any fixed value of β takes O(n log n) time
and O(n) space. Every Oβ-staircase contains at most n elements and therefore, to store
their total order in a height balanced tree we require O(n log n) time. Using a hash table,
we can initialize the set of overlapping regions in O(n) time. Therefore, item 2 requires
O(n log n) time and O(n) space.

At each insertion and deletion event, updating the corresponding set of Oβ-maximal
elements requires O(log n) time per operation. Updates on the set of overlapping regions
takes constant time, so item 3 takes O(n log n) time. From this analysis we get that, in
total, we can compute and maintain OβH(P ) through an angular sweep in O(n log n) time
and O(n) space. From Theorem 3, this time complexity is optimal.

Theorem 4. Computing and maintaining OβH(P ) through an angular sweep requires
Θ(n log n) time and O(n) space.

3 Application problems

In this section we extend the results from Section 2 to the solution of related optimization
problems. We deal with the problem of maximizing the area and the perimeter of OβH(P )
(Sections 3.1 and 3.2, respectively). As an extra application, in Appendix A we deal with
the problem of fitting a two-joint polygonal chain to a point set.

3.1 Area optimization.

In this section we solve the following problem:

Problem 1 (Maximum area). Given a set P of n points in the plane, compute the value
of β for which OβH(P ) has maximum area.
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Let {β1, . . . , βO(n)} be the sequence of (vertex and overlapping) events, ordered by
appearance during an increasing sweep. Following the lines of Bae et al. [5] (see also
Figure 9), we express the area of OβH(P ) for any β ∈ [βi, βi+1) as

area(OβH(P )) = area(P(β))−
∑
i

area(4i(β)) +
∑
j

area( j(β)), (1)

where P(β) denotes the (simple) polygon having the same vertices as OβH(P ) and an edge
connecting two vertices if they are consecutive in a Oβ-staircase. The term 4i(β) is the
i-th triangle defined by two consecutive vertices in a Oβ-staircase, and j(β) is the j-th
overlapping region defined by the intersection of two opposite Oβ-staircases.

Figure 9: The area of OβH(P ). The polygon P(β) is bounded by dotted lines.
A triangle 4i(β) and two parallelograms j(β) are filled in blue.

Our general approach is to maintain the terms of Equation (1) during a complete
angular sweep. We first compute the optimal value of β for [β1, β2). We then traverse
the event sequence, updating the affected terms in Equation (1) at each event. At the
same time, we compute the local angle of maximum area for each [βi, βi+1). With any
new computation, we keep the local optimal angle only if the previous maximum area is
improved.

The polygon P(β). At any fixed value of β, the polygon can be constructed from the
vertices of OβH(P ) in linear time. Once constructed, it takes a second linear run to
compute its area. During an interval between events the area does not change. As P(β)
only depends on the vertices of OβH(P ), it is only modified by insertion and deletion
events. Each event can be handled in constant time: the area of a triangle needs to be
added (deletion event) or subtracted (insertion event) from the previous value of the area
of P(β). See Figure 10.

The triangles 4i(β). A triangle is defined by a pair of consecutive vertices of P(β). If
we consider a top-right Oβ-staircase, the area of 4i(β) is bounded by a line through pi
and pi+1, an horizontal line through pi, and a line with slope tan(β) through pi+1. In this
context, the area of 4i(β) is given by
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(a)

p

(b)

Figure 10: Updating area(P(β)). (a) The vertex p will leave the top-right Oβ-
staircase in an increasing sweep. (b) The area of a triangle needs to be added
after the deletion event from area(P(β)), once p is no longer a vertex.

area(4i(β)) =
∣∣(xi − xi+1)(yi+1 − yi) + (yi+1 − yi)2 cot(β)

∣∣
= |ai ± bi cot(β)| , (2)

with ai, bi constants, where (xi, yi) and (xi+1, yi+1) are respectively, the coordinates of the
points pi and pi+1.

p

(a)

p

(b)

Figure 11: Updating the term
∑
i area(4i(β)). (a) The point p will leave the

top-right Oβ-staircase during an increasing sweep. (b) When p is no longer a
vertex, two triangles are deleted, and a new triangle is created.

The term
∑

i area(4i(β)) is impacted by insertion and deletion events and, at each
event, it needs to be modified a constant number of times. As any vertex of OβH(P )
supports at most two maximal Oβ-quadrants, at a deletion event two triangles are removed
and one triangle is added. The converse occurs for insertion events. See Figure 11.

The overlapping regions j(β). An overlapping region is defined by two pairs of con-
secutive vertices of OβH(P ) belonging to opposite Oβ-staircases. Overlapping regions are
bounded by parallelograms with sides parallel to the lines in Oβ. If we consider top-right
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and bottom-left Oβ-staircases intersecting as shown in Figure 12, the area of a parallelo-
gram is given by

area( j(β)) = |(xk+1 − xi+1)(yk − yi) + (yk+1 − yi+1)(yk − yi) cot(β)|
= |aj ± bj cot(β)| , (3)

with ai, bi constants, where pi = (xi, yi), pi+1 = (xi+1, yi+1) and pk = (xk, yk), pk+1 =
(xk+1, yk+1) are respectively, the supporting vertices of the overlapping maximal opposite
Oβ-quadrants.

pj

pj+1

pk+1

pk

(a)

pj

pk+1

pk

pj+1

pj+2

(b)

Figure 12: An overlapping region destroyed because of the vertex pj+1 leaving
the top-right Oβ-staircase, during an increasing sweep.

The term
∑

j area( j(β)) is impacted by all types of events. Overlap and release events
require a single overlapping region to be added or deleted. For insertion and deletion events,
at most two new overlaps are created, or destroyed.

Characterization. Before describing our algorithm, in the following lemmas we answer
some basic questions about the behavior of area(OβH(P )). Lemmas 4 and 5 imply that
it seems not possible to restrict the number of candidate angles of maximum area. On
the other hand, Lemma 6 shows that the angle of maximum area is actually located at an
event.

Lemma 4. For any β0 ∈ (0, π) there exists a point set P such that

max
β

area(OβH(P )) 6= area(Oβ0H(P )).

Proof. Consider the coordinate system formed by Oβ0 . Place one point over the y+-, y−-,
and x+-semiaxes, and a point over the second quadrant (see Figure 13(a)). From this
position, note that area(OβH(P )) = 0 for any β ≤ β0 (Figure 13(b)), and there exists at
least one β1 > β0 such that area(Oβ1H(P )) 6= 0 (Figure 13(c)). Hence β0 cannot be the
angle of maximum area.

Lemma 5. For any β0, β1 ∈ (0, π), there exists a point set P for which area(Oβ(P )) has
local maxima in β0 and β1.
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β0

(a) (b) (c)

Figure 13: Lemma 4. (a) The set of points. (b) area(OβH(P )) = 0 for β ≤ β0.
(c) area(OβH(P )) 6= 0 for some β > β0.

Proof. Let `0 be a line with slope tan(β0), `1 a line with slope tan(β1), and without loss of
generality, let us assume that β0 < β1. We define pl, pr, pt, and pc to be the points located
respectively, at the left corner, right corner, top corner, and the interior of the triangle
bounded by the x-axis, `0, and `1. See Figure 14.

βlc

β0

βct

β1

βrcpl

pt

pc

pr

Figure 14: The points configuration.

Consider the angles βlc, βct, and βrc as in Figure 14. Note that βlc < β0 < βct < β1 <
βrc. Using an increasing sweep from the initial increasing configuration the first release
event is βlc. From there, the area of OβH(P ) is given by a parallelogram lc of constant
height, so both the base of lc and the area of OβH(P ) increase or decrease together as
β changes. As β goes from βlc to β0, the base of lc increases up to β0, there exist a local
maximum. The base of lc then decreases from β0 to βct, to increase again from βct to
β1. At β1 there is a second local maximum, as the base of lc starts decreasing again
after β1 up to the last construction event at βrc, where the area of OβH(P ) is zero. See
Figure 15.

Lemma 6. The area of OβH(P ) reaches its maximum at values of β belonging to the
sequence of events.

Proof. Let us consider the area of OβH(P ) given by Equation (1). From Equations (2)
and (3), the area of OβH(P ) can be rewritten as

12



(a) (b) (c)

(d) (e) (f)

(g)

Figure 15: Increasing sweep over the point set of Figure 14. (a) β = β0 − ε.
(b) A local maximum on β = β0. (c) β ∈ (β0, βct). (d) A local minimum
on β = βct. (e) β ∈ (βct, β1). (f) A second local maximum on β = β1. (g)
β = β1 + ε.

area(OβH(P )) = area(P(β))−
∑
i

area(4i(β)) +
∑
j

area( j(β))

= area(P(β))−
∑
i

|ai ± bi cot(β)|+
∑
j

|aj ± bj cot(β)| . (4)

If we consider the different point configurations that define a triangle (see Figure 16),
we can express |ai ± bi cot(β)| as ai + bi cot(β) or ai − bi cot(β), according to the specific
configuration. Thus, we have∑

i

area(4i(β)) =
∑
i

|ai ± bi cot(β)|

=
∑
i0

(ai0 + bi0 cot(β)) +
∑
i1

(ai1 − bi1 cot(β)) = a+ b cot(β).

It is possible to make a similar case-by-case analysis for the overlapping regions, to
obtain from Equation (3) an expression with the form c + d cot(β). Within an interval
between events P does not change, and its area remains constant. Therefore, in an interval
[βi, βi+1) we can rewrite:
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pi

pi+1

β

(a)

pi

pi+1

β

(b)

Figure 16: Relative positions between the vertices of the triangle 4i(β).

area(OβH(P )) = area(P(β))−
∑
i

|aj ± bj cot(β)|+
∑
j

|aj ± bj cot(β)| (5)

= area(P(β))− (a+ b cot(β)) + (c+ d cot(β))

= area(P(β)) + (c− a) + (d− b) cot(β)

= A+B cot(β), (6)

where A and B contain the sum of all constants from the terms in Equation (5). Note that
Equation (6) is monotone at any interval [βi, βi+1), as it is monotone in (0, π). Depending
on the particular values of A and B, area(OβH(P )) might be non-decreasing or non-
increasing. Thus, the local maximum is given either by βi or βi+1.

The search algorithm. The algorithm to compute the angle of optimum area is outlined
as follows.

1. Traverse the sequence of events to identify the first release event βd, and the last
overlap event βc. Restrict the sequence to start with βd and finish with βc, so
that Oβ(P ) has at least one connected component in every interval. Ignored events
have no effect in the result, as they belong to an initial (increasing or decreasing)
configuration, where area(OβH(P )) = 0.

2. At the first interval, computeOβH(P ) and using Equation (1) compute area(OβH(P )),
keeping the angle βm of maximum area.

3. Traverse the sequence of events. At each event:

(a) Update the set of vertices and overlapping regions of OβH(P ).

(b) Handle each event updating Equation (1) as explained above.

(c) Compute the local angle of maximum area. Replace βm only if the area of
OβH(P ) is improved.

There is a linear number of events in total, so step 1 requires O(n) time. Equation (1)
contains at most a linear number of terms, as there is at most a linear number of vertices
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and overlapping regions. Thus, from Theorem 3 and previous discussions, step 2 requires
Θ(n log n) time and O(n) space.

From Section 2.2, the updates on step 3a require logarithmic time. Every event results
in a constant number of modifications to Equation (1), as we described previously in this
section. From Lemma 6 we can obtain the angle of maximum area in constant time.
As there is a linear number of events, step 3 requires a total of O(n log n) time. From
this analysis we obtain the following Theorem, where the lower bound comes from the
maintenance of OβH(P ).

Theorem 5. Computing the value(s) of β ∈ (0, π) for which OβH(P ) has maximum area,
requires Θ(n log n) time and O(n) space.

3.2 Perimeter optimization.

In this section we solve the following problem:

Problem 2 (Maximum perimeter). Given a set P of n points in the plane, compute the
value of β for which OβH(P ) has maximum perimeter.

The perimeter of OβH(P ) is given by

perim(OβH(P )) =
∑
i

perim(∠i(β))−
∑
j

perim( j(β))−
∑
k

perim(�k(β)), (7)

where the ∠i(β) and the j(β) denote the steps and parallelograms, respectively, defined
by the staircases, and �k denotes one of the (at most four) antennas of OβH(P ), that is,
a segment of an Oβ-staircase bounding a zero-area region of OβH(P ). See again Figure 9.

The same approach, and most of the arguments we used to maximize the area can
be applied here. Following the same ideas, we will first analyze the computation and
maintenance of Equation (7), we then present adaptations of lemmas 4 to 6, and finalize
outlining the search algorithm.

The steps ∠i(β). Considering a top-right Oβ-staircase (see again Figure 11), the perime-
ter of ∠i(β) is given by Equation (8), where pi = (xi, yi) and pi+1 = (xi+1, yi+1) are the
points supporting the i-th step. Vertices over the staircase have non-decreasing y coordi-
nates, so ai is always positive. Event handling is done in the same way as we did with
triangles in the previous section.

perim(∠i(β)) = |(yi+1 − yi) cot(β) + (yi+1 − yi) csc(β) + (xi − xi+1)|
= |ai (cot(β) + csc(β))± bi| . (8)

The overlapping regions j(β). If we consider top-right and bottom-left Oβ-stair-
cases intersecting as shown in Figure 12, the perimeter of an overlapping region is given
by Equation (9). The constants cj and dj are always positive. Event handling is done in
the same way as we handled overlapping regions to optimize the area of OβH(P ).
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perim( j(β)) = |2(yi+1 − yk+1) cot(β) + 2(yk − yi) csc(β)− (xi+1 − xk+1)|
= |cj cot(β) + dj csc(β)± ej | . (9)

The antennas �k(β). An antenna is a semistep at one of the extremes of an Oβ-
staircase. Just as steps and triangles, an antenna is defined by two consecutive Oβ-maximal
points. If we consider a top-right Oβ-staircase, the perimeter of an antenna is given by
Equation (10) if it is the first semistep of the staircase, and by Equation (11) if it is the last
one (see Figure 17). In both equations we consider pi = (xi, yi) to be the point supporting
the corresponding semistep. The constant fk is always positive.

perimf (�k) = |(yi+1 − yi) cot(β) + (xi − xi+1)|
= |fk cot(β)± gk| (10)

periml(�k) = (yi+1 − yi) csc(β)

= fk cot(β) (11)

Figure 17: Two antennas respectively, at the first (horizontal segment) and last
(non-horizontal segment) semisteps of the top-right Oβ-staircase.

Considering the case-by-case analysis we did in the previous section, we can rewrite
Equations 8 to 11 as

∑
i

perim(∠i(β)) =
∑
i

|ai cot(β) + ai csc(β)± bi|

=
∑
i0

ai0 cot(β) + ai0 csc(β) + bi0 +
∑
i1

ai1 cot(β) + ai1 csc(β)− bi1

= a cot(β) + a csc(β) + b (12)
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∑
j

perim( j(β)) =
∑
j

|cj cot(β) + dj csc(β)± ej |

=
∑
j0

cj0 cot(β) + dj0 csc(β) + ej0 +
∑
j1

cj1 cot(β) + dj1 csc(β)− ej1

= c cot(β) + d csc(β) + e (13)

∑
k

periml(�k) = |fk cot(β)± gk|

=
∑
k0

fk0 cot(β) + gk0 +
∑
k1

fk1 cot(β)− gk1

= f cot(β) + g, (14)

and use Equations (12) to (14) to rewrite Equation (7) as

perim(OβH(P )) =
∑
i

perim(∠i(β))−
∑
j

perim( j(β))−
∑
k

perim(�k(β))

= (a+ c+ f) cot(β) + (a+ d) csc(β) + (b+ e+ g)

= A cot(β) +B csc(β) + C. (15)

Note that all the constants in Equation (15) adding up to A and B are always positive,
so A,B > 0. Moreover, within an interval there are at most four antennas, as they
contain one of the left-most, right-most, top-most, and bottom-most points in P (see again
Figure 17). Therefore, the number of terms contributed by antennas to Equation (7) is
constant and, except for C, they do not modify the original signs of any other term.

For simplicity, we will avoid antennas in the optimization of the perimeter of OβH(P ),
by using a version of Equation (7) not containing the term

∑
k perim(�k(β)). From the

discussion above, both expressions have maxima at the same values of β.

Characterization. We next answer questions about the behavior of perim(OβH(P )),
similar to the ones answered with lemmas 4 to 6 in Section 3. Specifically, we show that
the angle of maximum perimeter corresponds to an event (Lemma 9) and, other than that,
no restriction on the candidate angles seems to be possible (Lemmas 7 and 8).

Lemma 7. For any β0 ∈ (0, π), there exists a point set such that

max
β

perim(OβH(P )) 6= perim(Oβ0H(P )).

Proof. Consider the coordinate system formed by Oβ0 . Place one point on the origin, and a
point on the second and fourth quadrants (Figure 18(a)). As the set of points is monotone
with respect of the x- and y-axes, Oβ0H(P ) = P . Therefore, perim(Oβ0H(P )) is equal to
zero.

From this position, note that perim(OβH(P )) = 0 for any β ≤ β0 (Figure 18(b)), and
there exists at least one β1 > β0 such that perim(Oβ1H(P )) 6= 0 (Figure 18(c)). Clearly,
β0 is not the angle of maximum perimeter.
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β0

(a) (b) (c)

Figure 18: Lemma 7. (a) A set of points. (b) perim(OβH(P )) = 0 for β ≤ β0.
(c) perim(Oβ0

H(P )) 6= 0 for some β > β0.

Lemma 8. For any β0, β1 ∈ (0, π), there exists a point set P for which area(Oβ(P )) has
local maxima in β0 and β1.

Proof. Let 4t be an acute triangle bounded by the x-axis, and two lines `tl, `tr with slopes
tan(βtl) and tan(βtr), respectively. Without loss of generality, we assume that βtl < βtr,
and the intersection point between `tl and `tr lies on the y+-semiplane.

Let us consider the set P ′ = {pl, pr, pt} of points located respectively, over the left,
right, and top vertices of 4t. Note that, at any starting position, the perimeter of
OβH(P ′) is constant and equal to the base of 4t. Using an increasing sweep, from
βtl to βtr the perimeter is formed additionally by a line segment `t,b joining pt, and a
point pb traversing the base of 4t from pl to pr. During this interval, both `t,b and the
perimeter of OβH(P ′) increase or decrease together as β changes. On this conditions,
the perimeter of OβH(P ′) has a local minimum on β = π

2 and thus, a local maximum
on βtl (perim(OβtlH(P ′)) > perim(Oβtl−εH(P ′))), and a second local maximum on βtr
(perim(OβtrH(P ′)) > perim(Oβtr+εH(P ′))). See Figure 19.

βtl
pl

pt

pr
(a)

pl

pt

pr
(b)

βtr
pl

pt

pr
(c)

Figure 19: (a) and (c) Maxima on βtl and βtr. (b) A minima on π
2 .

Let 4b be a second acute triangle bounded by the x-axis, and a second pair of lines
`bl, `br with slopes tan(βbl) and tan(βbr) that pass through pl and pr, respectively. The
angles are such that βbl > βbr, and the intersection point pb between `bl and `br lie on
the Y − semiplane. Note that, if we add pb to the set P ′, the arguments from the above
discussion hold for both 4t and 4b, so the perimeter of OβH(P ′) has now local maxima
on βtl, βtr, βbl, and βbr. See Figure 20.

Given the angles β0 and β1, construct the previous point set as explained. In this
construction, βtl ≤ π

2 < βtr and βbl >
π
2 ≥ βbr. Set two of βtl, βtr, βbl, βbr to the values
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βtl

βbl

βbr

pl

pt

pr

pb

βtr

Figure 20: The angles with local maxima.

of β0 and β1 appropriately, according to the cases i) β0, β1 < π
2 , ii) β0, β1 > π

2 , and
iii) β0 ≤ π

2 < β1 or viceversa. The perimeter of OβH(P ′) will have local maxima at β0 and
β1.

Lemma 9. The perimeter of OβH(P ) reaches its maximum at values of β corresponding
to sequence events.

Proof. From Equation (15) we know that the perimeter of OβH(P ) is given by

perim(OβH(P )) = A cot(β) +B csc(β) + C,

where A,B ≥ 0. Looking for critical points in this expression, we arrive to

cos(β) = −A
B
, (16)

where β 6= 0, π. By analyzing the possible roots in Equation (16), we deal with the following
cases:

1. A > B. There are no roots in this case, as A
B > 1. The length of the perimeter is

monotonic in an interval between events.

2. A = B. There are again no roots in this case, as β cannot be 0 nor π. The length of
the perimeter is again monotonic in an interval between events.

3. A < B. There is one root at β = cos−1(−A
B ), as A and B are always positive and

different from zero. In an interval between events we have one inflection point, so
there are either two local maxima or two local minima, located at the endpoints of
the interval.

The search algorithm. We look for the maximum perimeter angles in the same way as
we obtained the values for maximum area. We first compute the list of events, obtain the
maximum perimeter angle for the first interval between events, and repeat the procedure
for the remaining events. While traversing the event list, we update the optimum value
angle only if the previous value is improved. A similar complexity analysis is also valid.

Theorem 6. Computing the value(s) of β ∈ (0, π) for which OβH(P ) has maximum
perimeter takes O(n log n) time and O(n) space.
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4 Concluding remarks

We presented an algorithm to maintain the Oβ-hull of a planar point set while β runs from
0 to π and extended this result to solve related optimization problems. We considered the
maximization of the area and the perimeter of OβH(P ), and presented a variation of the
2-fitting problem studied in [6]. In our version, the fitting curve is an alternating polygonal
chain with segments forming an angle β.

A natural extension of this work is to replace Oβ with a set O containing more than
two lines. Different variations can be obtained by restricting the orientations and (or) the
number of lines in O. In particular, the characterization of the area and perimeter functions
on each variation, seems an interesting and non-trivial problem.

As the Orthogonal Convex Hull, the Oβ-hull is suitable to be used as a separator or an
enclosing shape. As it is always contained in the standard convex hull (and therefore, in
several other traditional enclosing shapes), it is relevant in applications where the separator
or enclosing shape is required to have minimum area. Finally, note that we can easily extend
the results from Section 2 to optimize the number of vertices of OβH(P ), by keeping track
of the vertex count at each interval between events. Without much effort, the approach
and arguments from Alegŕıa-Galicia et al. [2] can be extended to Oβ-convexity, and applied
to problems related to containment relations between Oβ-hulls of colored point sets.
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Appendix A The oriented (2, β)-fitting problem

For k ≥ 1, θ ∈ [0, π), and β ∈ (0, π), a (k, β)-polygonal chain with orientation θ, Ck,β(θ), is
a chain with 2k − 1 consecutive alternating links with slopes tan(θ) and tan(θ + β) such
that the extreme links are half-lines with orientation tan(θ). Let us define `i,β(θ) as the
line passing through pi ∈ P with slope tan(θ + β). The fitting distance between pi and
Ck,β(θ) is given by

df (pi, Ck,β(θ)) = min
p∈`i,β(θ)∩Ck,β(θ)

d(pi, p),

where d(pi, p) represents the Euclidean distance between pi and p. The error tolerance of
Ck,β(θ) with respect to P is the maximum fitting distance between Ck,β(θ) and the elements
in P , that is
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µ(Ck,β(θ), P ) = max
pi∈P

df (pi, Ck,β(θ)).

The (k, β)-fitting problem for P with the Min-Max criterion, consists on finding a polygonal
chain Ck,β(θ) with minimum error tolerance µ(Ck,β(θ), P ). See Figure 21.

Theorem 7 ([6]). The
(
2, π2

)
-fitting problem can be solved in Θ(n log n) time and O(n)

space.

We consider here the case where θ has a constant value, namely 0, and we want to find
the chain C2,β(0) = C2,β of optimal error tolerance. More formally, we solve the following
problem.

Problem 3 (Oriented (2, β)-fitting). Given a set P of n points in the plane, compute a
polygonal chain C2,β such that µ(C2,β, P ) has minimum value.

Consider the algorithm used in [6] to obtain the O(n log n) time bound for the
(
2, π2

)
-

fitting problem used to prove Theorem 7. The Oπ
2
-hull of P is used as a tool to solve the

problem in O(log n) time for a fixed value of θ in a closed orientation interval [θi, θi+1]. An
event sequence of a linear number of orientation intervals is created to maintain Oπ

2
H(P )

as θ grows from 0 to 2π.
To solve Problem 3 we can follow exactly the same techniques. We refer the reader

to reference [6] just to see the evident changes coming from the use of a different struc-
ture. More concretely, the structure Oπ

2
H(P ) is replaced by OβH(P ) which needs also a

linear number of interval events [βi, βi+1] to be maintained, and where the angular sweep
is performed over β. Thus, Lemmas 3 and 4 in [6] can be now stated as follows:

(i) Given a value β ∈ [βi, βi+1], an optimal solution of the (2, β)-fitting problem for β
is defined by a line `i,β with slope tan(β) passing through a point pi of P which gives the
bipartition of P .

(ii) The optimal solution of the (2, β)-fitting problem for an interval event [βi, βi+1]
occurs either at an endpoint of the interval, i.e., at βi or βi+1, or at a value β0 ∈ [βi, βi+1]
when the left and right error tolerance are equal.

Using the properties (i),(ii) and following the maintenance of OβH(P ), the problem is
solved as follows:

1. Compute OβH(P ) and the optimal error tolerance for the first interval between
events.

2. Traverse the event sequence, obtaining the optimal error tolerance at each interval
between events.

3. Update the previous solution only when it is improved.

Thus, the approach and arguments used in Theorem 7 hold in the case of the (2, β)-
fitting problem See Figure 21. As a consequence, we get the following theorem.

22



Theorem 8. The (2, β)-fitting problem can be solved in O(n log n) time and O(n) space.
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Figure 21: The polygonal chain C2,β and the Oβ-hull of P .
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