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“Out of the night that covers me,
Black as the pit from pole to pole,
I thank whatever gods may be
For my unconquerable soul.

In the fell clutch of circumstance
I have not winced nor cried aloud.
Under the bludgeonings of chance
My head is bloody, but unbowed.

Beyond this place of wrath and tears
Looms but the Horror of the shade,
And yet the menace of the years
Finds and shall find me unafraid.

It matters not how strait the gate,
How charged with punishments the scroll,
I am the master of my fate,
I am the captain of my soul. ”

William E. Henley
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Abstract

Deep learning has affected the speech processing and speech generation fields
in many directions. First, with end-to-end architectures that allow for injection
and synthesis of waveform samples directly. Secondly, with the exploration of ef-
ficient solutions that allow for deep learning to be applied, with its effectiveness,
to computationally restricted environments like mobile devices. And finally, with
latest trends that explore speech and audio data to learn novel representations with
the least amount of supervision. In this work we explore these three directions in
both speech generation and speech analysis systems. First, we make use of the
latest pseudo-recurrent structures, such as self-attention models and quasi recur-
rent neural networks, to build text-to-speech acoustic models. The resulting quality
and efficiency of the proposed systems is then studied in comparison to the recur-
rent baseline. Our study shows that, with the proposed pseudo-recurrent acoustic
model based on quasi recurrent neural networks, named QLAD, we achieve a 11.2
times synthesis speedup on CPU and 3.3 times on GPU with respect to the purely
recurrent baseline model. Moreover, such model is able to preserve the synthetic
speech quality to the same level as in the original recurrent model, both competitive
with state of the art in vocoder-based statistical parametric speech synthesis models.
Secondly, we propose a speech enhancement generative adversarial network, the
SEGAN. This is able to perform speech-to-speech mappings in one single inference
as a fully convolutional structure, which also involves an efficiency increase with re-
spect to existing end-to-end auto-regressive generative models. We show prominent
results in noise removal with respect to other classic and deep regression baselines.
This is first reflected in objective results, where the best performing model we pro-
pose reaches the highest quotas of segmental signal-to-noise-ratio and intelligibility
scores. In subjective terms, the model also shows advantage over all other selected
baselines in terms of noise removal and, also importantly, least distortion injection
in the speech regeneration. The proposed model also proves to be efficient in its
transferability to new languages and noises. Departing from an English pre-trained
model, the system achieves comparable objective performance to the English model
itself on Catalan and Korean with only 24 s of adaptation data, with unseen speak-
ers and noise. This would specially fit the requirements of having a model for low
resource environments. Finally, we unveil the generalization capability of SEGAN
towards other noises and distortions, hence truly taking advantage of the genera-
tive capacity of the model with the so called generalized speech enhancement. The
first task tackled under this shift towards palliating distortions on the speech sig-
nals is a whisper-to-voiced conversion. This part of the work aims to improve an
existing regression based approach with recurrent networks that, for clinical pur-
poses, tries to recover natural speech from aphonia. Results show that our model
can indeed enhance the naturalness of the resulting speech in terms of intonation, as
well as proving the need for the adversarial training component upon the failure of
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a regression-based method in time domain. Then, to finish our proposal on the use
of SEGAN for generalized speech enhancement, a new paradigm shift is proposed
where several distortions are combined and have to be palliated. This involves a
new trend where deep generative models are to be used for general purpose speech
enhancement, where reconstructed naturally sounding utterances have to emerge
out of damaged ones even if it involves a change of prosody and low level features
with respect to the original signal. To make our SEGAN effective on the first ap-
proach we take for this task, we propose the insertion of perceptually related losses
to build a multi-task setup in the GAN discriminator, as well as a two-stage training
strategy. Acoustic features are then predicted in the deepest part of the classifier,
which enriches the features learned in the adversarial training, which in turn makes
the generator yields better quality for the regenerated speech. And secondly, the
two-stage training is proposed to keep the equilibrium in the synergy between both
GAN networks. With these two additions objective and subjective results show a
substantial increase of quality of our proposed GAN compared to its vanilla ver-
sion. Finally, we propose a problem-agnostic speech encoder, named PASE, as well
as a training framework for it that makes it work unsupervisedly. PASE is a fully
convolutional structure that yields compact embeddings, which contain highly ab-
stract features such as speaker identity, prosodic traits and spoken contents. We
also propose a novel self-supervised multi-task learning approach in order to train
the encoder. Training without requiring manual labeling makes it specially attrac-
tive for exportability purposes to whichever dataset and to leverage large amounts
of data. Once PASE is trained during the self-supervised phase, it is exported into
other tasks and datasets to assess its transferability and the quality of its learned rep-
resentation. The encoder proves to be effective to do speaker, emotion and speech
recognition. Specifically, if we are able to fine-tune it with the end-task classifier in
the target dataset, the representation quality increases and systematically surpasses
well tuned classic features such as MFCCs and FBANKs, which are extensively used
in current state of the art speaker recognition and speech recognition systems, as well
as itself without fine-tuning. Interestingly, we also show that this holds for noisy
acoustic conditions to do speech recognition, even if the encoder was trained only
on clean data as it is the case. Moreover, the self-supervised multi-task components
importance is evaluated in an ablation study, which shows that all the proposed
tasks matter across the three evaluated problems. Finally, we provide preliminary
results on the effectiveness of the learned embeddings for text-to-speech. In this case
the encoder is used as an acoustic feature descriptor for speaker identities, where
the yielded frames for an utterance are averaged to obtain the global representation.
Objective results show faster convergence and higher speech quality when using our
embeddings than with typical trainable one-hot discrete codes. Additionally, using
an acoustic feature extractor as descriptor allows for out-of-corpus speech identities
to be synthesized, hence doing speaker adaptation without the need for retraining.
We also show our first objective results that support that we can indeed perform this
speaker adaptation, specially when we have enough samples of the target speaker.
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Chapter 1

Introduction

1.1 Motivation

Speech is the most prominent way of exchanging messages between human beings.
It allows us to be expressive as well as communicative, thus transmitting a mes-
sage and, at the same time, conveying other information alongside linguistics that
enrich the message. This is related to para-linguistics, which can be understood as
everything that can be found in the speech signal that cannot be described only in
strictly phonetic and/or linguistic terms (Schuller et al., 2013). Examples of acoustic
phenomena embedded in speech, which are non related or loosely related to lin-
guistics could be coughs, laughter or filled pauses. They can denote (health) state,
emotion/mood, speaker idiosyncrasies, and the like. Moreover, high pitch can be
an indication of anxiety and breathy voice can indicate attractivity, and they are also
modulated onto the verbal message (Schuller et al., 2013).

Such richness makes speech signals to be present in a myriad of situations related
to communications (e.g. phone, television, etc., and consequently in multimedia sys-
tems too). As an inheritance of human to human interaction, it has become a natural
way of communication with an automated system like an intelligent personal as-
sistant (IPA), either in the form of a software application in the mobile phone or a
hardware appliance like a smart speaker. We refer to human-to-human communi-
cation as the process happening when a message is transmitted/received between
human beings, regardless of the medium. It can hence happen through a telephonic
channel or in a meeting room. In contrast, we refer to machine-to-human communi-
cation as the process happening when a message is transmitted/received between a
human being and a machine. Current smart speakers feature voice-activated digital
assistants and often operate as home automation hubs. These devices are usually
part of a company’s existing product stack1. Precisely, the introduction of these as-
sistants, like Amazon Alexa, Google Home or Apple Siri, is a perfect match with the
internet of thinsg (IoT) concept. We can play music, order products or interact with
other home appliances thanks to the massive interconnection of IPAs with other de-
vices. Actually projections stipulate that the smart speaker market is in the middle
of a major growth cycle, and that the introduction of 5G mobile connectivity, with a
massive data transfer capacity, will allow the IPAs market to grow even faster than
now2 3.

Both scenarios, one where humans communicate amongst themselves and an-
other with human-machine interactions, demand algorithms that process these sig-
nals to extract information from them, enhance them or even mimic their generation
process to make machines produce speech. These processing techniques allow us

1https://whatis.techtarget.com/definition/smart-speaker
2https://www.alliedmarketresearch.com/smart-speaker-market
3https://www.visualcapitalist.com/smart-speaker-market-share-fight/
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FIGURE 1.1: Example communication between a person and a smart speaker.

to communicate in any condition with other people or machines, even if such con-
dition is adverse. This means we might be contacting someone through a phone
call from a noisy environment or we may ask commands to an IPA in a real home
environment, hence doing distant automatic speech recognition (ASR; Barker et al.,
2018). But not only distant recordings can be troublesome to recognize the linguistic
contents. Motor impairments may provoke a loss of intelligibility and naturalness in
some people’s speech too, so recomposing a signal with better quality with the aid
of some device might be helpful in that situation.

An important component of modern technologies is the constant connectivity of
the communication devices with processing machines, which is a concept aligned
with the aforementioned IoT. These machines can in turn do data crunching on por-
tions of conversations. For instance, in the case of IPAs, this process often aims to
improve even further the future response of these devices, due to the fact that there
is a feedback loop between the processing algorithms and the new incoming data
to improve the algorithm itself. However, in order for the algorithm to properly
take advantage of the massive data generated, we need to leverage the potential of
algorithms that learn automatically from data.

Deep learning is a framework of algorithms and tools to learn automatic pat-
terns from data, hence it forms a subset within machine learning techniques (Good-
fellow et al., 2016). The deep learning popularity has grown exponentially during
the latest years, as it offers complex statistical models that usually outperform pre-
viously existing shallower and less computationally demanding ones. The term deep
describes the fact that these models are built as multiple levels of a hierarchy that
breaks down an abstract problem (e.g. classification of audio events) into sub-levels
of features and transformations. And usually the performance of our models raise
with the increase of hierarchy levels. This implies that not only the input-output
mapping is learned in the hierarchy of concepts, but also the feature extraction pro-
cesses. In order for these models to work effectively though, massive amounts of
data are necessary, specially in end-to-end scenarios, which means that signals are
directly injected as raw data. This is contrary to previous (and normally shallower)
machine learning solutions, where a key factor was the so called feature engineering
or feature design (Huang et al., 2001; Goodfellow et al., 2016). The end-to-end strat-
egy has been successful in fields like computer vision, where current visual models
work with raw pixel data to solve several tasks; including classification, semantic
segmentation, object recognition, and image generation among others (Krizhevsky
et al., 2012; He et al., 2016; Garcia-Garcia et al., 2017; Zhao et al., 2019; Radford et al.,
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2016; Brock et al., 2019). Natural language processing (NLP) is another field that
currently tackles its most challenging tasks by directly processing words, characters
or byte-pair encodings (Sennrich et al., 2016). These raw textual tokens are encoded
with simple discrete identifiers and fed to deep models to get state of the art in lan-
guage modeling, machine translation, and natural language understanding among
others (Yang et al., 2019; Devlin et al., 2019; Vaswani et al., 2017; Young et al., 2018).

Regardless of the application field, in order to work effectively with deep models,
massive amounts of data are necessary. And this need specially grows with the
depth and complexity of the model. Precisely, the first great advantage nowadays
to improve the speech processing pipelines is the availability of massive amounts of
data to exploit with these automatized learning algorithms. Secondly, the spread of
the GPU component and the democratization of its usage for high-end computations
with open source platforms like PyTorch (Paszke et al., 2017) simplifies the building
process of these complex models for everyone4.

With the advent of deep learning, speech technologies are suffering a drift into
the end-to-end paradigm, similarly to the aforementioned computer vision and NLP
cases. This implies that the deep model is exposed to large amounts of raw speech
data, with the least possible signal pre-processing or prior knowledge about the
structure of speech. The model is then trained to solve a certain task by consum-
ing the data in a state as raw as possible, such that the model itself can learn the
best intermediate features that lead to the optimum response. This trend is gaining
popularity across the different disciplines of speech technologies, and end-to-end
modelling usually satisfies to raise state-of-the-art results across many tasks. Ex-
amples of these tasks are automatic speech recognition (ASR) (Graves and Jaitly,
2014), speech synthesis (van den Oord et al., 2016b), speech enhancement (Pascual
et al., 2019b), spoken emotion recognition (Trigeorgis et al., 2016) or speaker recog-
nition (Snyder et al., 2018). Nonetheless, these breakthroughs usually happen when
the amount of computation time and data have been enough to fulfil the search of
the optimum parameters for our algorithms.

As mentioned, this end-to-end scheme contrasts with shallower solutions that
rely on feature engineering. Fig. 1.2 depicts simplified schematics of substitution of
classic pipelines for end-to-end ones for text-to-speech (TTS) and speech enhance-
ment tasks. Classic pipelines usually require important notions and prior knowl-
edge about signal processing, as well as a clear conception of what features from the
input signal are important to derive a proper response at the model output. We can
exemplify the importance of feature selection by contrasting the classic feature se-
lection used in speech recognition and emotion recognition. The former one works
effectively upon mel frequency cepstral coefficients or filter banks (Hinton et al.,
2012), whereas emotion recognition typically relies on additional prosodic features
like pitch contours, energy, or voicing factors, among others (El Ayadi et al., 2011).
Hence models based on feature engineering may pose three main possible draw-
backs in the resulting performance: sub-optimal feature selection, cumulative errors
in cascaded systems, and more complex processing pipelines.

1.1.1 Sub-optimal Feature Selection

The feature engineering process may lead to representation limitations for the algo-
rithms. This means that we might be imposing an initial bias in the outcomes by
discarding input information. So there might be still exploitable features hidden in

4https://missinglink.ai/guides/computer-vision/complete-guide-deep-learning-gpus/
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FIGURE 1.2: Example end-to-end replacements for text-to-speech and speech enhancement
applications.

the raw data that we do not consider as important, perhaps because they were never
studied within our field of interest. This can lead to sub-optimal results in the end.
A clear example of this happens in TTS. The vocoding process, widely used in old
statistical systems, discards information of the original speech waveform, hence bi-
asing the resulting quality to a worse level even in the real data, where the model
does not take effect yet. Fig. 1.3 depicts the results of subjective evaluations taken un-
der MUSHRA tests for different TTS systems from Pascual (2016). There it is shown
that the vocoder system, labelled as Ahocoder, has a degraded quality with respect
to the natural speech, with an average score of approximately 82.7 with respect to
the 97.7 achieved by natural speech.

1.1.2 Cumulative Errors in Cascaded Systems

The traditional pipelines are built with different specialized blocks that are trained
separately, and cascaded afterwards. For instance we may have four main blocks in
a TTS pipeline: (1) Text processing and linguistic feature extraction, (2) Prosodic fea-
ture prediction, (3) acoustic feature prediction, and finally (3) Waveform generation.
Each block can be deterministic or learned with a statistical model, but these blocks
are trained independently, which can make it unaware of possible mistakes made
at the beginning of the whole process. Developing an end-to-end approach tunes
every block for the final task jointly, hence it is less prone to cumulative errors that
may be present in classic pipelines. Following the TTS example, the advances of the
latest years shifted from separated blocks cascaded after training (Arik et al., 2017;
Sotelo et al., 2017), until almost end-to-end models like Tacotron where only the fi-
nal acoustic mapping is decoupled for computational limitations (Wang et al., 2017).
Even when Tacotron is not fully end-to-end (it does not produce waveforms, which
are the end goal of speech synthesis) it is still considered to be an end-to-end system,
due to the fact that it achieves a direct mapping between raw textual features and
an acoustic representation without any break down of sub-blocks that connect the
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FIGURE 1.3: MUSHRA results from different speech synthesis models from Pascual (2016)
Fig. 4.21. SPSS: HMM-based Statistical-Parametric Speech Synthesis (see section 2.1.2). US:
Unit Selection Concatenative Speech Synthesis (see section 2.1.1). LSTM-pf and LSTM-raw:
SPSS models based on recurrent neural networks with and without post-filtering respec-

tively. Ahocoded: vocoded speech. Natural: raw recordings.

two domains. Hence in the end-to-end case the intermediate linguistic representa-
tions, the alignment between linguistic and acoustic features, the required prosodic
traits and the final acoustic features are learned altogether without intermediate la-
beling per sub-task. The Tacotron 2 demo page5 shows several examples of a TTS
that captures a broad generalization of vocabulary, connected to appropriate pro-
nunciations and prosodic traits that can be intuitively extracted from raw text, like
intonation stress with capital letters, or the change from a statement into a question
after a question mark.

1.1.3 Processing Pipeline Complexity

An end-to-end scheme can simplify the construction of models that solve complex
tasks, as they do not require breaking down the big problem to be solved into smaller
ones that are cascaded. It can even imply, as mentioned earlier, less need for prior
knowledge in the design of the modeling pipeline. Hence, it can be a better fit for
application/production purposes, as a single model is deployed to perform all the
intermediate tasks, from the raw input until the expected output. This may also
simplify the documentation and usability of our deployed system, due to the reduc-
tion of blocks to be used and interactions among them. However, this comes at a
cost too, which is a loss in the interpretability of the model and the controllability

5https://google.github.io/tacotron/publications/tacotron2/index.html
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of its outcomes. Evidently this happens because the model is more opaque and the
optimization process drives its decisions, which cannot be interpreted as responses
to sub-tasks that we would usually solve after breaking down the problem. Again,
the TTS research field has quickly tackled the end-to-end transition during the last 3
years, as in the aforementioned Tacotron case (Wang et al., 2017). However, after the
success of end-to-end TTS, the pursue of a better controllability on the final result
still remains, with recent studies on prosodic and expressiveness transfer that can
be injected into Tacotron-like systems for instance (Wang et al., 2018; Kenter et al.,
2019).

1.1.4 The Deep Paradigm Shift in Speech Processing

We are in the middle of a paradigm shift in many fields related to signal processing,
and one of them is speech processing. Going end-to-end can be advantageous in
terms of performance and simplicity, as long as we have enough data and computa-
tional resources to train them. It is evident that end-to-end systems, as they have to
integrate many different stages within one structure, have to be deep and complex
although monolithic. Nonetheless, leveraging our prior knowledge on the structure
of speech can also be an effective strategy, as it still maintains the controllability over
our model outcomes. We pragmatically use the term "prior knowledge" to refer to
classic speech feature extraction procedures, like the mel-frequency cepstral coeffi-
cients (MFCCs).

Deep generative speech models are those that mimic the real generation process
that composes speech signals. They have been often used in the speech synthesis
and TTS field for years (Taylor, 2009). The end-to-end shift is particularly signif-
icant in this field, as deep models like the WaveNet (van den Oord et al., 2016b)
proved to suffice to directly generate waveform samples. This pushed the natural-
ness boundary beyond existing feature-based approaches by far. Moreover, other
than text-conditioned generative models as in TTS, speech-conditioned generative
models are gaining momentum too, specially thanks to this end-to-end paradigm
shift. These models are applied to speech enhancement (Pascual et al., 2019b) and
voice conversion (Serrà et al., 2019; van den Oord and Vinyals, 2017) with different
types of generative models applied directly on the raw waveform too.

1.2 Deep Speech Representation and Generation

Speech signals are present in many types of scenarios related to human-to-human
and machine-to-human communications. Evidently the machine must convey some
form of speech interfacing such that it can "listen" the human enquiries, and then
"speak" in order to transmit the responses. Similarly, if the human-to-human com-
munication has to be interpreted by a machine to enhance the signal quality or tran-
scribe the conversation as well as recognizing who speaks, some acoustic represen-
tation has to allow it.

In any type of communication, the flow of speech is either categorized (linguistic
contents, speaker identity, emotion, etc.), or generated. A particular case of gen-
eration is regeneration, in case of enhancing some qualities of corrupted captured
speech. Regeneration can be inserted as a post-processing stage of either receiv-
ing or emitting side. Hence in general terms for both communication devices and
humans, we first have the recognition interface as the receiver, and the synthesis
interface as an emitting process. In the middle of both interfaces there are other



1.2. Deep Speech Representation and Generation 7

components related to language understanding and intent recognition. In the case
of humans, this language understanding is naturally available if the receiver under-
stands the emitter language. In the case of machines, this obviously requires systems
that map the captured linguistic spoken units from an ASR system into some con-
ceptual categories that involve actions and responses. This process is called spoken
language understanding (Tur and De Mori, 2011). But aside from the intrinsics of
the language understanding core, and regardless of whether communication hap-
pens between human beings or a machine also interacts, the speech interfaces are
critical components to establish proper interactions whenever some communication
tool is used to carry the messages (e.g. phone, capturing device, etc.). In the follow-
ing the speech representations concept will be described, as well as the importance
of building compact and high-level speech descriptors to solve many tasks where
speech is the input signal. Then, a brief description of speech generation is given,
and its applicability to different applications where speech is synthesized out of dif-
ferent source conditioning types.

1.2.1 Speech Representations

Firstly, if we communicate a message and we build an automatized and abstract
representation of the speech, it can be used to recognize patterns or even reconstruct
damaged parts of the acoustics if it is rich enough. The patterns can comprise the
uttered content, the speaker identity, and the emotion embedded in the speech. Im-
portantly, these characteristics should be extracted also in adverse conditions. So the
representation should be robust either in the presence of background noise, rever-
beration or pathologically damaged speech. Hence it is our interest to have a repre-
sentation versatile enough to cover a broad spectrum of qualities about the speech
as the described ones, as we can then couple in a single model different systems that
are usually built and trained separately. We could think that the waveform already
contains all these qualities, however a more abstract representation would ideally
disentangle them, yielding frames that contain the different aforementioned factors
encoded in different dimensions with a reduced intersection amongst them.

The advantage of merging representations and tasks has been already discussed
previously to avoid high levels of complexity in the processing pipeline, includ-
ing the avoidance of cumulative errors in the cascade of separate blocks. In fact,
speech recognition systems can improve their performance by conditioning infor-
mation about the acoustic environment or the speaker identity (Karafiát et al., 2011;
Saon et al., 2013) by means of i-vector representations (Dehak et al., 2010). Simi-
larly, phonetic and speaker variabilities affect the performance of speech emotion
recognition systems, although the latter seem to be more critical (Sethu et al., 2008).
As such, conditioning on speaker identity cues helps improving the performance
of emotion recognition systems, to filter out the large acoustic variabilities among
speakers (Kim et al., 2011; Ding et al., 2012).

Robust speech representations can even go beyond detecting those signal quali-
ties explicitly, and use the mixture of the aforementioned signal qualities implicitly
in an end-to-end fashion to regenerate other versions of the utterance. For instance
enhanced versions of the speech can be generated (Pascual et al., 2017; Pascual et
al., 2019b), or the voice identity can be converted between two speakers by learning
to factorize the signal qualities and recomposing at inference with changed identi-
ties (van den Oord and Vinyals, 2017; Serrà et al., 2019). Besides all the applications
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to speech tasks themselves, current deep representations can even drive the gener-
ation of face images that match the voices in the supplied utterances (Duarte et al.,
2019; Oh et al., 2019).

1.2.2 Speech Generation

Speech generation, also known as speech synthesis, refers to the computerized gen-
eration of speech. This may happen after conditioning the generation on some ad-
ditional source of information. TTS, for instance, is the method that generates the
speech out of textual information (Taylor, 2009). Hence when a user types text, the
computer interprets the linguistic contents and generates a speech waveform match-
ing them. Another possible source of information could be a speech signal itself. We
could name this approach as speech-to-speech (STS). Speech enhancement is the task
where a corrupted signal, either by additive noise or reverberation, is cleaned up and
restored to be more natural and intelligible (Loizou, 2013). This application then fol-
lows the STS paradigm, where an input signal is modified and reconstructed in the
output with different components. The TTS research field has been rapidly moving
after the first applications of deep models in acoustic models (Zen and Senior, 2014).
Nevertheless, with the introduction of the WaveNet, as mentioned earlier, and also
thanks to the sequence-to-sequence structures (Sutskever et al., 2014), the end-to-end
model pursue accelerated exponentially in this field. As such, many very deep mod-
els have recently been proposed with the availability of large amounts of speech and
text data, as well as powerful computational resources to train them. Examples of
these models are the different Tacotron versions (Wang et al., 2017; Wang et al., 2018;
Shen et al., 2018), the different DeepVoice versions (Arik et al., 2017; Gibiansky et al.,
2017; Ping et al., 2018), the Char2Wav (Sotelo et al., 2017), the Transformer TTS (Li et
al., 2019) or the ClariNet (Ping et al., 2019). These models are expensive to train, and
as such their construction is often carried by the current big companies leading the
deep learning research. On the other hand, however, there is hesitation on making
speech generation models efficient too. The WaveNet was the proof that the wave-
form sampling process can be learned with current technologies and achieves the
best quotas of synthetic speech quality (comparable to real speech), but it is known
that it is an expensive model to sample from (Kalchbrenner et al., 2018). To that end,
several models pursue improving the waveform generation efficiency, either work-
ing with a simple autoregressive parameterization than that of the WaveNet (Valin
and Skoglund, 2019; Jin et al., 2018; Mehri et al., 2016; Kalchbrenner et al., 2018),
or with other parallel approaches (van den Oord et al., 2017; Donahue et al., 2019).
Hence, efficiency is an important matter in speech generation applications, pursued
specially due to the need to embed these systems within the user devices for rapid
and personalized responses (like IPAs).

Regarding speech enhancement, its main applications are usually related to im-
proving the quality of communications in noisy environments. However, we also
find applications related to hearing aids and cochlear implants, where enhancing the
signal before amplification can significantly reduce discomfort and increase intelli-
gibility (Yang and Fu, 2005). Furthermore, speech enhancement is also applied as a
pre-processing stage in speech recognition and speaker identification systems, usu-
ally to denoise or dereverberate the recorded signals (Ortega-Garcia and Gonzalez-
Rodriguez, 1996; Yu et al., 2008; Maas et al., 2012; Donahue et al., 2018). Beyond
removing noisy conditions, speech enhancement may also refer to the recovery of
missing signal components, which in turn aims to improve the signal naturalness
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and expressiveness. For instance, whispered speech refers to a form of spoken com-
munication in which the vocal folds do not vibrate and, therefore, there is no pe-
riodic glottal excitation. This can be intentional (e.g., speaking in whispers), or as
a result of disease or trauma (e.g., patients suffering from aphonia after a total la-
ryngectomy). The lack of pitch reduces the expressiveness and naturalness of the
voice. Moreover, it can be a serious impediment for speech intelligibility in tonal
languages (Chen et al., 2018) or in the presence of other interfering sources (i.e., cock-
tail party problem (Popham et al., 2018)). The conversion from whispered to voiced
speech (we refer to it as dewhispering), either by reconstructing partially existent
pitch contours or by generating completely new ones, is an area of research that
not only has relevant practical and real-world applications, but also fosters the de-
velopment of advanced speech conversion systems (Pascual et al., 2018b). Speech
dewhispering turns out to be an example of the need of speech enhancement in a
distortion agnostic framework, which may be plausible to achieve with the current
deep learning techniques and with enough data. So generalizing the speech en-
hancement concept to palliate with any speech distortion provoked at any point of
any speech processing pipeline is an interesting matter. To exemplify possible dis-
tortions, we may have low-rate speech coding losses, signal amplitude clippings or
even sample loss (unexpected zeroed out values in the signal).

1.3 Objectives and Outline of the Thesis

This thesis has 3 goals related to the application of deep architectures in different
facets of speech generation and speech processing: (1) improving efficiency of recur-
rent speech generation models, (2) exploring the applicability of generative adver-
sarial networks (GANs) to make a non-autoregressive end-to-end STS system, and
(3) investigate the use of self-supervision to do a generalizable speech encoder that
can be applied to a myriad of speech processing tasks. Throughout the develop-
ment of the end-to-end speech generation GAN and the self-supervised modules,
efficiency is never abandoned to restrict the design of the proposed models.

Therefore, we begin working on the modeling efficiency concept in terms of syn-
thesis efficiency of state of the art pseudo recurrent structures in TTS. Owing to the
recent trend of end-to-end TTS, where computationally expensive models are built,
this is aligned with the aforementioned recent advances in efficient designs in neural
vocoders (Kalchbrenner et al., 2018; Valin and Skoglund, 2019; Jin et al., 2018; Mehri
et al., 2016). We explore the use of pseudo-recurrent structures such as self-attention
and quasi RNNs (see chapter 3), that leverage the sequential dependencies of the
signals similarly to RNNs, hence obtaining similar synthetic speech quality while
increasing parallelization.

Secondly, we tackle a speech-to-speech problem with the first deep generative
end-to-end design of its kind, working at the waveform level and built as a genera-
tive adversarial network. The proposed system is applied to speech enhancement.
With this design, our study makes a shift towards end-to-end deep generative mod-
eling for speech generation. We focus on STS to apply our model, and we design
it with little prior knowledge apart from its convolutional structure. Then, its lim-
its are explored by augmenting the number of transformations to be carried or by
adapting to new languages and domains. Nonetheless, we show that even when the
plain model is designed with the least prior knowledge in terms of signal descrip-
tion, using some speech processing enhances the model design to guide its learning
strategy and perceptually weight it, specially when several distortions have to be
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palliated. Interestingly, this shows that end-to-end models for STS, where an input
waveform is processed to output the resulting waveform, benefit from using extra
signals driven by prior knowledge, like the acoustic losses we attach to our model’s
discriminator. This indicates that we can potentially obtain a rich set of features from
the waveform through deep models, specially if we provide learning signals indicat-
ing that the well known speech features like mel-frequency cepstral coefficients are
present in our signal. This is connected to the last exploration we do in this thesis, as
the use of auxiliary signals with which the model predicts transformed versions of
the input signal is denominated self-supervised learning, a frorm of unsupervised
learning.

Therefore, in the third part of this thesis we face the challenges of applying un-
supervised learning to discover speech representations that can be useful for many
end-tasks that require speech as input. As introduced, speech processing prior knowl-
edge is leveraged from the beginning, but still allowing the model to do a full ex-
ploration of the raw data (hence injecting waveforms in the input). An important
characteristic of such representation is that it must keep information of different
high-level features of speech (i.e. linguistic contents, speaker identity and prosody),
but without the need for any label. The main objective of building such a system is
its potential exportability to any task where novel speech feature extraction models
might be helpful to begin the development. To achieve this, we focus on simple yet
powerful approaches to learn such a versatile representation without the need of
any hand-labeling.

In chapter 2 we proceed with a comprehensive literature review for speech gen-
eration, speech enhancement and speech unsupervised learning. The speech gen-
eration part, developed in section 2.1, comprises a study of speech synthesis as a
paradigm where textual and spoken inputs lead to a synthetic speech signal. First,
concatenative speech synthesis is reviewed in section 2.1.1. After briefly review-
ing its strengths and weaknesses, the statistical parametric approach is described in
section 2.1.2. This review begins with the need to overcome the limitations of con-
catenative synthesis in terms of adaptability and scalability. Then a thorough study
is made to follow the path that leads to the current deep models, which successfully
generate the highest level of synthetic speech quality with the greatest degree of
adaptability to new speaker conditions and content conditionings. Eventually, the
latest deep generative model trends applied to speech generation of either kind are
reviewed and detailed.

In chapter 3 we introduce the different blocks that are used to compose deep
learning models. Concretely, we focus in the description of the basic blocks that can
be composed to build the structures used throughout this thesis, like convolutional
neural networks with their design patterns, recurrent neural networks and attention
models. Finally, in section 3.2 we describe deep generative models and their current
taxonomy. In sections 3.2.1 and 3.2.2.1 we describe likelihood-based models and
generative adversarial networks with detail owing to their impact with respect to
the work developed in this thesis.

In chapter 4 we develop the first part of the thesis, where we pursue the devel-
opment of pseudo-recurrent structures to make TTS systems efficient without loss of
quality. To that end, we leverage the sequential processing capabilities of quasi re-
current neural networks and self-attention models, presented in sections 4.2 and 4.3
respectively.
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Then, we work on the development of an end-to-end speech enhancement gen-
erative adversarial network (SEGAN) in chapter 5. A thorough exploration of ar-
chitecture variations of this model are performed through ablation studies in sec-
tion 5.3.1. Moreover, in section 5.4 we study the transferability of this proposed
model towards new languages and noises unseen during training, and what is the
least amount of adaptation data required to work well in those new conditions de-
parting from an English model. Another dimension of study is the use of SEGAN to
make whispered-to-voiced conversions in a pursuit of a generalized enhancement
systems thanks to the potential of deep generative models. This is partly motivated
by the application of reconstructing natural speech from whispering data synthe-
sized from an articulator motion capture device (Fagan et al., 2008) used to aid peo-
ple that suffered a total laryngectomy. Finally, after showing the capabilities of this
model to both denoise and reconstruct missing speech components, a more gener-
alized speech enhancement approach is proposed in section 5.6. The introduction
of this mixture of severe adverse conditions on the signal, discussed in section 5.6,
requires an upgrade of the model to palliate audible distortions that are perceptu-
ally unpleasant. This brings the acoustic losses, described in section 5.6.1, which are
attached in the end of the discriminator to establish a multi-task that weights per-
ceptually the quality of the generated signals. Finally, a summary of the proposed
contributions in this part of the thesis is detailed in section 5.7.

Chapter 6 is devoted to two main proposals: a problem-agnostic speech encoder
and the self-supervised framework to train it. We begin proving that this encoder
conveys high level abstractions from the speech waveforms, such as speaker identi-
ties, emotional cues and spoken content classification. We also prove which parts of
the self-supervised learning are effective with an ablation study. Then, we return to
the speech generation problems by first applying this encoder to work as a speaker
and content identifier. Concretely, in section 6.4 we provide an example of usage of
PASE as a speaker identifier for acoustic models in TTS. Moreover, we also apply it
to do speaker adaptation without any model training thanks to the generalization of
PASE to out-of-corpus identities.

Finally, chapter 7 presents a summary of the research presented in this thesis, as
well as a detailed list of the key contributions. There is also a set of future perspec-
tives on where could the presented research lead to in section 7.2.
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Chapter 2

Literature Review

We use the term speech processing to refer to all those techniques that extract and
encode information from the speech signals at different levels (e.g. emotion, content,
etc.), as well as those that generate speech signals. This chapter comprises a review
of techniques to perform different facets of speech processing. Owing to the fact that
this work comprises an exploration of deep generative models and unsupervised
learning techniques for speech processing tasks, as stated in chapter 1, the follow-
ing review rapidly moves into the latest techniques framed within the usage of deep
neural models. In the following, three main topics are reviewed for the proper con-
textualization of the different facets of this work; these are speech generation, speech
enhancement and speech representation learning. The first two will be related under
the speech-to-speech paradigm introduced in chapter 1. Nonetheless, a separate re-
view of speech enhancement techniques is done, specially focused on deep learning
applications, due to its importance in the development of the speech enhancement
system proposed in chapter 5.

2.1 Speech Generation

Over time there have been several proposals of techniques to perform speech gen-
eration, both for text-to-speech (TTS) and speech-to-speech (STS) approaches. Spe-
cially TTS and voice conversion research brought the most innovative techniques
to obtain flexible and scalable models, together with new levels of naturalness in
the generated voice, until current systems that practically sound indistinguishable
from natural speech in some cases. What follows is an overview of classic and recent
techniques to generate speech. This overview mixes concepts from TTS and STS sys-
tems, as we abstract the conditioning factor and pay attention to the speech signal
generation techniques themselves.

2.1.1 Unit Selection Concatenative Speech Synthesis

The classic option we find in speech generation techniques is the so called unit se-
lection concatenative speech synthesis (US). It is based on the concatenation of small
speech units selected from a large database (Hunt and Black, 1996), basically pasting
pieces of real voice, which can already sound natural if their connection is continu-
ous and smooth. However, if the concatenation is not effectively performed it yields
glitches and audible discontinuities, this technique loses naturalness. The units can
be phones as they serve as an elemental spoken unit. Nonetheless, a typical choice
are diphones, which are constructed as the transition between two phonemes (i.e.
from half of the left-side phone till half of the right-side phone). The reason for this
is to find a structure which is least affected by co-articulation, which is the influ-
ence of a phone context to itself (Hardcastle and Hewlett, 2006). As such, they are
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preferable even in scenarios with scarcity in the number of units (Hunt and Black,
1996).

During the construction of the waveform, two dimensions of decision have to
be considered for the unit selection: the appropriate units depending on the target
content, and the concatenation cost. As mentioned earlier, the content may come
from a textual input as in TTS (Hunt and Black, 1996), or from a spoken input as in
STS (Sundermann et al., 2006; Jin et al., 2016).

A US system is comprised of a training part, where the datasets of speech units
and their contexts are built out of aligned transcriptions. During synthesis, the pho-
netic cues to compose the utterance are inferred out of text. Then these are used
to select the proper units, which in turn depend on their contextualized units. After
units are selected, some signal processing is applied to smooth the signal transitions.
As mentioned, US allows us to construct the most natural speech in terms of signal
quality, but the global naturalness of the full utterance might be broken by bad con-
catenation decisions. This means that selecting the proper continuity matching units
and even post-processing the signal adequately is of essential importance. But se-
lecting the proper units first means having enough spoken contexts represented to
select units from, which cannot happen unless we have a large database. It is known
that US systems require big datasets of units to achieve a human level of naturalness,
both in terms of waveform low level features but also in fluency and prosody (Hin-
terleitner et al., 2016; Clark et al., 2007). For instance, works experimenting with
varying corpus sizes, as in Clark et al. (2018), state that a corpus of around 36,000
phones (1.4 h of speech) provides an intelligible voice, but the system performs much
better with much bigger corpora, and the authors still experiment quality improve-
ments when using a corpus of 7 h. The signal processing block can also transform
the signal to express certain emotional acoustic cues (e.g., sound happy, sound sad,
etc.). Nevertheless, the main way to achieve this expressiveness is via expressive
databases. This is called expressive speech synthesis (Cahn, 1989; Bulut et al., 2002).
We may even like to transform the acoustic units to change the speaker identity if we
could. A proper adaptation with some simplistic processing would make this speech
synthesis system scalable to any desired condition. Nonetheless, US systems are not
flexible enough in terms of ease of adaptation to different spoken conditions; This
is because for each condition change, either new recordings are needed to properly
pick contextualized units, or specialized signal processing techniques are required
to transform the existing units. These transformations, however, have a limit in the
trade off between adapting the speech and distorting it. Another potential issue for
US systems is the fact that the speech data has to be carried around with the synthe-
sis system, as units themselves are the key component needed to build streams of
speech (Black et al., 2007).

2.1.2 Statistical Parametric Speech Synthesis

The second methodology used to do speech generation is the so called statistical
parametric speech synthesis (SPSS). This is grounded under the concept of building
statistical models that generate speech signals, instead of retrieving them from a
dataset. If we happen to have a statistical model that learns the structure of speech
and we can generate new signals from it, then we can palliate the big drawbacks of
US that limit the system’s flexibility (Black et al., 2007). Formally, we can express
that a speech signal is a stream of acoustic frames X = [x1, x2, ..., xt, ..., xT], where
X ∈ RT×A, being T the number of frames, and xt ∈ RA, being A the number of
acoustic features per frame. Depending on the type of acoustic features for which
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our model learns the distribution, we have a trade-off between T and A parameters.
If we happen to model the waveform samples directly, then A = 1 and T is the total
number of samples we are modeling. Considering these variables, we can build the
statistical model Φ expressed as

Φ(X) ≈ p(X) = p(x1, x2, ..., xT), (2.1)

thus resembling as close as possible the true underlying distribution p(x) that gen-
erated the composition of frames xt that lead to the full signal X. Importantly, if our
model Φ actually resembles the generation process that builds speech signals, the
sampling process can be conditioned to some additional factors h ∈ RF, where F
is the number of conditioning features. These can express contents factorized from
some other signals (e.g. text (TTS) or speech (STS)), speaker identities, or prosodic
changes among others. Our model then learns a conditioned distribution

Φ(X|h) ≈ p(X|h) = p(x1, x2, ..., xT|h), (2.2)

by which we achieve a great degree of flexibility for our speech generation system
based on some external control we inject at sampling time. The fact that we can
easily manipulate the characteristics of speech at generation time motivates the de-
velopment of the aforementioned SPSS (Zen et al., 2009; Ling et al., 2015). Addition-
ally, the memory footprint of these systems can be much smaller than that of US.
This happens because the model Φ is learned from a training dataset X of examples
xn ⊂ X , where xn would be an utterance’s acoustic representation. Out of these sam-
ples xn, our model learns to approximate the aforementioned distribution, and then
we can just ship our speech generator model without the dataset. It is thus encoding
the spoken contents, the identity, and the prosody factors inside the model.

2.1.2.1 Hidden Markov Model Based Statistical Parametric Speech Synthesis

Hidden Markov model (HMM) based SPSS (Zen et al., 2009) was the first approach
to model the speech generation process in a statistical way, heavily used in TTS.
These systems do not work at waveform level, but with an intermediate acoustic
representation. The speech signal is typically encoded with a vocoder to gener-
ate acoustic feature frames that describe the spectral envelope and its intonation,
where the entire utterance is processed with a sliding window shifted every τ ms.
We may typically use τ = 5 ms, which is a shift of 80 samples at 16 kHz sampling
rate. Then we would obtain a collection of T/80 frames (following the T notation
of equation 2.1), each one containing typically 40 to 60 parameters representing the
spectral envelope, the value for the F0, and 5 parameters to describe the spectral en-
velope of the aperiodic excitation in the case of a source-filter vocoder (King, 2011)
and a single parameter described the voiced frequency for an harmonics-plus-noise
(HNM) vocoder (Erro et al., 2011). The dynamic representations of these features
are also included to form the acoustic parameters of a series of phonemes in certain
phonetic and prosodic contexts, which are then represented by context-dependent
phoneme HMMs, typically with single Gaussian state-output probability density
functions (PDFs). The contexts of the phonemes are defined with decision-trees
based on rules asserted with linguists’ prior knowledge (Zen et al., 2009). The trees
end up clustering similar HMM output PDFs attending to the phonetic and prosodic
features. Figure 2.1 depicts the general scheme for a statistical parametric speech
synthesis system. Importantly and in contrast with US systems, the SPSS model is
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FIGURE 2.1: SPSS framework schematic (from Zen et al. (2009) Fig. 3).

learning the PDFs that can generate the acoustic parameters of speech in any con-
text, whereas in US we use the parameters to compute the cost of concatenating two
units, but the speech is retrieved as-is from the dataset of small waveform units.
In SPSS, once we are in the synthesis part, we retrieve the desired acoustic models
to generate the utterances mapped from the textual analysis. In this case then the
linguistic and prosodic features make us pick the models that generate the differ-
ent factors that compose the final utterance. First, we need a duration model that
specifies how many frames will the current phoneme last. Secondly, we need an
acoustic model that predicts the features themselves, generating as many frames
as indicated by the duration model prediction. This is called a two-stage TTS ap-
proach. After the sequence of acoustic frames is generated, a speech parameter gen-
eration algorithm finds the most probable acoustic feature trajectories under the con-
straints between the predicted static and dynamic features (Tokuda et al., 2000), and
the vocoder algorithm that we used to extract the acoustic parameters reconverts
the parameterization of frames into waveforms of synthesized speech. Examples of
vocoders used in SPSS are Ahocoder (Erro et al., 2011), WORLD (Morise et al., 2016),
STRAIGHT (Kawahara, 2006) and Vocaine (Agiomyrgiannakis, 2015).

Machine learning was first used in speech generation with the aforementioned
SPSS systems, built upon HMMs with single Gaussian state-output PDFs. This first
application of machine learning seemed effective to build flexible and scalable mod-
els, but the generated voice quality did not surpass the quality of US approaches.
This happened mainly due to three factors: the vocoder lossy compression, the mod-
eling accuracy, and the so called over-smoothing effect (Black et al., 2007). The latter
is introduced because of the averaging effect of the statistical model during train-
ing. Averaging together many frames of speech, each with slightly differing spectral
properties, will have the effect of widening the formant bandwidths and reducing
the dynamic range of the spectral envelope (King, 2011). During synthesis the model
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tends to produce over-smooth spectral envelopes and over-smooth trajectories, al-
though the former seems to be the one mainly affecting the generated speech qual-
ity (Zhang et al., 2008). This effect translates into producing speech that sounds
muffled.

2.1.2.2 Deep Learning Based Statistical Parametric Speech Synthesis

In early SPSS works, where deep learning began to give good results, the multi-layer
perceptron (MLP) was used as an acoustic model for SPSS (Zen et al., 2013). Here,
the decision tree for contextualization with the Gaussian distribution of HMM based
SPSS is substituted by a MLP that generates the acoustic parameters, both static and
dynamic, on a frame-by-frame basis. MLPs allowed to obtain a better modeling of
the complex context dependencies, outperforming the more classic approach of de-
cision trees in a first approach. Other works pointed in similar directions by using
MLPs for this mapping (Lu et al., 2013a; Qian et al., 2014; Kang et al., 2013), differing
in the studied training methods like using a pre-trained deep belief network, vary-
ing the size of the proposed and baseline models, or using different input linguistic
representations. Other research directions with the introduction of deep networks
explored also the use of different target acoustic representations that could improve
the perceptual results (Hu et al., 2015), as well the computation of losses in acoustic
domains perceptually more relevant than those of vocoder parameters (Valentini-
Botinhao et al., 2015).

These MLP models predict the acoustic frames with the perspective of a regres-
sion model, which typically takes the form of a mean-squared error regression be-
tween the output features of the training data and the predicted values (Zen et al.,
2013). This works under the assumption that the acoustic data lays over a Gaussian
distribution (Bishop, 1994), which can easily be a biased assumption (specially for
complex data such as speech acoustic parameters). But even if it is the case, the pre-
dictions will tend to converge around the mean of the assumed Gaussian, ignoring
the actual variance. Additionally, the distributions of acoustic features given lin-
guistic features can be multimodal since humans can speak the same text in many
different ways (Zen and Senior, 2014). The regression approach might then be prob-
lematic as the average of the acoustic features may actually be close to none of the
modes of the distribution. To address these limitations, Zen and Senior (2014) inves-
tigated the use of mixture density networks (MDNs; Bishop, 1994), which can model
full PDFs over real-valued output features conditioned on the corresponding input
features. This type of model predicts the parameters of a Gaussian mixture model
(GMM) instead of the acoustic parameter values, and it is trained based on the max-
imum likelihood criteria. Once the GMM parameters are obtained, the means and
variances can be used by the speech parameter generation algorithm (Tokuda et al.,
2000) to obtain the acoustic trajectories that will be fed into the vocoder. Zen and
Senior (2014) demonstrate that predicting variances and multiple mixture compo-
nents increased the model prediction accuracy and improved the synthetic speech
quality significantly. In a similar approach Uria et al. (2015) used a real-valued neu-
ral autoregressive density estimator (RNADE) (Uria et al., 2013). The objective of
this method is similar to that of the MDN, but the main difference is that RNADE
predicts each dimension within an acoustic frame sequentially. This imposes the
RNADE to also capture dependencies between the different acoustic features in a
frame.

The recurrent neural network (RNN) has also been applied to speech generation
due to the fact that we face a sequence generation problem. Recurrent networks are
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specially a good fit due to their wide context coverage through time for each pre-
diction (see section 3.1.4). For instance, in TTS, RNNs are used for prosodic and
acoustic parameter prediction for vocoded TTS with different settings (Chen et al.,
1998; Fernandez et al., 2014; Zen and Sak, 2015). In this case, HMMs are not used
anymore because the RNNs can handle the temporal dynamics. Also because of
this, dynamic acoustic features are not predicted as RNNs smooth the output acous-
tic trajectories. A main variation among these different works using RNNs is the
application of diverse recurrent structures like the long-short term memory (LSTM;
Hochreiter and Schmidhuber, 1997) or the gated recurrent unit (GRU; Chung et al.,
2014), with one temporal direction or two (bidirectional). Besides, Wu and King
(2016) explicitly investigate the effect of the different gating components embedded
in the advanced recurrent structures and propose an optimized architecture for TTS.
Also other works cover more recent pseudo-recurrent structures that save computa-
tion compared to the purely recurrent ones, reaching a comparable generated speech
quality level to that of RNNs (Pascual et al., 2019a).

An important feature mentioned earlier about modeling the generation process
statistically is its ease of adaptation to new conditions, hence flexibility. A first
interesting trait that we can change during generation is the speaker identity. In
equation 2.2 it is shown how some conditioning information embedded in a vector
h ∈ RF can control what is generated and how. It has been detailed that typically we
can condition either in a TTS or an STS approach, but we can additionally control a
factor like the speaker identity at generation time. Wu et al. (2015) do a deep neural
network (DNN) based speaker adaptation by adding the speaker identity informa-
tion to the input features with discrete tokens. They also apply learned hidden unit
contributions (Swietojanski and Renals, 2014), and make output feature space trans-
formations. They showed different combinations of results by adding and subtract-
ing the different adaptive components. Fan et al. (2015) and Pascual and Bonafonte
(2016a), on the contrary, built multi-speaker capabilities in the generator structure.

2.1.2.3 Towards End-to-End Speech Generation

As introduced earlier in this section, modeling a PDF explicitly with neural networks
is what deep generative models are about. We have some data points from a trainset
X and we want to know how were those points xn generated. WaveNet is a deep
convolutional neural network designed to predict waveform samples autoregres-
sively by explicitly modeling the joint PDF p(x) with a product of conditionals (van
den Oord et al., 2016b). This decomposition allows the WaveNet to learn to mimic
the generating process that composes valid acoustic samples, which sound like the
ones in the trainsetX . Because of its importance as an explicit likelihood-based deep
generative model, this mechanism is detailed in chapter 3. Remarkably for TTS, the
first prominent contribution of this work is that it tackles directly the waveform gen-
eration (hence the name WaveNet), without intermediate acoustic parameterizations
that may lead to lossy compressions (as with vocoders). Another important contri-
bution of this work is related to MDNs. Differently than predicting a parameterized
PDF as in MDNs, the authors of WaveNet build a classifier trained on a maximum
likelihood criteria. They first quantize the waveform amplitude with 8 bits after a
µ-law encoding that ensures to reduce the quantization error. Reducing the quan-
tization resolution to 8 bits simplifies the problem, as they dramatically reduce the
number of possible classes from 32,768 that would correspond to 16 bit signals to
256, corresponding to 8 bit ones. This means that WaveNet is trained to predict,
at each time-step t, the index of its quantized histogram, out of which the mean
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value of that range is selected as the sample value in that waveform time instant.
Then, at synthesis time the resulting PDF yielded at the model output if sampled to
get a likely class out of the 256 possible ones. Note that this differs from the MDN
commented earlier, as it rather used the speech parameter trajectory generation al-
gorithm. This turns out to yield a very flexible generative model, surpassing the
distortions introduced by acoustic parameterizations as it works upon waveforms.
Also, its naturalness goes even beyond than the one for their baseline US system (van
den Oord et al., 2016b). This type of model is an important breakthrough, as it sur-
passes the naturalness of US TTS at no expense of flexibility, so it can model differ-
ent linguistic contents, intonations and speaker identities at a time. The fact that the
waveform can be directly generated by a neural model turned the attention of the
speech generation research fields into end-to-end perspectives, where one can po-
tentially go directly from raw input representations like text or speech waveforms to
output speech waveforms by training a single network to perform all the required
intermediate steps via backpropagation. WaveNet demonstrated it could work as an
intermediate end-to-end step to TTS by injecting aligned linguistic features based on
the ones used for MLP-based SPSS systems. Additionally, successive works showed
that conditioning WaveNet on acoustic parameters extracted from a vocoder allows
to recover speech with higher quality in comparison to the vocoder reconstruction
itself (Tamamori et al., 2017). This type of WaveNet conditioned on the acoustic
parameters is called neural vocoder, and typically the input features take the form
of mel spectrum bins. This involved the possibility of tackling STS problems like
voice conversion by targeting directly the waveform, as a step towards an end-to-
end transformation solution as done in the TTS WaveNet (Kobayashi et al., 2017;
Niwa et al., 2018).

The main issue of WaveNet is known to be its efficiency due to that fact it takes
several computation steps (across the deep structure) to predict just one sample of
the waveform, and the waveform is predicted one sample at a time. This involved
a new branch of research within speech generation devoted to improving the effi-
ciency of deep autoregressive generative models. First, a technique called probability
density distillation (Hinton et al., 2015) allowed to build a faster WaveNet, which
learns to generate samples in parallel by predicting the parameters of a mixture of
logistics (similar to the MDN parameterization). This parallel WaveNet is trained by
matching its output likelihood to the one yielded by a pre-trained WaveNet classifier
network, in addition to other losses that assess the correctness of the output signal’s
power (power loss), or the intelligibility of the spoken contents (speech recognition
loss). In this case the WaveNet was turned into a parallel system with a change in
the generative modeling perspective, becoming an inverse autoregressive flow gen-
erative model (Rezende and Mohamed, 2015), although neural distillation was used
to avoid the computationally expensive training process of inverse autoregressive
flows.

Kalchbrenner et al. (2018) also worked on improving the efficiency of autoregres-
sive speech generation by turning the deep convolutional WaveNet structure into a
simpler recurrent one, named WaveRNN. Kalchbrenner et al. (2018) designed an ar-
chitecture based on the GRU, which predicts each sample at a time. In this case they
propose to use 16 bit quantization to build a classifier again at the output. They pre-
dict the most significant and least significant part of the two bytes separately in two
branches of 256 classes each. This way they achieve a much higher resolution of the
waveform amplitude at the expense of just doubling the number of outputs, rather
than exponentially increasing them. WaveRNN also comes with different techniques
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to accelerate its operations such as sparsification of the network parameters and dif-
ferent sub-sequential conditioning schemes. Nevertheless, the vanilla WaveRNN
proposed as a more compact form of the WaveNet already reaches the same natu-
ralness than WaveNet, but being much faster (Kalchbrenner et al., 2018). WaveRNN
can also become a more convenient option over the parallel WaveNet mainly due
to its facility to be trained under the maximum likelihood criteria, as in the vanilla
WaveNet. WaveNet and WaveRNN are then interchangeable, as the two systems
generate waveforms autoregressively and can be conditioned on features that drive
the sample generation. Hence, WaveRNN can also be used as a neural vocoder.
The neural vocoder research has become very trendy during the latest years, focus-
ing on compactness, ease of training and efficiency in the form of inference speed.
Some well known systems designed as neural vocoders contemporary to WaveNet
or compacting and parallelizing its design are the SampleRNN (Mehri et al., 2016),
the FFTNet (Jin et al., 2018), the LPCNet (Valin and Skoglund, 2019) and the WaveG-
low (Prenger et al., 2019). The SampleRNN, the FFTNet and the LPCNet are efficient
multi-scale structures that also predict the waveform samples autoregressively with
structures that resemble that of the WaveRNN. The WaveGlow, on the other hand,
is based on real non-volume preserving normalizing flows (Rezende and Mohamed,
2015). This sort of model allows to parallelize the operations and still compute an
exact likelihood model, at the expense of needing several layers of transformation
and requiring long training sessions to converge. Nevertheless, at synthesis time it
is a much more efficient option in comparison to WaveNet, generating at a rate of
4850 kHz on an NVIDIA V100 GPU1. Similarly to the aforementioned application of
WaveNet to STS and making a step forward towards end-to-end voice conversion,
Blow is proposed as a flow-based model to perform unparallel voice conversion di-
rectly between frames of waveforms (Serrà et al., 2019). Note that in this case no
intermediate acoustic representation is used to carry the conversion task, hence the
identity and content are implicitly extracted within the model structure from the raw
waveform to obtain the target raw waveform.

So far the end-to-end drift has been described in the output of the models for
both TTS and STS paradigms. However, all the reviewed systems work with signal
alignments known ahead of time. Hence for TTS, this means that a duration model
precedes an acoustic model, as introduced earlier in section 2.1.2.1. The former
one predicts the number of acoustic frames to be generated, and the latter predicts
them. Contrarily to this approach we have the recent models based on sequence-
to-sequence structures (see section 3.1.6), which directly predict the acoustic signal
from the linguistic contents without an intermediate duration prediction step. This is
done through a learnable alignment model called attention mechanism, which learns
the relations between the input sequence of features and the output acoustic features,
hence adapting the sequential resolution difference. Tacotron TTS models (Wang et
al., 2017) follow this sequence-to-sequence design, and in contrast to WaveNet they
meant a shift towards end-to-end models that directly processed raw text to output
the acoustic representation. Unlike previous work, Tacotron models do not need
hand-engineered linguistic features like WaveNet, or complex components such as
an HMM aligner as in non sequence-to-sequence models. Additionally, Tacotron
models predict acoustic parameters like mel spectrum frames, hence making it a
frame-based approach like the acoustic models prior to WaveNet. This makes their
inference substantially faster than waveform-level autoregressive methods (Wang
et al., 2017). The way to recover the waveform in the original Tacotron model was

1https://github.com/NVIDIA/waveglow
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by means of the Griffin-Lim phase reconstruction algorithm for simplicity. Nonethe-
less, successive versions of the system used neural vocoders like WaveNet to achieve
the state of the art quality of waveform-based TTS systems (Shen et al., 2018). Other
modifications of the model included style tokens and prosodic features that drive
the Tacotron outputs to be more controllable in terms of prosody (Wang et al., 2018;
Skerry-Ryan et al., 2018). The effectiveness of these models depends on the availabil-
ity of large amounts of speech and text data, as well as powerful computational re-
sources to train them. For instance, Tacotron was originally trained on 24.6 hours of
speech spoken by a professional female speaker (Wang et al., 2017). Other sequence-
to-sequence variants are the DeepVoice models (Arik et al., 2017; Gibiansky et al.,
2017; Ping et al., 2018), the Char2Wav (Sotelo et al., 2017), the Transformer TTS (Li et
al., 2019) or the ClariNet (Ping et al., 2019). Although there is a trend towards end-
to-end models, no model is yet applied directly to the conversion of characters to
speech waveforms without intermediate representations, like Tacotron or WaveNet
do. On the STS side, the sequence-to-sequence paradigm has also been applied to
surpass the assumption that input and output sequences are aligned on a frame ba-
sis. This sequence-to-sequence modeling allowed the construction of STS solutions
for voice conversion that rely on structures similar to Tacotron’s, like Parrotron (Bi-
adsy et al., 2019). In this case an input spectrogram is directly mapped to a target
spectrogram thanks to the alignment learned by the attention model, and a vocoder
reconverts the acoustic targets to a waveform.

Another remarkable deep generative model is the generative adversarial net-
work (GAN; Goodfellow et al., 2014), detailed in chapter 3. This type of system
allows to generate samples in parallel, but there is no explicit modeling of the loss
function to learn our data distribution p(x). Generative adversarial networks have
also been applied to raw waveform speech generation. In STS they have been used
for waveform-based speech enhancement (Pascual et al., 2017), spectrum-based voice
conversion (Kameoka et al., 2018), and efficient neural vocoding (Kumar et al., 2019).
They have also been applied in TTS (Donahue et al., 2019; Bińkowski et al., 2019),
achieving recently state of the art results compared to autoregressive approaches
in Bińkowski et al. (2019), hence becoming a new breakthrough in terms of quality
and inference efficiency.

2.2 Speech Enhancement

Speech enhancement aims to improve the intelligibility and quality of speech con-
taminated by additive noise (Loizou, 2013). Its main applications are related to im-
proving the quality of communications in noisy environments. However, we also
find applications related to hearing aids and cochlear implants, where enhancing
the signal before amplification can significantly reduce discomfort and increase in-
telligibility (Yang and Fu, 2005). Speech enhancement has also been successfully
applied as a preprocessing stage in speech recognition and speaker identification
systems (Ortega-Garcia and Gonzalez-Rodriguez, 1996; Yu et al., 2008; Maas et al.,
2012).

Most of the current speech enhancement systems are based on the short-time
Fourier analysis/synthesis framework, where only the spectral magnitude is treated
to remove contaminating artifacts (Loizou, 2013). Recovering the signal is, in that
case, a matter of recombining the cleaned-up magnitude with the input phase. This
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approach is common practice, as it is often claimed that short-time phase is not im-
portant for speech enhancement (Wang and Lim, 1982). Nonetheless, other stud-
ies show that significant improvements of speech quality are possible, particularly
when a clean phase spectrum is known (Paliwal et al., 2011). Classic speech en-
hancement includes spectral subtraction (Berouti et al., 1979), Wiener filtering (Lim
and Oppenheim, 1978), statistics-based methods (Ephraim, 1992) such as the mini-
mum mean squared error (MMSE), and subspace algorithms (Dendrinos et al., 1991;
Ephraim and Van Trees, 1995).

Neural networks are a recent and successful trend for this task, although they
were initially applied in the 1980s by Tamura and Waibel (1988), and later by Parveen
and Green (2004). Recent widely used architectures typically work in the spectral
domain, as with classic techniques, to learn a regression to the clean spectrum, typi-
cally in the form of a denoising autoencoder (DAE; Lu et al., 2013b; Xu et al., 2015).
Other approaches work by predicting masks with deep neural networks that palli-
ate noisy spectral regions (Narayanan and Wang, 2013; Williamson and Wang, 2017;
Wang et al., 2014). Recurrent neural networks (RNNs) are also used, owing to their
success in modeling sequential processes. Research shows that RNNs can predict
a better contextualized set of frames or masks (Maas et al., 2012; Weninger et al.,
2015; Weninger et al., 2014; Erdogan et al., 2015). The use of dropout, postfiltering,
and perceptually motivated metrics is also effective. Xia and Bao (2013) propose
to use a weighted DAE, altering the mean squared error loss function by assigning
weighting factors to each spectral component. Furthermore, Shivakumar and Geor-
giou (2016) use a loss function that considers the perceptual quality of speech, and
Fu et al. (2018) use an intelligibility loss to obtain better scores than those of plain
regression losses. Williamson and Wang (2017) use a deep neural network (DNN) in
the spectral domain, including the phase, by working with complex masks.

Convolutional neural networks (CNNs) are also known to perform well for lo-
cally correlated data, such as speech waveforms or spectrograms. As such, we
have used them for one of the first speech enhancement systems working with
the raw audio signal, hence shifting the enhancement paradigm into an end-to-end
modality (Pascual et al., 2017). Other contemporary studies use deep convolutional
structures for this task in the form of regression architectures, such as the work by
Park and Lee (2017), who emphasize the need for reduction in model size (typically
achievable through CNNs), or the denoising WaveNet (Rethage et al., 2018). Other
approaches use improvements in the adversarial setup in the form of a Wasserstein
GAN with gradient penalty (Gulrajani et al., 2017; Qin and Jiang, 2018). Moreover,
adversarial losses have been used in the speech enhancement field to work with-
out parallel corpora of aligned pairs (Higuchi et al., 2017). The adversarial frame-
work also appeared as a methodology to combine speech enhancement together
with automatic speech recognition systems, either in the waveform or the spectral
domain (Donahue et al., 2018; Meng et al., 2018).

SEGANs were first applied to the denoising problem, and were later adopted
to reconstruct speech components from what is called whispered speech, where
aphonic speech is corrected to attain the intonation and identity back (Pascual et
al., 2018b; Pascual et al., 2019b). Following this trend, SEGAN has been extended
to be applied upon a more generalized speech enhancement concept, where the sys-
tem must recover cleaner speech out of severely distorted utterances from a myriad
of combined degrading transformations. These include whispered speech, clipped
signals, sample losses in the form of zeroed-out sections of speech and bandwidth
reductions at different scales (Pascual et al., 2019c). As stated in previous works, this
generalization trend of speech enhancement to palliate different distortions at once
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is interesting due to its direct applicability to modern communication technologies,
where connections are interrupted (sample losses), and voice processing pipelines
can distort the signals through amplifiers, codecs, etc.

2.3 Unsupervised Speech Representation Learning

Finally, on the other side of the speech processing pipeline there is the analysis sec-
tion, where information is retrieved from an input signal. This is directly related to
speech recognition, speaker recognition, or any task requiring speech as input for an
analysis of high-level factors. Examples of these factors could be the speaker iden-
tity, the spoken emotion, the spoken content, etc. These problems can be tackled
whenever we have matching annotations with our speech data. Nonetheless, in the
following we analyze a broader concept with regard to learnable speech representa-
tions by means of deep unsupervised learning.

The success of deep learning techniques strongly depends on the quality of the
representations that are automatically discovered from data. These representations
should capture a hierarchy of different levels of concepts, features, or latent vari-
ables, and are commonly learned in a supervised way using large annotated cor-
pora (Goodfellow et al., 2016). Even though supervised learning is still the dom-
inant paradigm, some crucial limitations arise. First, collecting large amounts of
annotated examples, for instance, is very costly and time-consuming. Moreover, if
not learned with a large pool of tasks (Serrà et al., 2018), supervised representations
are likely to be biased towards the considered problem, limiting their exportability
to other problems and applications (Rosenstein et al., 2005).

A natural way to mitigate these issues is unsupervised learning (Bengio, 2011).
Unsupervised learning attempts to extract knowledge from unlabeled data, hence
first avoiding the efforts of manual annotations. It can potentially discover represen-
tations that capture the underlying structure of such data. Several approaches have
been proposed for unsupervised learning in the last decade. Notable examples are
deep autoencoders (Bengio et al., 2006) and restricted Boltzmann machines (Hinton
et al., 2006). In speech processing these can be employed as pre-training stages for
subsequent supervised tasks like speech recognition (Dahl et al., 2012) or speech syn-
thesis (Kang et al., 2013). More recent techniques, introduced in chapter 3, include
variational autoencoders (Kingma and Welling, 2014; van den Oord and Vinyals,
2017), likelihood models (van den Oord et al., 2016b; Kalchbrenner et al., 2018;
Kingma and Dhariwal, 2018) and generative adversarial networks (Goodfellow, 2016).

A sub-field of unsupervised learning that is gaining popularity due to its sim-
plicity and effectiveness is the so called self-supervised learning. This modality is
especially trendy nowadays for computer vision and NLP tasks. In self-supervised
learning, the targets are extracted from the input signal itself in an automatic fash-
ion. For instance, Doersch and Zisserman (2017) predicts the relative position be-
tween two image patches, colorizes grayscale images, predicts whether two images
are transformed under the same function (e.g. rotation) and predicts what pixels
will move in time between two video frames. All these tasks are hence useful to
build a generalizable image representation. Similarly, Gidaris et al. (2018) use a
convolutional encoder to predict the amount of rotation applied to the input im-
age, and Misra et al. (2016) predict whether an input video sequence has the right
temporal order of frames. In NLP, another well known case of self-supervision is
the BERT model learning strategy (Devlin et al., 2019). In this case a bidirectional
language model is built, where it has to predict what tokens of an input sentence
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have been masked out, as well as which are the neighbour sentences. This learn-
ing strategy reduces the need for heavily-engineered task-specific architectures, and
the pre-trained BERT achieves state of the art performance on several sentence level
and token level tasks (Devlin et al., 2019). Some other attempts have also been done
to extend self-supervised learning to different modalities (Arandjelović and Zisser-
man, 2018; Owens et al., 2018) or to audio representations only (Jansen et al., 2018;
Chorowski et al., 2019; van den Oord et al., 2018; Ravanelli and Bengio, 2019; Chung
et al., 2019). With this regard, a recent trend consists of learning speech representa-
tions using a neural network encoder followed by a binary discriminator that deter-
mines whether audio features are close in context or not (van den Oord et al., 2018;
Hjelm et al., 2019; Ravanelli and Bengio, 2019). Also aligned with this trend, regres-
sion tasks are plugged on top of the encoder for feature discovery (Chung et al., 2019;
Chorowski et al., 2019). These regressors take the form of decoders that reconstruct
the input signal with a likelihood based generative model (see section 3.2.1).
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Chapter 3

Deep Learning Review

Deep learning is a subset of tools in machine learning (Goodfellow et al., 2016). Sta-
tistical algorithms are used to learn features and functions automatically from data.
In the case of deep learning, these algorithms are grounded in the use of neural net-
works. These models are based on stacks of neural layers, hence forming a deep
structure. The use of these deep structures allows for multiple transformations to
happen between the input data and the output of the model, which usually capture
optimized features at different levels (Erhan et al., 2009), ranging from the lowest
level (raw data or close to it) until the most abstract one (e.g. concepts like speaker
identity, spoken contents, emotion, etc.). We will refer to network topology or net-
work architecture to describe the connection pattern of the neurons in a layer and
between layers.

3.1 Stacking in Depth: Fundamental Neural Blocks

In this section, a brief overview of the different basic neural blocks that compose
neural networks is given. As mentioned, deep neural models are composed of a
hierarchy of computational blocks named neural layers. The composition of these
layers forms the neural network. Throughout the course of this work, four basic
neural blocks are used to compose different deep models depending on the context
in which they are used. These basic blocks are now reviewed.

3.1.1 Fully Connected Layer

This is the most basic type of layer that operates over a group of input features
arranged as a D-dimensional vector x ∈ RD. Fig. 3.1 depicts this scheme, where we
have a fully connected neuron on top, also named artificial neuron, neural unit or
neuron. This is the basic unit in the fully connected layer. This unit operates as

h = tanh(wTx + b), (3.1)

where w ∈ RD and b ∈ R1. Note that this is a sum of the weighted input vector and
a bias with an additional non-linear activation, like the tanh. As such, it is usually
formulated as the dot product between w and x and the addition of the bias, as in
equation 3.1. The weights and the bias are the learnable parameters of the neuron.
The output of a neuron is named as an activation. If we arrange H neurons together
we build a fully connected layer. The extension from one neuron to H neurons is
done by converting the weight vector w ∈ RD into a matrix W ∈ RH×D and the bias
scalar to a bias vector b ∈ RH in algebraic terms. This way when the dot product is
applied, as well as the addition of the bias and the non-linearity as in
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FIGURE 3.1: Top: fully connected neuron. Bottom: fully connected layer.

h = tanh(Wx + b), (3.2)

a vector of activations h ∈ RH is returned in the output of the layer. Note that
the name fully connected comes from the fact that all the D inputs are connected
to all the H units. These layers are stacked to form a deep structure, and the full
stack becomes a multi-layer perceptron (MLP) or a deep neural network (DNN).
Fully connected layers are also very useful in combination with other topologies,
especially to make bottleneck sections in our data flow that enforce a compression of
features to a lower dimension than the input one (Hinton and Salakhutdinov, 2006).

3.1.2 Convolutional Layer

Convolutional layers are a more specialized kind of neural layer for processing data
that has a known grid-like topology (Goodfellow et al., 2016; LeCun, 1989). Exam-
ples of this are time-series, which is a 1-D grid taking samples at regular time inter-
vals, or images, which are 2-D grids of pixels. This can obviously scale beyond these
dimensions, to 3-D and 4-D grids, including volumetric representations or video. As
we deal with discrete-time signals throughout this work, we only describe the dis-
crete representation of the neural operators. The discrete 1-D convolution is defined
as

y[n] = x ∗w =
∞

∑
m=−∞

x[m] · w[m− n], (3.3)

where n is the discrete signal time-index. This means we have a filter w (also named
kernel) that slides over the signal x, performing a weighted sum at each sliding
instant m. This operation is denoted with ∗.

Fig. 3.2 depicts a convolutional kernel with 3 weights sliding over a signal of 12
samples. The outcome h[n] at every time-step is the result of applying the neuron
operation (as in equation 3.1) with a certain width in time L over the input signal
piece of the same length xn:n+L−1, hence
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FIGURE 3.2: Example of a convolutional neural filter of size 3 sliding over the input signal.
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FIGURE 3.3: Example of a convolutional neural layer with K = 4 feature maps and L = 3
kernel width. The input signal has T = 12 samples, and each feature map N = 10 activa-

tions.

h = σ(xT
n:n+L−1 ·w + b), (3.4)

with an appropriate non-linearity σ at the output. ReLU is often applied in the case
of convolutional units, where σ(a) = max(a, 0), due to their usually better and faster
convergence effects when compared to saturated activations like tanh (Jarrett et al.,
2009; Krizhevsky et al., 2012). Similarly as with fully connected layers, we normally
arrange multiple neural units altogether to extract multiple features per network
layer. In the case of convolutional networks, we refer to K as the number of con-
volutional kernels, and the resulting collection of features with time-span are the
feature maps. For an arbitrary convolutional layer we also refer to the collection of
K feature-maps as output channels, whereas the input channels C would be the num-
ber of input feature maps to be processed. Fig. 3.3 shows an example arrangement of
K = 4 convolutional kernels of length L = 3. The input signal has one channel with
T = 12 samples, so the result of sliding the window has length N = T− L + 1 = 10,
with one channel per k-th kernel. Convolutional layers can also consume inputs se-
quences with multiple channels C, which makes them able to be stacked together
and connect the feature maps of a precedent layer with the current layer, and simi-
larly with the subsequent layer too. This allows for the conjunction of kernels to be
grouped together in tensors W ∈ RL×K×C, and the conjunction of biases behaves ex-
actly the same as in fully connected layers with arrangements of K real values. Note
how signal lengths T and N do not describe any dimension of the weights tensor,
which is agnostic to the time-dimension as it operates locally per sliding step with
fixed input windows. We will denote the convolutional layer operation as

h = ReLU(x ∗W + b). (3.5)
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FIGURE 3.4: Padding the input signal so that the output feature map has the same length N
as the input signal T.

0

S

FIGURE 3.5: Example of a convolutional kernel striding by a factor S = 2, hence obtaining a
feature map with decimated time resolution, from T = 12 to N = 6.

Apart from the basic operation described about the convolutional layer with
the sliding windows and its parameters L, C and K, there are four important ad-
ditional details that can be tuned to operate differently in the interaction with the
data: padding, striding, grouping and dilation.

Padding allows to obtain a certain time-length in the output feature maps by in-
jecting additional P values (normally zero) in our input signal beginning and end.
Fig. 3.4 shows an example where the convolution operates upon a padded signal,
with which the output feature map is enforced to fit in the same time-length as the
input signal. Padding is used extensively when designing convolutional nets to en-
sure that the data flow contains specific amounts of information from layer to layer,
and no decimation happens at signal extremes when L > 1. Besides, it is the key to
converting a regular convolution into a causal convolution if we happen to pad only
the left-side of the signal with P = L− 1 values. This is done in works that emulate
autoregressive operations with convolutions like the WaveNet (van den Oord et al.,
2016b) or the quasi recurrent neural network (Bradbury et al., 2017) to build pseudo-
recurrent mechanisms whilst avoiding the burden of recurrent connections, which
are reviewed further below.

Striding refers to the amount of samples by which the convolutional kernel is
shifted at each time-step of analysis. We will refer to this factor as S. When S = 1,
the sliding operation described above is performed, with each convolutional kernel
moving one step ahead at a time. However, when S > 1, the signal is decimated
by that S factor (if padding is set correctly). So the convolutional layer will perform
a signal analysis and decimate at the same time. Fig. 3.5 exemplifies the use of a
kernel striding by a factor S = 2. Note that padding is still necessary to preserve
an exact decimation factor of 2 due to the kernel of length L = 3. It is usual to
decimate and increase the number of kernels while growing in depth (LeCun, 1989;
Krizhevsky et al., 2012), as it requires much less memory and accelerates the deeper
layer convolutions because they slide through reduced lengths. We pragmatically
refer as strided convolutions as those which have a factor S > 1.

Grouping refers to grouped convolutions (Krizhevsky et al., 2012). It is based on
dividing the total number of input channels C into sub-groups of equal size G, hence
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FIGURE 3.6: Comparison between input-to-output channel connectivity patterns in a normal
convolution (left) and a grouped convolution (right). C is the number of input channels, K
is the number of output channels, G = 2 is the group size and Kg is the number of output
channels connected to its group of inputs. The representation is a slice across the kernel

length, so time axis is not represented.
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FIGURE 3.7: Dilated convolutional kernel with D = 2. In each time-step, the convolutional
parameters have a time-span of 5 samples, although only the L = 3 weights are applied to

the signal.

getting Γ = C/G blocks of input channels. Then each block is connected to its own
set of Kg convolutional kernels. Fig. 3.6 shows the different connectivity patterns
that a normal convolution and a grouped convolution have in channel dimensions.
In fact, the normal convolution operation is the special case of the grouped con-
volution when G = 1. Another extreme is that when G = C, in which case each
input channel is connected to only one feature map, which is the cheapest option
computationally. The grouping design was proposed originally to distribute the
computation of large convolutional layers into different GPUs (Krizhevsky et al.,
2012). Nonetheless, it has also been found to yield good results in computer vision
under appropriate setups (Xie et al., 2017), as well as to be a key component to effi-
cient neural designs focused on accelerating the model performance on embedded
devices (Zhang et al., 2018b; Huang et al., 2018).

Finally, dilation is the addition of intermediate processing spaces within the ker-
nel of length L, which makes it virtually longer than it really is, being the new length
Λ > L. Fig. 3.7 depicts this design with a kernel of length L = 3, which can virtually
be converted into a kernel of length Λ = 5 with a dilation factor D = 2. The dila-
tion factor is translated into D− 1 void spaces between kernel weights. Due to these
voids, the amount of parameters does not increase with this approach.

The receptive field is an important concept in convolutional networks design.
It is the amount of context that a neuron from an arbitrary layer sees in the input
to predict its output. The main advantage of dilated convolutions is enlarging the
receptive field of the neuron without growing in parameters. This is depicted in
Fig. 3.8, where different receptive fields are shown for networks of 2 convolutional
layers. The first one, as a result of a regular stack of convolutions, grows linearly
with depth. The second one, as a result of a stack where a strided convolution is
present, grows exponentially. The same exponential receptive field increasing effect
is yielded by a design with dilated convolutions (Yu and Koltun, 2015; van den Oord
et al., 2016b). The choice of either decimation or dilation depends on the memory to
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X XX X

RF = 5 RF = 7

FIGURE 3.8: Recetive fields of a regular stack of a two convolutional neural layers (left) and
a stack with a strided convolution with S = 2 (right). Crossed out units in the right-side

indicate decimated samples ignored because of the doubled striding.

be consumed (dilation requires more) or the amount of signal details that have to be
preserved (decimation removes more)1.

To conclude with the description of convolutional layers, we can relate them to
the previously presented fully connected layers. Concretely, a fully connected layer
is also denominated 1 × 1 convolution, where a convolutional layer with S = 1
an L = 1 transforms the number of input channels C into K features per time-
step (Szegedy et al., 2015). The 1× 1 denomination for fully connected layers refers
to the sliding process with which the neuron operation is applied, following equa-
tion 3.1, without time-dependency.

3.1.3 Transposed Convolutional Layer

The transposed convolution is a backward operation with respect to the convolu-
tion described before. Instead of summing up weighted contribution from different
inputs, it scatters one input into weighted output portions. Fig. 3.9 depicts the tran-
sition from a convolution (as presented earlier) to a transposed convolution, which
acts as a way back to the same original resolution. It can then be seen as a learnable
interpolation. Each output element from the transposed convolution can be defined
as

i[t] = Uty + b, (3.6)

where Ut ∈ RF×K is the t-th weight of the kernel, mapping the K inputs from
y ∈ RK to itR

F with F output features per time-step. Note that t denominates the
output position in time for the case of sequential feature map interpolations. There-
fore, contrarily to the contraction of convolutions from L inputs into one output,
transposed convolutions scatter one input into L outputs. A non-linear activation
may be plugged into the output of this operation as well. The transposed convo-
lution is often called deconvolution too for short, although it may not be a good
description of its actual operation. Transposed convolutions also include padding
and striding mechanisms. The former is used, as in convolutions, to establish the
proper output dimensions. The latter is used to control the interpolation factor2.

3.1.4 Recurrent Layer

The recurrent neural network (RNN) leverages temporal correlations in its inputs,
hence modeling the dynamics of sequential data. The way this is introduced in the
neural architecture is through a new set of connections departing from the hidden

1https://tinyurl.com/santty128-rfconvs
2https://tinyurl.com/santty128-deconv
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FIGURE 3.9: Transition from a convolution operation (top) to a transposed convolution (bot-
tom). The w values denote the convolution weights, while the u values denote the trans-

posed convolution weights.

layer and leading to all of its neurons again. Hence, the formulation is very similar
to that of fully connected layers, but with the addition of the feedback connections.
This adds a new level of abstraction to the equation 3.2 as

ht = tanh(Wxt + Uht−1 + b), (3.7)

where temporal indices t are introduced given the sequential evolution of xt and
ht signals, and the recurrent matrix U ∈ RH×H expresses the connectivity pattern of
all neurons interconnected to themselves within the layer. Nowadays vanilla RNNs
are rarely used due to their known issues with respect to back-propagating gradients
through time (Hochreiter et al., 2001), and their quickly vanishing memory owing
to the multiplicative operation of matrix U. This is why more advanced recurrent
architectures like the long-short term memory (LSTM; Hochreiter and Schmidhu-
ber, 1997) or the gated recurrent unit (GRU; Chung et al., 2014) seem more popular
in current works. These two models share a common design principle named the
gating mechanism, which reformulates the vanilla RNN equation 3.7 like

it = σ(Wixt + Uiht−1 + bi)

ft = σ(Wfxt + Ufht−1 + bf)

ot = σ(Woxt + Uoht−1 + bo)

c̃t = tanh(Wcxt + Ucht−1 + bc)

ct = c̃t � it + ct−1 � ft

ht = ot � tanh ct

(3.8)

3.1.5 Quasi Recurrent Neural Layer

The quasi recurrent neural network (QRNN) was proposed as an efficient alterna-
tive to the vanilla RNN, by removing the affine projections from recurrent connec-
tions (Bradbury et al., 2017). The temporal dependency, introduced in equation 3.7
with U connections, dramatically limits parallelism and makes RNNs unwieldy for
very long sequences. This happens because U matrix projects up to T times each ht,
T being the total sequence duration. In contrast to this, QRNNs alternate convolu-
tional layers, applied in parallel across time-steps, with minimalist recurrent pooling
functions that apply in parallel across channels. Despite having no trainable recur-
rent connections (i.e., removing U), QRNNs proved to be very effective in different
NLP tasks, in comparison to their LSTM counterpart, when enough QRNN layers
are stacked (Bradbury et al., 2017). The first QRNN stage operates with a series of
causal convolutional layers, which can process all input time-steps in parallel. We
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formulate the convolutional projections as

Z = tanh(Wz ∗ X)
F = σ(W f ∗ X)

O = σ(Wo ∗ X),

(3.9)

where Wz, W f and Wo are convolutional filter banks that predict the cell activation,
the forget gate activation, and the output gate activation, respectively. The sizes of
these filter banks are RK×H×M, being K each kernel width, H the number of input
channels, and M the number of convolutional kernels. Note that Z, F, and O are of
dimension T×M, thus all T time-steps are processed in parallel by each filter bank.
The causality of each convolution operation is enforced by padding on the left side
of the signal with K − 1 zeros. After obtaining these activations, we can pass them
to the aforementioned recurrent pooling, defined as

ct = ft � ct−1 + (1− ft)� zt

ht = ot � ct,
(3.10)

where � denotes element-wise multiplication. Note that each vector, indexed by t,
is a time-slice of each of the previously defined activation tensors Z, F, and O. These
operations are similar to the ones defined in LSTMs (equation 3.8), but note how
we have no affine transformation between time-steps in this case. Hence, the key to
QRNN efficiency is that all learnable parameters are conveyed in the parallel com-
putation phase. Moreover, the QRNN offers more flexibility than LSTMs in what
gates are modeled, as the authors proposed originally 3 possible modeling strate-
gies (Bradbury et al., 2017). We work with the often used and effective forget-output
configuration (fo-pooling), which is the one formulated in the equations 3.9 and 3.10.
This is also the default configuration in the official implementation3. Fig. 3.10 shows
a detailed diagram of a QRNN layer. There it is shown that the convolutional pro-
jections allow all operations to happen in parallel, as formulated in equation 3.9.
On the other hand, recurrent pooling contains a time dependency that only requires
element-wise vector interactions, as formulated in equation 3.10.

3.1.6 Sequence to Sequence Model

RNNs and their derivations are a good fit to process sequences. The formulation
in equation 3.7 yields a hidden vector of features per input time-step, which shows
that RNNs can transform an input sequence (x1, x2, · · · , xT) into another sequence
(h1, h2, · · · , hT), which in turn can result into a final sequence (y1, y2, · · · , yT) af-
ter some additional level of transformation. This can be done by plugging a fully
connected layer that operates independently in time to adjust the dimension of our
desired network outputs. However, this model imposes that the alignment between
input and output sequences must be known ahead of time, and both must have the
same length T. Sequence to sequence models overcome this limitation by using two
different blocks that interact with two sequences of arbitrary lengths T and T′ for
input and output respectively.

The first block is denominated encoder, which consumes the input sequence
(x1, x2, · · · , xT) to yield a single final vector c ∈ RH that summarizes the full con-
tents of the input sequence. Normally a RNN handles this task due to its capacity to
find interactions among elements in the sequence as time-steps go forward. Hence,

3https://github.com/salesforce/pytorch-qrnn
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FIGURE 3.10: Schematic of a QRNN layer, following the operations of equations 3.9 for
the convolutional projections and 3.10 for the recurrent pooling. This corresponds to the

fo-pooling type from the original QRNN proposal (Bradbury et al., 2017).

the final state of the encoder RNN layer after processing the whole input sequence,
he

T, can be taken as the summary vector, such that c = he
T (Sutskever et al., 2014; Cho

et al., 2014).
The second block is the decoder, and it takes this representation c and generates

the target sequence (y1, y2, · · · , yT) autoregressively. The concrete formulation for
this operation is

hd
n = f (hd

n−1, yn−1, c) (3.11)

where hd
n is the current time-step n hidden activation of the decoder RNN, hd

n−1 is
the one from the previous time-step, yn−1 is the previous network prediction (after
additional transformations on top of the RNN) and f is the RNN layer itself operat-
ing with the different inputs. Fig. 3.11 depicts this process as in the proposal by Cho
et al. (2014).

3.1.7 Attention Layer

An attention layer or function relates the importance of a set of features with respect
to another set. As stated in Vaswani et al. (2017), this function can be described
as mapping a query and a set of key-value pairs to an output, where the query,
keys, values, and output are all vectors of features. Each output is computed as a
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FIGURE 3.11: RNN based encoder-decoder model (from Cho et al. (2014)).

weighted sum of the values, and the weight assigned to each value is computed by a
compatibility function of the query with the matching key (Vaswani et al., 2017). In
the context of this thesis, this compatibility function takes the form of a dot product,
as proposed by Vaswani et al. (2017). Hence assuming we have sequences of queries
and keys of dimension dk each, and values of dimension dv, we define the scaled
dot-product attention function ∆ as

∆(Q, K, V) = σ

(
QKT
√

dk

)
V, (3.12)

where Q ∈ RT′×dk , K ∈ RT×dk , and V ∈ RT×dv . The parameters T′ and T′ denote
the lengths of the different sequences of features. The outcome of the dot product
between Q and K is the attention map, which is weighted by a softmax function σ to
convert it to a PDF. Then, the resulting attention weights are applied over V to get
the final sequence.

Attention models were introduced to improve sequence-to-sequence models on
neural machine translation (Bahdanau et al., 2015). This component relieves the en-
coder from performing huge compressions of information (specially when the input
sentence gets long) when building the summary vector c introduced in section 3.1.6,
and allowed the decoder to learn to select the important parts of the encoder se-
quence to predict the next token in the output yt, following equation 3.11. In this
case, considering a sequence of encoder hidden states as (he

1, he
2, · · · , he

T) and the
previous decoder output yn−1, we can construct an attention map when using yn−1
as a query. Then, each encoder state he

τ will serve as a key, and the compatibility
function of our choice (e.g. scaled dot product as in equation 3.12) will score their
similarity. Finally, each encoder state will also act as a value, that will in turn be
weighted by the compatibility score between the query and the key. In other words,
the previous output yn−1 specifies what encoder states are more relevant by means
of the compatibility function to weight the encoder states and use them to predict yn.
Fig. 3.12 exemplifies the resulting grid that we may obtain in the attention responses
(of size T × T′), after we obtain our T′ outputs. There, every column represents
the previous output (query), and the lighter and more yellowish squares (weights
from the compatibility function) are the most important ones for the next prediction.
As such, the resulting thought vector at that instant is the dot product between the
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FIGURE 3.12: Example attention map that relates two sentences for machine translation,
with an input English sentence "Are you still home?" and an output Spanish sentence "¿To-
davía estan en casa?" (from TensorFlow neural machine translation with attention tutorial4).

weights and their corresponding encoder states (values). Note that the sequence-
to-sequence attention operates autoregressively, due to the nature of the decoder
module. Nonetheless, equation 3.12 contemplates operating on full sequences at
once arranged in the matrices Q, K and V. This means we can relate full sequences
of arbitrary lengths to learn relations between them, and this includes the possi-
bility of finding intra-sequence relations if both sequences are the same sequence.
This specific application of the attention model is named self-attention, introduced
in Vaswani et al. (2017) to replace the recurrent modules in the sequence-to-sequence
architecture with something that still finds correlations within the sequence, but has
no expensive recurrent connections.

Since their first introduction, attention models have been extensively used in
fields like computer vision (Lu et al., 2017), speech recognition (Chan et al., 2016),
speech synthesis (Wang et al., 2017; Pascual et al., 2019a), speaker recognition (India
et al., 2019) and language modeling (Devlin et al., 2019; Irie et al., 2019), among oth-
ers. In Vaswani et al. (2017) it was found beneficial to include not only one attention
block, but a group of them arranged in parallel to build the so called multi-head
attention (MHA; Vaswani et al., 2017), formulated as

MHA(Q, K, V) = C(H1, ..., Hh) ·WO

Hi = ∆(QWQ
i , KWK

i , VWV
i ),

(3.13)

with projection matrices WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk , WV
i ∈ Rdmodel×dv and

WO ∈ Rhdv×dmodel . Hence each of the 3 branches (query, key and value) contains a
projection prior to the attention, and we can have up to h different attention paths.

4https://www.tensorflow.org/tutorials/text/nmt_with_attention
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FIGURE 3.13: Left: Scaled dot-product attention function diagram. Right: multi-head atten-
tion consisting of h parallel attention functions (from Vaswani et al. (2017) Fig. 2).

Then all of them are merged back into a single representation with a concatenation
operation C and a projection through WO. In other words, MHA applies h parallel
attention layers, which can have a more versatile feature extraction by allowing the
model to jointly attend to information from different representation subspaces at
different positions (Vaswani et al., 2017).

3.2 Deep Generative Models

In this work, the terms generative model and deep generative model are interchange-
able. This term, following the definition of Goodfellow (2016), refers to a model that
takes a training set, consisting of samples drawn from a distribution pdata, and learns
to represent an estimate of that distribution, resulting in a probability distribution
pmodel. Depending on the generative model we build, it estimates pmodel explicitly or
implicitly. Explicitly corresponds to directly parameterizing pmodel. Implicitly corre-
sponds to directly sample from pmodel, without knowing its parameterization. What
follows is a review of the state of the art deep generative models related to this work,
as well as their taxonomy within the deep generative framework.

3.2.1 Explicit Density Models

The first type of generative models of great success in several applications are de-
fined as explicit density functions pmodel(x, θ). In this notation, x refers to the data
modeled and θ refers to the model parameters. For these models, maximization of
the likelihood is straightforward, as model definition of the PDF is inserted into the
likelihood expression and the negative log-likelihood gradient is followed downhill.
Nonetheless, the main difficulty with explicit densities is designing a model that
can capture all the data complexity, with inter-dimension dependencies, and still
maintain a tractable computational approach. There are two main strategies used
to tackle this challenging design: (1) careful construction of models whose structure
guarantees their tractability, and (2) models that admit tractable approximations to
the likelihood and its gradients (Goodfellow, 2016). In the former type of strategy
we find mainly two models as the state of the art: autoregressive models and flow-
based models. In the latter type we find variational autoencoders, which are based
on variational methods.
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FIGURE 3.14: Schematic of the deep causal convolutional stack that forms the core of
WaveNet (from van den Oord et al. (2016b) Fig. 3).

3.2.1.1 Autoregressive models

A joint probability distribution can be effectively and tractably modelled as a prod-
uct of conditional distributions, following the probability chain rule. Fully visible
belief networks (FVBFs Neal, 1992; Frey et al., 1996) are models that use this rule to
decompose the probability distribution over a T-dimensional vector x as an autore-
gressive prediction such that

pmodel(x) =
T

∏
t=1

pmodel(xt|x1, ..., xt−1). (3.14)

FVBNs build the basis for the WaveNet model (presented in section 2.1), its
derivations like the WaveRNN (Kalchbrenner et al., 2018), and its vision counter-
parts, the PixelRNN and the PixelCNN (van den Oord et al., 2016a). The core struc-
ture of the WaveNet and PixelCNN models is shown in Fig. 3.14. As noted, this
is a stack of causal convolutional layers with growing dilation factors that increase
the receptive field exponentially. This allows every prediction, formulated as each
product in equation 3.14, to take a large context T into account to predict the next
sample at time-step t. The main drawback of this modeling approach is the genera-
tion process, as it happens one entry at a time. In the case of WaveNet this gets pro-
hibitively expensive due to its depth, which is around 60 layers, whereas models like
WaveRNN try to reduce this by stacking less depth and working with subsequence
generation, hence predicting in parallel downsampled sequences and merging in
the end (Kalchbrenner et al., 2018). Nevertheless, this hits a limit of computational
efficiency that can be surpassed only by non autoregressive models, where full par-
allelization is available.

3.2.1.2 Flow-based models

Flow-based generative models learn a bijective transformation from input samples
x ∈ RT to latent representations z ∈ RT such that z = f (x) and x = f−1(z). This
invertible mapping f is called a normalizing flow (Rezende and Mohamed, 2015),
and it can be parameterized with a neural network. This function can further be
composed of k invertible transformations f = f1 ◦ f2 ◦ ... ◦ fk. The relationship tied
between x and z is hence

x , h0
f1←→ h1

f2←→ h2 · · ·
fk←→ hk , z. (3.15)
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We want to model the probability distribution p(x) in order to build a generative
model. The previous autoregressive approach makes this tractable at the expense of
sampling efficiency (i.e. it is slow to generate new x samples). However, with the
defined bijective transformation f , we can also model the exact log-likelihood as

L(X) =
1
|X|

|X|

∑
i=1

log (p (xi)) . (3.16)

For a single sample x, with a change of variables following Rezende and Mo-
hamed (2015), and applying the inverse function theorem, compositionality, and
logarithm properties, we can write

p (z) = p ( f (x)) = p (x)
∣∣∣∣det

(
∂ f−1(z)

∂z

)∣∣∣∣ , (3.17)

which is derived from the change of variables formula. By the inverse function the-
orem, we can work with the Jacobian of f ,

p (z) = p (x)
∣∣∣∣det

(
∂ f (z)

∂z

)∣∣∣∣−1

(3.18)

and, taking logarithms and rearranging, we reach

log (p (x)) = log (p (z)) + log
∣∣∣∣det

(
∂ f (z)

∂z

)∣∣∣∣ . (3.19)

Finally, since f is a composite function (Sec. 3), we can write the previous equa-
tion as (Kingma and Dhariwal, 2018; Serrà et al., 2019):

log (p (x)) = log (p (z)) +
k

∑
i=1

log
∣∣∣∣det

(
∂ fi(hi−1)

∂hi−1

)∣∣∣∣ . (3.20)

In fact this is the expression used to optimize the normalizing flow. The density
p(x) is then tractable if the density p(z) is tractable and the determinant of the Ja-
cobian of f−1 is tractable. This means that a simple distribution over z combined
with a transformation f that warps space in complicated ways can yield a compli-
cated distribution over x (Goodfellow, 2016). This allows us to sample z values at
one end and obtain new x values at the other end of the flow after all transforms are
applied. And more importantly, we know that the exact likelihood criteria can be
used to learn these transformations f if they are parameterized as neural networks,
as it was the case with the earlier autoregressive decomposition.

Models with nonlinear functions f date back at least to Deco and Brauer (1995),
with recent notable advances with systems like the RealNVP (Dinh et al., 2017),
Glow (Kingma and Dhariwal, 2018), the parallel WaveNet (van den Oord et al.,
2017), WaveGlow (Prenger et al., 2019) and Blow (Serrà et al., 2019). The RealNVP
and Glow are applied to image generation. On the other hand, parallel WaveNet
and WaveGlow are used in TTS applications, whereas Blow is a voice conversion
system.

Finally, as stated in Goodfellow (2016), to avoid some of the disadvantages im-
posed by the design requirements of models with tractable PDF, other models were
proposed that still provide an explicit PDF but use one that is intractable, requiring
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the use of approximations to maximize the likelihood. With the use of deterministic
approximations, this means using variational methods. These define a lower bound

L(X) ≤ log pmodel(x). (3.21)

A learning algorithm that maximizes L is guaranteed to obtain at least as high
a value of the log-likelihood as it does of L (Goodfellow, 2016). For many families
of models, we can define a tractable L even when the log-likelihood is not. Cur-
rently, the most prominent approach to variational learning is the variational au-
toencoder (Kingma and Welling, 2014).

3.2.2 Implicit Density Models

Implicit density models can be trained without the need to explicitly define a density
function. Hence they typically offer a way to be trained by interacting indirectly with
pmodel , usually by sampling from it (Goodfellow, 2016). In this family of models, we
have a very salient type nowadays that yields outstanding results: the generative
adversarial network.

3.2.2.1 Generative Adversarial Networks

Generative adversarial networks (GANs) (Goodfellow et al., 2014) are generative
models that learn to map samples z from some prior distribution Z to samples x
from another distribution X , which is the one of the training instances (e.g., images
or audio). The component within the GAN structure that performs the mapping is
called the generator network (G), and its main task is to learn a function whose out-
comes can imitate some real data distribution. In this way, we can generate novel
samples related to those of the training set. Importantly, G does so not by memo-
rizing input-output pairs but by mapping the data distribution characteristics to the
manifold defined in our prior Z . Thus, there is an inherent stochastic component (in
this case the sampling from Z) that implies a different outcome for every generated
prediction.

Adversarial training is the key component with which G learns to perform the
aforementioned mapping. In this configuration, we have another component, called
the discriminator network (D), which is typically a binary classifier. Its inputs are
either real samples, coming from the dataset, or synthetic samples, entirely made
up by G (which in turn imitates real samples). The adversarial characteristic comes
from the fact that D has to classify the samples coming from X as real, whereas the
samples coming from G, X̂ , have to be classified as synthetic. This condition leads to
G trying to fool D, and the way to do so is that G adapts its parameters such that D
classifies the G output as real. During back-propagation, D improves at finding real-
istic features in its input; in turn, G corrects its parameters to move towards the real
data manifold described by the training data (Fig. 3.15). This adversarial learning
process is formulated as a minimax game between G and D, with the objective

min
G

max
D

V(D, G) = Ex∼pdata(x) [log D(x)] +

+ Ez∼pz(z) [log (1− D (G (z)))] .
(3.22)

The original GAN formulation of Goodfellow et al. (2014) included a hyper-
parameter that controlled an arbitrary amount of D update iterations k prior to up-
dating G. This was done so that D could capture better features that would then be
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FIGURE 3.15: Schema of the GAN training process. First, D back-props a batch of real
examples (left). Then, D back-props a batch of synthetic examples that come from G and
classifies them as synthetic (middle). Finally, the D parameters are frozen, and G back-props

to make D misclassify the examples (right).

leaked to G in the gradient flow. Nonetheless, this approach can be expensive, as
it needs to make the forward-backward learning step per k-th iteration. The hyper-
parameter k is tuned to stabilize the learning strategy as well as accelerating the
generator convergence. Recently, this multiple batching update rule in the discrim-
inator has been replaced by the so called two-timescale update rule (TTUR; Heusel
et al., 2017), where the learning rate of the discriminator is higher than that of the
generator (usually between 2 to 4 times). Importantly, this allows D to learn features
in a quicker way per training step while operating a single forward-backward step
per D update, hence being more efficient.

The previously described model would learn to generate novel samples that
could resemble random real points, but it is often interesting to add a condition-
ing factor that can be used for a specific task. We can thus work with a conditioned
version of GANs, where we have some additional information in G and D to per-
form mapping and classification (see Isola et al., 2017, and references therein). For
instance in the speech enhancement task, we can condition the generation to a con-
taminated input utterance such that G has to output a clean version of it. The mini-
max game formulation is then modified to include a conditioning input vector x̃:

min
G

max
D

V(D, G) = Ex,x̃∼pdata(x,x̃) [log D(x, x̃)] +

+ Ez∼pz(z),x̃∼pdata(x̃) [log (1− D (G (z, x̃) , x̃))] .
(3.23)

Note that D is also receiving the conditioning vector x̃ such that the information
flowing back from D to G during training incorporates tied descriptions of both
reality x (clean signal) and its conditioning reference x̃ (noisy or corrupted signal).

There have been a number of improvements to the classifier structure of the dis-
criminator to stabilize the overall adversarial training. These developments make D
learn better features, with a better gradient flow in some cases relative to the classi-
cal formulation, which in turn improves the training of G, as it receives better error
signals. The binary classification output in D can suffer from vanishing gradients
due to the sigmoid cross-entropy loss used for training. To solve this problem, the
least squares GAN (LSGAN) approach (Mao et al., 2017) replaces the cross-entropy
loss with the least squares function and an output linear unit. The formulation in
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equation 3.23 changes to

min
G

V(G) =
1
2

Ez∼pz(z),x̃∼pdata(x̃)[(D(G(z, x̃), x̃)− c)2],

max
D

V(D) =
1
2

Ex,x̃∼pdata(x,x̃)[(D(x, x̃)− b)2]

+
1
2

Ez∼pz(z),x̃∼pdata(x̃)[(D(G(z, x̃), x̃)− a)2].

(3.24)

where a, b, and c must fulfill the condition to minimize Pearson χ2 divergence,
i.e. b − c = 1 and b − a = 2 (Mao et al., 2017). In practice, we can select either
(a = −1, b = 1, c = 0) or the binary encoding (a = 0, b = c = 1). The authors claim
that both formulations reach similar results in practice (Mao et al., 2017).

Similarly to the development of LSGAN, other loss variants appeared to be used
as stable counterparts to the vanilla GAN loss, like the Wasserstein GANs (Arjovsky
et al., 2017; Gulrajani et al., 2017), the boundary equilibrium GAN (Berthelot et
al., 2017) or the geometric GAN (Lim and Ye, 2017). Moreover, other mechanisms
have been designed which are not not directly related to the loss functions but to
bounding the gradient flow between the two networks (i.e. avoiding severe spik-
ing shifts in the G-D learning equilibrium). Examples of this are both the gradient
penalty (Gulrajani et al., 2017) and the spectral normalization (Miyato et al., 2018;
Zhang et al., 2018a). Nonetheless, Lučić et al. (2018) conducted a neutral, multi-
faceted large-scale empirical study on state-of-the art models and evaluation mea-
sures, finding that most GAN models can reach similar scores with enough hyper-
parameter optimization and random restarts. They then suggest that further im-
provements in GANs performance may arise from a higher computational budget
rather than from fundamental algorithmic changes. In fact, the recent work by Brock
et al. (2019) demonstrates that GANs especially benefit from scaling, as well as from
training models with 2 to 4 times as many parameters and 8 times the batch size
compared to prior art.

Finally, it is worth mentioning a recent approach applied specifically to speech
and audio generation. In this case, to increase the effectiveness of the generator
learning process, a set of randomly sampled windows from real and fake speech
signals are fed into an ensemble of discriminators. This seems to dramatically in-
crease the synthetic samples quality, due to the data augmentation effect of the
random sampling and the richness of features extracted by the ensemble of mod-
els (Bińkowski et al., 2019). This strategy proved so far to be effective under a high
demand of resources, continuing the line of research of Brock et al. (2019).
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Chapter 4

Efficient Neural Acoustic Modeling
in Text-to-Speech

In the literature review we discussed the importance of sequential mechanisms to
do speech synthesis. As such, recurrent neural networks (RNNs) are one of the
most prominent architectures used in linguistic to prosodic and acoustic mapping.
In section 2.1, we described how this happens for two-stage TTS (Chen et al., 1998;
Fernandez et al., 2014; Zen and Sak, 2015), as well as for end-to-end TTS (Wang
et al., 2017; Arik et al., 2017; Sotelo et al., 2017). In this chapter we investigate the
performance in terms of both prediction efficiency and voice quality of three types
of sequential processing architectures for linguistic–acoustic mapping in two-stage
TTS systems. And we specifically focus our analysis on the linguistic–acoustic map-
ping as it tends to require fewer data and resources to be trained than end-to-end
systems. Additionally, we can decouple the actual effects of acoustic modeling from
the linguistic alignment in this way.

Despite the success of RNNs in the sequential modeling paradigm, recent in-
vestigations proved the effectiveness of other mechanisms that rely on structures
different from the classic recurrent ones. Other recurrent-like variants were pro-
posed to overcome the computation burden that projected recurrent connections
impose. For instance, the quasi-RNN (QRNN), introduced in section 3.1.5, moves
these projections to a feed forward case while maintaining a memory vector that
gets updated with element-wise interactions (Bradbury et al., 2017). Hence, QRNNs
may be used as a replacement for LSTMs. Their effectiveness in different NLP tasks
compared to LSTMs has been demonstrated (Bradbury et al., 2017; Merity et al.,
2018), with empirical evidence showing they can speed up sequence processing by
16 times with respect to LSTMs. They have also been used in end-to-end TTS sys-
tems, such as the aforementioned DeepVoice (Arik et al., 2017), as conditioning to
processors to upsample linguistic and prosodic features to the waveform resolution
used by a WaveNet generator. Another system is the Transformer network, which
conceptualizes sequential dependencies differently from RNNs, avoiding any sort
of recurrent connection. The Transformer network was designed as a sequence-to-
sequence model with attention for machine translation (see sections 3.1.6 and 3.1.7),
where typically RNNs are applied to deal with the conversion between the two se-
quences (Sutskever et al., 2014; Bahdanau et al., 2015). Vaswani et al. (2017) specifi-
cally introduced the self-attention mechanism described in section 3.1.7, which can
relate elements within a single sequence regardless of the sequential order by using
a compatibility function. Nonetheless, having an order awareness allows for bet-
ter exploitation of the sequential context, and it is one of the main motivations for
using RNNs rather than only self-attention modules to seek intra-sequential interac-
tions. Thus, in Transformer, ordering is imposed with positioning codes that serve as
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time-stamps. This makes input features determine the current state in the sequential
context instead of having an intrinsic structure with feedback connections.

In our work we depart from an RNN reference model that uses LSTM cells,
as proposed in previous works (Zen and Sak, 2015; Pascual, 2016). Then, we use
a QRNN-based model named QRNN linguistic–acoustic decoder (QLAD), based
on the previous mentioned evidence of more efficient computations than LSTM
structures, albeit being comparable in performance across different sequential tasks.
QRNNs have been used in the conditioning branch of end-to-end TTS, as mentioned
above, but we instead propose them to actually generate the acoustic parameter tra-
jectories of our decoder. We also consider a Transformer decoder without attention
to any encoder, because we are dealing with a mapping between two sequences
that have the same time resolution. Hence our decoder blocks only contain the self-
attention and feed-forward network modules. Precisely a key difference between
our Transformer module and the recently proposed Transformer TTS is that we do
not work with the full Transformer structure as other end-to-end solutions do (Li
et al., 2019). We thus call this system the self-attention linguistic acoustic–decoder
(SALAD) (Pascual et al., 2018a). Acoustic models that improve the speech synthesis
efficiency over the existing RNN-based ones are a suitable target for low resource
environments as long as the generated speech quality is not degraded. This spe-
cially fits embedded devices, such as mobile phones, with which the TTS system
can then run locally. Furthermore, the experimentation carried out in this work is
applicable to further settings where text is not the input signal but speech is the
synthesized output, e.g., speech enhancement or voice conversion (Sun et al., 2015;
Erdogan et al., 2015), where speech signals are converted into other speech signals.
Moreover, some of these architectural changes can also be extended for more end-
to-end waveform generation solutions similar to those of WaveNet (van den Oord
et al., 2016b) or WaveRNN (Kalchbrenner et al., 2018). Nonetheless, our focus is on
exploring these variations on the vocoder acoustic parameter generation for ease of
experimentation with respect to computational requirements, and as an incremental
development upon our previous acoustic modeling works (Pascual, 2016).

In the following sections we find that both QLAD and SALAD models are com-
petitive in terms of efficiency for training and inference. Additionally, both models
show competitive objective results against those of the RNN. Nonetheless, QLAD
models are the only ones that subjectively match, or even improve in some setting,
the voice naturalness of RNNs.

4.1 Recurrent Linguistic–Acoustic Decoder

To study the introduction of our proposed networks into a TTS system, we employed
our previous multiple speaker adaptation (MUSA) framework (Pascual and Bona-
fonte, 2016a; Pascual, 2016; Pascual and Bonafonte, 2016b). This is a two-stage RNN
model influenced by the work of Zen and Sak (Zen and Sak, 2015), in the sense that
it uses unidirectional LSTMs to build the duration model and the acoustic model
without the need of predicting dynamic acoustic features. Therefore the RNN pre-
dicts a vocoder frame per time-step. The details on the vocoder used and its features
are explained in section 4.4.2.

However, for the current work, we did not use this multiple speaker capabil-
ity and focused on just single speaker models (one model per speaker) for the new
architecture design on improving the acoustic model. This way we can decouple



4.2. QRNN Linguistic–Acoustic Decoder 45

Linear

LSTM

LSTM (43)

MCEP VF F0 UV

ReLU

time
LING INPUTS Norm. DUR Rel. DUR

MCEP VF F0 UV

MHA

FFN

LayerNorm

LayerNorm
Decoder
Block xN

Linear (43)
LayerNorm

POSITIONING CODE

Linear
ReLU

Linear

QRNN (43)

MCEP VF F0 UV

ReLU

QRNN 
Layer xPQRNN

time
LING INPUTS Norm. DUR Rel. DUR

time
LING INPUTS Norm. DUR Rel. DUR

SINE/COSINE
GENERATION

FIGURE 4.1: Comparison of architectures for: (a) RNN/LSTM acoustic model (RNN base-
line); (b) QLAD; and (c) SALAD. The embedding projections are the same. The QRNN layer
is stacked P times in the hidden structure. In SALAD, the positioning encoding introduces
sequential information. The SALAD decoder block is stacked N times to form the hidden
structure. FFN, Feed-forward Network; MHA, Multi-Head Attention; CConv1D, Causal 1D

convolution.

architectural effects from shared representations, training each speaker model with
a comparable amount of data and the same number of parameters.

Fig. 4.1 depicts the linguistic–acoustic decoder across the different structures ex-
plored in this work. The input to the model is a sequence of frames, each one con-
taining a mixture of linguistic and duration features. Then, each structure outputs
a frame of 43 acoustic parameters per time-step. Both linguistic and acoustic fea-
tures used in this work are detailed in Section 4.4.2. The RNN baseline is shown in
Fig. 4.1a. As a first step, we have a pre-projection, performed by a fully-connected
layer with a ReLU activation. This embeds the mixture xt of different input types
into a common dense representation ht in the form of one vector per time step t.
Hence, the transformation RL → RH is applied independently at each time step t as

ht = max(0, Wxt + b), (4.1)

where W ∈ RH×L, b ∈ RH, xt ∈ RL, and ht ∈ RH. This is a 1 × 1 convolution
as defined in section 3.1.2. After this projection, we have the recurrent core formed
by an LSTM layer of H cells and an additional LSTM output layer. The output is
recurrent, as this prompted better results than using dynamic features to smooth
cepstral trajectories in time when using RNNs (Zen and Sak, 2015).

4.2 QRNN Linguistic–Acoustic Decoder

Quasi RNNs are introduced in section 3.1.5. As denoted there, they were proposed
as an efficient alternative to RNNs, and they proved to be very effective in different
NLP tasks, in comparison to their LSTM counterpart, when enough QRNN layers
are stacked. We propose the substitution of LSTM layers with QRNNs, hence ap-
plying them after the embedding layer introduced in section 4.1. We hence have an
input tensor H = [h1, · · · , hT] ∈ RT×H containing the embeddings at all time-steps,
and these are processed through a stack of P QRNN hidden layers and a QRNN out-
put layer. This is depicted in Fig. 4.1b. A QRNN layer is contained within the green
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dashed line, with its gate activations and their interactions described in section 3.1.5
(equations 3.9 and 3.10). Finally, analogous to the RNN version, a second QRNN is
stacked as output layer. This architecture can thus be seen as an intermediate step
between full recurrence and no recurrence at all, and we name it QLAD.

4.3 Self-Attention Linguistic–Acoustic Decoder

Based on the Transformer architecture (Vaswani et al., 2017), we also consider a
pseudo-sequential processing network that can leverage distant element interactions
within the input linguistic sequence to predict acoustic features (Pascual et al., 2018a;
Pascual et al., 2019a). This is similar to what an RNN does, but discarding any recur-
rent connection. This allows us to process all input elements in parallel at inference,
hence substantially accelerating the acoustic predictions. In our setup, we do not
face a sequence-to-sequence problem as stated previously, so we only use a struc-
ture similar to the Transformer encoder, which we call a linguistic–acoustic decoder.

The SALAD architecture begins with the same embeddings of linguistic and
prosodic features from Section 4.1, followed by a position encoding system. As we
have no recurrent structure, and hence no processing order, this position encoding
allows the upper parts of the network to locate their operating point in time, such
that the network knows where it is inside the input sequence. Concretely following
the proposal by Vaswani et al. (2017), a positioning code c ∈ RH is a combination of
harmonic signals of varying frequency:

ct,2i = sin
(

t/10000
2i
H

)
ct,2i+1 = cos

(
t/10000

2i
H

)
,

(4.2)

where i represents each harmonic, and H is the embedding dimensionality. At each
time-step t, we have a unique combination of signals that serves as a time stamp.
We can expect this to generalize better to long sequences than having an incremental
counter that marks the position relative to the beginning, owing to the cyclic nature
of sine functions. Each time stamp ct is added to each embedding ht, and this is
input to the decoder core, which can leverage this ordering information even though
it does not have recurrent connections.

The decoder core is built with a stack of N blocks, depicted within the dashed
blue rectangle in Fig. 4.1c. These blocks are the same as the ones proposed in the en-
coder of Vaswani et al. (2017). The most salient part of this type of block is the multi-
head attention (MHA) layer, introduced in section 3.1.7. We precisely introduced
attention as a function that relates two sequences of feature vectors, one represent-
ing queries and another representing keys and values. A special type of attention
is the one where the sequence of queries and the sequence of keys and values are
the same, named self-attention (see section 3.1.7). Here we concretely use this vari-
ant, and the sequences processed by our MHA are two copies of the input. Hence
the MHA block looks for relations among close and distant tokens within the same
sequence, and returns sequences that contain information on intra-sequential de-
pendencies. This is a similar process to the one followed by an RNN, where there is
a temporal connectivity among hidden states, nonetheless it happens to be unsorted
with self-attention and no feedback connection is needed.

Following with the block structure shown in Fig. 4.1c, a feed-forward network
(FFN) comes right after the MHA. This FFN composed of two fully-connected layers.
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The first layer expands the attended features into a higher dimension dff, and this
gets projected again to the embedding dimensionality H. Finally, the output layer is
a fully-connected dimension adapter such that it can convert the hidden dimensions
H to the desired amount of acoustic outputs. In this case, we may slightly degrade
the quality of predictions with this output topology, as recurrence helps in the out-
put layer capturing better the dynamics of acoustic features. Nonetheless, this may
suffice for our objective of having a highly parallelizable and competitive system.
Finally, in the decoder block both MHA and FFN have residual connections (He et
al., 2016) and normalization layers (Ba et al., 2016) to favour the gradient flow, as in
the original Transformer (Vaswani et al., 2017).

Note that, in this model, contrary to QLAD, we do not even have a state vector
ht that carries dynamic features over time. As such, it can operate fully parallel dur-
ing training and inference at all stages. Nonetheless, self-attention modules require
computing large matrix dot products which depend on the sequence length. This
may impose a limit in the inference speed and even a performance mismatch with
the QRNN structures at a certain sequence length.

4.4 Experimental Setup
In this section we describe the dataset we use. Then, we describe the features used
both in the input and the output of our models. The model details are also given,
including their layer sizes, training strategies and optimization parameters. Finally
evaluation metrics and results are presented and discussed.

4.4.1 Dataset

For the experiments presented in this section, we used utterances of speakers from
the Technology and Corpora for Speech to Speech Translation (TC-STAR) project
dataset (Bonafonte et al., 2006) following the experimental development of our pre-
vious works (Pascual and Bonafonte, 2016a; Pascual and Bonafonte, 2016c; Pascual,
2016). The purpose of these text sources is twofold: enrich the vocabulary and facil-
itate the selection of the sentences to achieve good prosodic and phonetic coverage.
For this work, we chose the same male (M1) and female (F1) speakers as in our pre-
vious works (Pascual and Bonafonte, 2016a; Pascual, 2016; Pascual and Bonafonte,
2016b). Their data are balanced with approximately the following durations per split
for both: 100 min for training, 15 min for validation, and 15 min for test.

4.4.2 Linguistic and Acoustic Features

The decoder maps linguistic and prosodic features into acoustic ones. This means
that we must first extract the hand-crafted features out of the input text. These fol-
low a context-dependent label format (Zen, 2006). Concretely, these features contain
the phonetic transcription of few windowed phonemes, information about stressed
syllables, position of the phoneme inside the current syllable, and position of the
syllable in the word, among others. Each phoneme is encoded as a string containing
the following symbols, described in detail in Table 4.1:

p1^p2$-$p3$+$p4$=$p5~p6_p7/A:a1_a2_a3/B:b1-b2-b3~b4-b5 ...
&b6-b7#b8-b9$b10-b11!b12-b13;b14-b15|b16/C:c1+c2+c3/D:d1_d2 ...
/E:e1+e2~e3+e4&e5+e6#e7+e8/F:f1_f2/G:g1_g2/H:h1=h2~h3=h4|h5 ...
/I:i1_i2/J:j1+j2-j3.
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TABLE 4.1: Linguistic and prosodic features of the context-dependent label format.

label format
Symbol Description

p1 phoneme identity before the previous phoneme
p2 previous phoneme identity
p3 current phoneme identity
p4 next phoneme identity
p5 the phoneme after the next phoneme identity
p6 position of the current phoneme identity in the current syllable (for-

ward)
p7 position of the current phoneme identity in the current syllable

(backward)

a1 whether the previous syllable is stressed or not (0; not, 1: yes)
a2 whether the previous syllable is accented or not (0; not, 1: yes)
a3 number of phonemes in the previous syllable

b1 whether the current syllable stressed or not (0: not, 1: yes)
b2 whether the current syllable accented or not (0: not, 1: yes)
b3 the number of phonemes in the current syllable
b4 position of the current syllable in the current word (forward)
b5 position of the current syllable in the current word (backward)
b6 position of the current syllable in the current phrase(forward)
b7 position of the current syllable in the current phrase(backward)
b8 number of stressed syllables before the current syllable in the cur-

rent phrase
b9 number of stressed syllables after the current syllable in the current

phrase
b10 number of accented syllables before the current syllable in the cur-

rent phrase
b11 number of accented syllables after the current syllable in the current

phrase
b12 number of syllables from the previous stressed syllable to the cur-

rent syllable
b13 number of syllables from the current syllable to the next stressed

syllable
b14 number of syllables from the previous accented syllable to the cur-

rent syllable
b15 number of syllables from the current syllable to the next accented

syllable
b16 name of the vowel of the current syllable

c1 whether the next syllable stressed or not (0: not, 1:yes)
c2 whether the next syllable accented or not (0: not, 1:yes)
c3 the number of phonemes in the next syllable

d1 gpos (guess part-of-speech) of the previous word
d2 number of syllables in the previous word

e1 gpos (guess part-of-speech) of the current word
e2 number of syllables in the current word
e3 position of current word in the current phrase (forward)
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e4 position of current word in the current phrase (backward)
e5 number of content words before the current word in the current

phrase
e6 number of content words after the current word in the current

phrase
e7 number of words from the previous content word to the current

word
e8 number of words from the current word to the next content word

f1 gpos (guess part-of-speech) of the next word
f2 number of syllables in the previous word

g1 number of syllables in the previous phrase
g2 number of words in the previous phrase

h1 number of syllables in the current phrase
h2 number of words in the current phrase
h3 position of the current phrase in utterance (forward)
h4 position of the current phrase in utterance (backward)
h5 Phrase modality (question, exclamation, etc.)

i1 number of syllables in the next phrase
i2 number of words in the previous phrase

j1 number of syllables in this utterance
j2 number of words in this utterance
j3 number of phrases in this utterance

Each of the features in Table 4.1 is numerically encoded depending on whether
it contains several discrete categories (i.e. one-hot codes), binary categories, or real
values. Then real valued inputs are normalized to have zero mean and unit variance.

For an input sentence with L words, after the phonetic transcription we obtain
M ≥ L phonetic units encoded into label vectors, each with 362 dimensions. To
inject these into the acoustic decoder, we needed an extra step. As mentioned, the
MUSA testbed follows a two-stage structure with the amount of frames specified
in the first stage: (1) duration prediction; and (2) acoustic prediction. Here, we only
worked with the acoustic mapping, thus we enforced the duration with labeled data.
For this reason, we replicated the linguistic label vector of each phoneme as many
times as dictated by the ground-truth annotated duration, appending two extra di-
mensions to the 362 existing ones. These two extra dimensions corresponded to:
(1) absolute duration normalized between 0 and 1, given the training data; and (2)
relative position of current phoneme inside the absolute duration, also normalized
between 0 and 1.

We parameterized the speech with a vocoded representation using the Ahocoder
from Erro et al. (2011). Ahocoder is a harmonic-plus-noise high quality vocoder,
which converts each windowed waveform frame into three types of features: (1) mel
cepstral coefficients (MCEP); (2) log-F0 contour; and (3) voicing frequency (VF). Note
that F0 contours have two states: either they follow a continuous envelope for voiced
sections of speech, or they are 0, for which the logarithm is undefined. Because
of that, Ahocoder encodes this value with −109, to avoid numerically undefined
values. This result would be a cumbersome output distribution to be predicted by
a neural net using a quadratic regression loss. Therefore, to smooth the values out
and normalize the log-F0 distribution, we linearly interpolated these contours and
create an extra acoustic feature, the unvoiced-voiced flag (UV), which is the binary
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TABLE 4.2: Different layer sizes of the different models and total number of model param-
eters. Emb/H: linear embedding layer size and SALAD hidden size (in all layers but FFN
ones); RNN/QRNN: recurrent or quasi-recurrent layer size in the hidden layers; dff: dimen-

sion of the feed-forward hidden layer inside the FFN in SALAD models.

Model Emb/H RNN/QRNN dff #Params

Small RNN 128 450 - 1.17M
Small QLAD 128 360 - 1.01M
Small SALAD 128 - 1024 1.04M
Big RNN 512 1300 - 9.85M
Big QLAD 512 1150 - 10.04M
Big SALAD 512 - 2048 9.66M

flag indicating the voiced or unvoiced state of the current frame. We then had an
acoustic vector with 40 MCEP, 1 log-F0, 1 VF, and 1 UV. This totaled 43 features
per frame, where each frame window has a stride of 80 samples over the waveform.
Real-numbered linguistic features were Z-normalized by computing statistics on the
training data. In the acoustic feature outputs, all of them were normalized to fall
within [0, 1] following the speaker-dependent training data statistics.

4.4.3 Model Details and Training Setup

We had three main structures: the baseline RNN, QLAD, and SALAD. The RNN
took the form of an LSTM network for their known advantages of avoiding typical
vanilla RNN pitfalls in terms of vanishing memory and bad gradient flows (Hochre-
iter and Schmidhuber, 1997; Hochreiter et al., 2001). Each of the three different
models had two configurations, small (Small RNN / Small QLAD / Small SALAD)
and big (Big RNN / Big QLAD / Big SALAD). This was intended to show the
performance difference with regard to speed and distortion between the proposed
model and the baseline, but also their variability with respect to their capacity (RNN,
QLAD, and SALAD models of the same capacity have an equivalent number of
parameters although they have different connection topologies). Fig. 4.1 depicts
all these models’ structure, where only the size of their layers (LSTM, embedding,
MHA, FFN and CConv1D) changes with the mentioned magnitude. Table 4.2 sum-
marizes the different layer sizes for all types of models and magnitudes, as well as
their total number of parameters.

Additionally, all models are trained with dropout (Srivastava et al., 2014) in cer-
tain parts of their structure to avoid over-fitting easily to the available training set
per speaker. The RNN and QLAD models have it after the hidden LSTM or QRNN
blocks. The SALAD model has many dropouts in different parts of its submodules,
replicating the ones proposed in the original Transformer encoder (Vaswani et al.,
2017). The RNN and QLAD dropouts are 0.5, and SALAD has a dropout of 0.1 in
its attention components and 0.5 or 0.2 in FFN and after the positioning codes, de-
pending on the model performance based on a validation criterion. Note that both
QLAD and SALAD models also can have P and N number of blocks, respectively,
which turned out to be P = N = 3 for all performed experiments.

All models were trained with batches of 32 sequences of 120 symbols. The train-
ing consisted of stateful-structured batches, such that we carried the sequential state
between batches over time (that is, the memory state in the RNN or QRNN and the
position code index in SALAD). To achieve this, we concatenated all training frames
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into a very long sequence, and then chopped it into 32 long pieces. We then used a
non-overlapped sliding window of size 120, so that each batch contained a piece per
sequence, continuous with the previous batch. This made the models learn how to
deal with sequences longer than 120 outside of train, learning to use a conditioning
state different from zero in training. All models were trained for a maximum of 300
epochs, but they triggered a break by early-stopping with the validation data. The
validation criterion for which they stop was the mel cepstral distortion (MCD, as
discussed in Section 5.3) with a patience of 20 epochs.

Regarding the optimizers, we used Adam (Kingma and Ba, 2015) for the RNN
and QLAD models, with the default parameters in PyTorch (λ = 0.001, β1 = 0.9,
β2 = 0.999, and ε = 10−8). For SALAD, we used a variant of Adam with adaptive
learning rate, already proposed in the Transformer work, called Noam (Vaswani et
al., 2017). This optimizer is based on Adam with β1 = 0.9, β2 = 0.98, ε = 10−9 and
a learning rate scheduled as

λ = H−0.5 ·min(s−0.5, s · w−1.5) (4.3)

where we have an increasing learning rate for w warmup training batches, decreas-
ing afterwards proportionally to the inverse square root of the step number s (num-
ber of batches). We used w = 4000 in all experiments. The parameter H is the inner
embedding size of SALAD, which was 128 or 512, depending on whether it was the
small or big model, as noted in Table 4.2. We also tested Adam on the big version
of SALAD, but we did not observe any improvement in the results, thus we stuck to
Noam following the original Transformer setup.

4.4.4 Evaluation Metrics

What follows is a description of the 3 types of measures: (1) objective metrics, (2)
subjective test and (3) efficiency. With these we compare the aforementioned models
both in terms of synthesized voice quality and synthesis efficiency. In the case of ob-
jective metrics, they easily allow us to evaluate the small and big variants per model.
Then, as the objective results and qualitative listenings by the authors and different
colleagues suggest, we proceed with the big variant of each model to carry a sub-
jective test due to their higher level of naturalness. Finally, the efficiency evaluation
is also taken with the big variants, as we can then take the worst case scenario in
consideration, where we have more parameters to do synthesis. This way we know
small models should run faster due to their reduced set of parameters.

4.4.4.1 Objective Evaluation

To assess the distortion introduced in the synthetic speech by the different models,
we took 3 different objective evaluation metrics that follow the same formulations
as in our previous works (Pascual and Bonafonte, 2016a; Pascual, 2016; Pascual and
Bonafonte, 2016b). First, we have the mel cepstral distortion (MCD) measured in
decibels (Kubichek, 1993), which tells us the amount of distortion in the prediction
of the spectral envelope, defined as

MCD =
10
√

2
T ln 10

T−1

∑
t=0

√√√√ 39

∑
n=0

(κt,n − κ̂t,n)2, (4.4)

where T are the amount of frames, κt,n is each ground-truth cepstral component and
κ̂t,n the predicted one. Then, we have the root mean squared error (RMSE) of the F0
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prediction in Hertz (φ̂0t) for the same T amount of frames, defined as

RMSE =

√√√√ 1
T

T−1

∑
t=0

(φ0t − φ̂0t)2. (4.5)

Finally, as we introduced the binary flag that specifies which frames are voiced
or unvoiced, we measured the unvoiced–voiced classification error (UV error) as the
number of failed hits over total outcomes, where unvoiced and voiced classes are
balanced by nature. These metrics are indicatives of convergence towards the overall
speech components of each speaker. However, very low objective scores are not an
indicator of a natural sounding voice. In fact, a model with increased variance in its
acoustic predictions, which in turn increments speech naturalness, is an objectively
inferior model (Henter et al., 2018). Hence, it is appropriate to run into a subjective
evaluation, where human listeners can rate in a specific scale how natural does an
utterance sound, either generated by the TTS or coming from the test set.

4.4.4.2 Subjective Evaluation

We designed a naturalness subjective test where 18 subjects listened to 32 utterances
in total (four systems evaluated for each of the eight test utterances) and rated the
mean opinion score (MOS), which ranges from 1 (totally unnatural) to 5 (completely
natural). The four systems rated were the real test utterance and each of the dif-
ferent synthesized versions: the big RNN, QLAD, and SALAD. The big version of
each model is taken due to the higher level of naturalness in the generated speech
when compared to its small counterpart version. Both objective results, available in
table 4.3, and qualitative listenings indicated this. The eight utterances were a subset
selected randomly per subject out of a pool of 24 possible ones. The subjects were
presented the four systems simultaneously and the order of the different systems
was randomized such that no repetitive pattern was salient by an ordered position.

4.4.4.3 Efficiency Evaluation

To assess the speed of each model, we measured the wall clock inference time per test
utterance three times, and then average these realizations per utterance. Measure-
ments were taken both on CPU and GPU hardware setups. CPU inferences were all
done on an Intel i7 processor with PyTorch framework version 1.0.0 (Paszke et al.,
2017). This is a different setup than that of our previous work, so absolute measured
timings differ mainly for library and hardware changes. Nevertheless, results are
consistent in terms of relative speed improvements. GPU measurements were made
on an NVIDIA GTX Titan X.

4.4.5 Results

Fig. 4.2 depicts the evolution of test distortions with respect to the available training
set size for each model and speaker. Each training set portion is shown in percentage,
such that 5% means 5 min of training data. We can observe how SALAD struggles
in the low data regimes, where only 5%, 25% or 50% of the training set is available.
This indicates that it might reach a more comparable performance if we used even
more training data. Nonetheless, the recurrent-connected architectures are a better
fit for these low data regimes, as they can potentially capture the sequential nature
of the acoustic data easily by carrying the cell states forward. Finally, the 100% data
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TABLE 4.3: Male (top) and female (bottom) objective results. Err, unvoiced–voiced classifi-
cation error. Lower values are better.

Model MCD [dB] F0 [Hz] Err [%]

Small RNN 5.18 13.64 5.1
Small QLAD 5.18 13.95 5.2
Small SALAD 5.92 16.33 6.2
Big RNN 5.15 13.58 5.1
Big QLAD 5.15 13.77 5.2
Big SALAD 5.43 14.56 5.5

Small RNN 4.63 15.11 3.2
Small QLAD 4.86 16.66 3.8
Small SALAD 5.25 20.15 3.6
Big RNN 4.73 15.44 3.1
Big QLAD 4.62 16.00 3.3
Big SALAD 4.79 16.02 3.2

regime distortion measurements are shown in table 4.3 for all models. All models
seem to perform similarly by only looking at the objective results in this case, with
the exception that SALAD models are the ones having systematically higher errors
of log F0 prediction and MCD in some cases, specially for the male speaker. We can
also see that increasing the amount of parameters specially boosts SALAD models,
indicating that the sequential task might be more challenging for a structure that
contains no recurrent structure.

In table 4.4, we show the results for the subjective evaluation. First, we can see
a gap between the natural MOS value and the best model (big RNN) of about 1
point in the "both" case. This is usual for vocoder-based two-stage TTS, where usu-
ally both the vocoder lossy compression and the over-smoothing effect contribute
to this for approximately half point each (Shen et al., 2018). Albeit objective re-
sults show comparable performance for QLAD and SALAD models with respect
to RNNs, we can see remarkable evidence in the subjective results determining
SALAD to yield a worse performing synthesis in terms of naturalness. The SALAD
MOS degradation is potentially provoked by mistakes in the predicted temporal dy-
namics of the acoustic contours, as we can easily hear prosodic defects or barely
intelligible sections in a preliminary listening test. In addition, the non-recurrent
output layer degrades frame transition quality, even when positioning codes are
available. On the other hand, the big QLAD model is very close (if not equivalent)
to the big RNN one. The recurrent structure of QRNNs is then an important in-
gredient to match the RNN performance, but pre-projecting the activations all at
once for all time-steps is also possible to speed up the synthesis and not degrade
performance. Qualitative results in the form of audio samples are also available on-
line (http://veu.talp.cat/efftts/).

We can see the inference speed profile of each system in Fig. 4.3. These infer-
ence speeds are shown for the different big models depending on the synthesized
waveform length, for both CPU and GPU systems. Each dot represents an utter-
ance inference at a certain utterance length. After we collected the dots, we can first
see a linear growth in the computational cost for RNN and QRNN models depend-
ing on the sequence length. On the other hand, SALAD models grow quadratically.

http://veu.talp.cat/efftts/
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FIGURE 4.2: Evolution of test distortions depending on the available amount of training
data (in percentage), for both male (left) and female (right) big models.

TABLE 4.4: Subjective mean opinion scores, for both speakers, male and female. Higher
values are better.

Natural Big RNN Big QLAD Big SALAD

Both 4.67 3.53 3.52 2.12
Male 4.90 3.55 3.66 2.44
Female 4.37 3.49 3.34 1.71

This happens, as stated in Vaswani et al. (2017), because self-attention layers con-
nect all the positions of the inputs sequences with a constant number of sequen-
tially executed operations O(1), whereas a recurrent layer requires O(n) sequential
operations. Then, self-attention layers are faster than recurrent layers when the se-
quence length is smaller than the representation dimensionality (H in Table 4.2).
We confirmed these trends by performing linear regressions for RNN and QLAD
models and then quadratic regressions for SALAD models (with Scikit-learn al-
gorithms (Pedregosa et al., 2011)). Each model line shows the latency uprise trend
with the generated utterance length up to 45 s. They also confirm the aforemen-
tioned linear and quadratic behaviors, which follow the observations by Vaswani et
al. (2017). Interestingly, and as expected, the RNN model is slower on both CPU and
GPU than the other two models on average. Especially on CPU, it can be seen to be
slower regardless of the signal length, however on GPU it is rather equivalent to the
other two models under the 10 s regime. After that, the inference time significantly
increases compared to the other pseudo-recurrent models.

Moreover, even though SALAD seems to be faster on GPU than QLAD, they
reach a crossing point when they generate utterances of approximately 45 s. At this
point, both models are between 3 and 3.3 times faster than the RNN, as shown in
Table 4.5. On the CPU, however, QLAD models are the fastest ones, mainly due to
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FIGURE 4.3: Inference time for the three different studied models: (Left) CPU speed curves;
and (Right) GPU speed curves.

TABLE 4.5: Maximum inference latency with linear fit for RNN and QLAD models, and
quadratic fit for SALAD. All measurements are taken at 45 s utterances.

Model Max. CPU Latency [s] Max. GPU Latency [s]

Big RNN 23.52 1.2
Big QLAD 2.09 0.36
Big SALAD 8.03 0.40

cheaper matrix operations with small convolutions of kernels of length one. They
are thus 3.8 times faster than SALAD and 11.3 times faster than RNN on CPU, which
are non-negligible speedups. Again, earlier results on QRNNs used in NLP showed
their empirical speed advantage over vanilla RNNs (Bradbury et al., 2017), some-
thing we can also verify in this work for a continuous acoustic data prediction task.

4.5 Discussion and Conclusion

In this chapter, we present two competitive and fast acoustic model replacements
for our RNN TTS baseline. The first proposal, QLAD, is a quasi-recurrent neural
network that moves the computational burden of learnable feedback connections to
feed-forward ones, while maintaining a simpler recurrent pooling. This allows a
comparable modeling of temporal dynamics to that of LSTMs for the speech synthe-
sis task. SALAD is based on the Transformer network, where self-attention modules
build a global reasoning within the sequence of linguistic tokens to come up with
the acoustic outcomes. In this case, positioning codes ensure the ordered process-
ing in substitution of the ordered injection of features that RNN has intrinsic to its
topology. Both systems converge to comparative amounts of distortion compared to
the RNN baseline. However, only QLAD reaches the same level of subjective natu-
ralness. On the other hand, both QLAD and SALAD are more efficient than LSTMs
in large utterance generation regimes, in both CPU and GPU contexts. More specifi-
cally, with the proposed QLAD acoustic model, we achieve a 11.2 times speedup on
CPU and 3.3 times on GPU with respect to the LSTM based model. Based on this
evidence, we can conclude that QLAD is a high quality and effective replacement
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for the LSTM based linguistic–acoustic decoder, even surpassing the performance
and speed of a non-recurrent model such as SALAD.

In the literature review WaveNet was presented as an effective deep genera-
tive model that synthesizes highly natural waveforms (van den Oord et al., 2016b).
Moreover, it can be conditioned on linguistic features to build a TTS system, al-
though it is not efficient due to its autoregressive structure (Kalchbrenner et al.,
2018). In the next chapter we explore the possibilities of generative adversarial net-
works, presented in section 3.2.2.1, to build an end-to-end system that is efficient
and exportable to transform speech. The latter means it is as parallelizable as possi-
ble, built upon convolutional structures, and takes one inference step to operate in
its task, contrarily to autoregressive models that take T steps to predict T samples.
The task we choose is speech enhancement, where we can build a one-shot inference
that compresses an input speech signal into a hidden representation and converts it
into a speech signal of another domain. In this case, the target domain will be the
one of clean signals. To that end, we can take advantage of learnable decimations
with an encoder block, and interpolations with a decoder block. This ensures our
model will operate faster than real-time thanks to reducing time-resolution for the
convolution operations, effectively transforming a full utterance of noisy speech into
clean speech in parallel. This task in turn also facilitates the first explorations we do
on making an end-to-end model based on an encoder-decoder structure, where the
input and output share the low level structure of speech, as well as the time resolu-
tion.
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Chapter 5

Speech Enhancement Generative
Adversarial Network

As discussed in the literature review, most of the current speech enhancement sys-
tems are based on the short-time Fourier analysis/synthesis framework, where only
the spectral magnitude is treated to remove contaminating artifacts (Loizou, 2013).
Recovering the signal is, in that case, a matter of recombining the cleaned-up magni-
tude with the input phase. This approach is common practice, as it is often claimed
that short-time phase is not important for speech enhancement (Wang and Lim,
1982). Nonetheless, other studies show that significant improvements of speech
quality are possible, particularly when a clean phase spectrum is known (Paliwal
et al., 2011).

Generative adversarial networks (GANs; Goodfellow et al., 2014) are state-of-
the-art generative models within the deep learning framework, as explained in the
deep learning review (see section 3.2.2.1). In this chapter, we present a GAN for
speech enhancement that works with the raw audio signal and aims at more gen-
eralized speech enhancement tasks (Pascual et al., 2017; Pascual et al., 2019b). The
main advantages of the proposed speech enhancement GAN (SEGAN) are:

• It works end-to-end, with the raw audio. Therefore, no hand-crafted features
are extracted and, with that, no explicit assumptions about the raw data are
taken.

• It provides a quick enhancement process. No causality is required and, hence,
there is no autoregressive operation like in RNNs or the WaveNet. This makes
it an efficient alternative as an end-to-end and speech-to-speech system, com-
pared to other deep generative models that could be applied.

• It learns from different speakers and noise types, and incorporates them to-
gether into the same shared parameterization. This makes the system simple
and generalizable in those dimensions.

.
In section 5.1 we first describe our speech enhancement generative adversarial

network (SEGAN) applied to denoising, together with an extensive exploration of
variations that leads to an increase in performance and efficiency in section 5.3.1. We
find that two key important variations that improve the SEGAN model are the in-
troduction of learnable skip connections and the reduction of the architecture size
from its base design by means of larger convolutional strides, which in turn in-
creases the adversarial training stability. We then compare our approach to classic
speech enhancement algorithms, such as Wiener filtering and statistical-based meth-
ods (Loizou, 2013), and to other deep neural networks working in the frequency
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domain. The model transferability to other noises and languages is studied in sec-
tion 5.4, together with its adaptive capacity to these new conditions unseen during
training. Additionally, two novel applications of SEGAN are also presented that go
beyond simple denoising and time-wise sample correspondence as a result of sev-
eral changes in the GAN loss functions. We first substitute temporal regularization
with spectral regularization. Second, we enforce content preservation with the ad-
dition of an extra adversarial signal. In section 5.5, these augmentations allow us
to recover missing components of speech reconstructed with a motion capture de-
vice (Fagan et al., 2008), where excitation information is missing, hence sounding
unnatural and whispered. We then use our modified model to convert this whis-
pered speech into a more natural and voiced signal, so we call this modification a
whispered-to-voiced conversion, applicable to the assistance of people lacking vocal
folds, potentially after total laryngectomy surgery (Gonzalez et al., 2017a; Gonzalez
et al., 2017b). Finally, in section 5.6 we extend SEGAN towards a more general-
ized speech enhancement task such that we recover cleaner speech out of severely
distorted utterances (Pascual et al., 2019c). This generalization towards different
speech distortions is interesting and directly applicable to modern communication
technologies, where connections are interrupted (i.e. losing voice packets), and
voice processing pipelines can distort our signals through amplifiers, compression
of transmission encoders, etc. We emulate these effects by introducing four applied
distortions, with different severity levels per distortion. We then propose the use of
a new regression component on top of the discriminator that serves as an additional
self-supervised task, boosting the generated recovered speech quality. This new task
is specially effective when we use the second modification, a two-stage adversarial
training schedule as a warm up and fine-tunning sequence.

5.1 Speech Enhancement GAN

In the enhancement problem, we have an input noisy signal x̃, and we want to clean
it, thus obtaining the enhanced signal x̂. Concretely, we first tackle the concrete
problem of denoising, where the noisy signal is perturbed with additive background
noise that has to be removed. In our configuration we have, for every noisy signal,
its clean reference x during training. In this section we first describe the model we
propose to perform the enhancement task. In section 5.1.2 we describe the procedure
we follow to train the proposed model. Finally, in section 5.1.3 we describe the
procedure to use the proposed model to perform the denoising.

5.1.1 Model

The proposed model follows the conditioned generative adversarial approach de-
scribed in section 3.2.2.1. We call our model speech enhancement GAN, or SEGAN
for short. The Generator Network G is structured as a deep convolutional autoen-
coder (Fig. 5.1) that first compresses the input waveform in time with the encoder
and then reconstructs a plausible clean version of it with the decoder. Compres-
sion is done to discourage learning the identity function in the reconstruction of x̃.
In fact, our first attempts with non-decimating architectures yielded bad results, in
terms of not eliminating the noise. Additionally, this autoencoder design also ac-
celerates the convolution operations in the decimated parts of the structure (shorter
sequence lengths involve faster processing) and can reduce the memory footprint if
we use a small number of feature maps in the deepest part of the encoder.
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FIGURE 5.1: Autoencoder architecture for speech enhancement (G network). Feature maps
are depicted in blue and green. The decimation/interpolation factor sd depends on the stride
s and layer depth index d. The input waveform length is designated L, and the number of
kernels/channels at each layer is kd. The right-side arrows denote skip connections, which

have a multiplicative scalar factor ad.

The generator input is the noisy speech signal x̃, which is projected into an inter-
mediate representation (see Fig. 5.1). Its output is the enhanced version x̂ = G(z, x̃).
As the design of G is exclusively convolutional, there are no fully connected layers
nor autoregressive connections. This condition encourages the network to focus on
temporally close correlations in the input signal and throughout the whole forward
process across layers, whilst allowing it to process any input signal duration (unlike
fully connected layers). Additionally, we note that it is a fast way to perform for-
ward operations, as we process the full signal with one forward operation through
the whole G. This approach contrasts with that of autoregressive or RNN models as
mentioned earlier, which cannot be parallelized when computing each time step.

In the generation stage, the input signal x̃ is decimated and expanded feature-
wise through a number of strided convolutional layers, followed by multiparametric
rectified linear units (PReLUs; He et al., 2015), i.e., activation with a learnable slope
per feature channel for negative values. The aim of using this activation is to make
everything as learnable as possible to be optimized depending on the task. In fact,
we observe a linearized activation (large slope for negative values) for those layers
that are close to the waveform domain (i.e., input and output), whereas the middle
parts of the auto-encoder behave more like ReLUs (i.e., close to zero slope). Other
works also show this pattern for PReLUs in deep convolutional auto-encoder struc-
tures (Paszke et al., 2016). We choose strided convolutions as they are more stable
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than other pooling approaches for well-known GAN configurations (Radford et al.,
2016). Decimation is implemented until we obtain a condensed representation of a
few time samples (in the form of vectors of features), commonly called the thought
vector c. This result is concatenated with the generative noise component z, which
adds stochastic behavior to the generator predictions x̂ (we use isotropic Gaussian
noise for z). The encoding process is reversed in the decoding stage by means of
transposed convolutions (sometimes called deconvolutions), followed again by PRe-
LUs. The only exception is the last layer, which has a tanh activation to ensure that
the output range is between −1 and 1. This step is introduced for stability purposes
as it avoids exploding gradients, owing to its activation saturating regions, as in
deep convolutional GANs (Radford et al., 2016).

The generator G also features skip connections, linking each encoding convolu-
tional layer output to its homologous decoding layer and bypassing the compres-
sion performed in the middle of the model (Fig. 5.1). Note that the first connection is
added after at least one decimation level, hence still avoiding a copy of the original
signal itself in a trivial solution. We do this because the input and output signals of
the model share the same underlying structure of natural speech. We hypothesize
that low-level details to reconstruct the speech waveform properly could be lost if
we force all information to flow through the compression bottleneck. Skip connec-
tions can help in this scenario, directly passing the fine-grained information of the
waveform to the decoding stage. Moreover, we observed that skip connections offer
a better training behavior, as the gradients can flow deeper through the whole struc-
ture (He et al., 2016). Our skip connections contain a multiplicative scalar factor al,k
per signal channel k and layer l. Therefore, if we have k = 16 channels, after the
first encoder layer (l = 1) we will have a vector a1 ∈ R16 of amplifying or atten-
uating factors. These al vectors are learned together with the whole convolutional
structure. In this way, the scaling of every feature map is optimized for the end task.
At the j-th decoder layer input, we merge the (scaled) l-th encoder layer with the
(j− 1)-th decoder layer responses, following either a summation,

hj = hj−1 + al � hl , (5.1)

or a concatenation,
hj = [hj−1; al � hl ], (5.2)

where hj is the output of the j-th layer and� is an element-wise product along chan-
nels. Concatenation gives us slightly better results, but summation can also be com-
petitive and compelling to make the system work with computationally restricted
resources, as it requires fewer feature maps than the other option (see section 5.3).

To complete the GAN structure, we have the discriminator network, which fol-
lows the same one-dimensional convolutional structure as the G encoder, hence
matching the conventional topology of a convolutional classification network. How-
ever, there are a few differences from the G encoder: (1) the discriminator network
provides two input channels, (2) it can use some form of batch normalization (Ioffe
and Szegedy, 2015) before LeakyReLU nonlinearities of α = 0.3, and (3) in the last
activation layer, there is a one-dimensional convolution layer with a single filter of
width 1 and stride 1. The latter (3) reduces the amount of parameters required for the
final classification neuron, which is fully connected to all hidden activations with a
linear behavior (no activation function in between). This aspect reduces the amount
of required parameters in the last activation from T × 1024 to T with a learnable
weighting.
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5.1.2 Training

With the generator G and the discriminator D, we then build the adversarial setup
following the least squares GAN (LSGAN) formulation with binary coding intro-
duced in section 3.2.2.1. This means that D leaks information to G during back-
propagation of what is real and what is synthetic. This way, G can slightly correct
its output waveform towards the realistic distribution, discarding the noisy signals
as those are signaled to be synthetic. In this sense, D can be understood as learning
a loss function for the G output to look real, so that the enhancement must remain
faithful to the speech signal and eliminate all the surrounding noise as much as
possible. However, in preliminary experiments, we found it convenient to add a
secondary regression component to the loss of G to minimize the distance between
its generations and the clean examples. This way, the adversarial component can
add more fine-grained and realistic results to the regression component. Both losses
together were more stable than the separated case.

We chose the L1 norm to be our regularizer, as it has been proven to be effective
in the image manipulation domain (Isola et al., 2017; Pathak et al., 2016). Therefore,
taking G’s adversarial equation 3.24 with binary coding (i.e. with a = 0), the G loss
becomes

min
G

V(G) =
1
2

Ez∼pz(z),x̃∼pdata(x̃)[(D(G(z, x̃), x̃)− 1)2]

+ λ ‖G(z, x̃)− x‖1,
(5.3)

where λ is a hyperparameter that controls the magnitude of the regression compo-
nent. We set λ to 100 after observing a better minimization trend correlated with
signal quality. If λ is set to a smaller value, the L1 term oscillates erratically. If it is
set to a larger value, G behaves as a simple regressor. At approximately 100, this
regularization term helps stabilize the training and yields favorable results (which is
expected on a purely signal denoising task). However, having an L1 regularization
term can be a limitation when we have misalignment in input/output pairs, as it
forces every sample of the output to match with the corresponding sample of the
input. We did not encounter this problem when removing additive noise, but we
had to replace this term when dealing with speech reconstruction (see section 5.5).

In terms of input data for D, and contrasting to typical adversarial training con-
figurations, our configuration does not check whether a chunk is real or synthetic.
Instead, training works with pairs of chunks that make real or synthetic targets as
follows: a real pair is composed by a clean and a noisy signal (x, x̃) and a synthetic
pair is composed by an enhanced and a noisy signal (x̂, x̃). This is why D needs a
stereo input: it classifies the comparison between both chunks as being real or syn-
thetic. This training process is depicted in Fig. 5.2.

The training data were obtained by sliding a window of 16,384 samples (approx-
imately 1 s at 16 kHz) every 500 ms from every training waveform. To study the vari-
ations on our architecture, models train for 100 epochs with a batch size of 300. A
validation set of another 300 segments with maximum variability (different speakers
than those in training, different noises, and different SNRs) is used to find reasonable
plateaus in COVL and SSNR metrics (section 5.2.3).

5.1.3 Generation

As G is a fully convolutional structure, we can forward any chunk size L at test or
generation time, with the only restriction being that the size be a multiple of the
decimation factor ∆ of the encoder. This means that we have to pad sequences with
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FIGURE 5.2: SEGAN training process. First, D backpropagates with the real pair (x, x̃) clas-
sifying it as real. Then, D backpropagates a fake pair (x̂, x̃). Finally, D parameters are frozen
and G backpropagates to make D miss-classify the pair (x̂, x̃) as real. Gtruth: ground-truth

clean signal. Genc: Generator encoder structure. Gdec: Generator decoder structure.

P zeros in some cases to fulfill N = L+P
∆ ∈ Z, so that we recover L + P samples in

the decoder output, to finally remove the leftover P values and retain our original L
samples in our region of interest. When it comes to training, however, D has a fully
connected output classification layer, which requires us to use fixed-size chunks.

At test/generation time, the difference between concatenating individually pro-
cessed chunks of 1 second and processing any length T through G was objectively
negligible. Hence, for long signals where intermediate network activations do not fit
in memory (neither GPU’s nor RAM), we can chunk without overlap, and by sliding
G with the same z through the chunks, we can reconstruct with a concatenation.

5.2 Experimental Configuration

5.2.1 Data

To evaluate the effectiveness of our approach, we employ the clean speech in the
VCTK Corpus (Veaux et al., 2017) and the noises from the Demand dataset (Thie-
mann et al., 2013), together with some extra synthesized noises following the struc-
ture and scripts of Valentini-Botinhao et al. (2016). We choose to generate these data
ourselves, based on publicly available datasets with a massive amount of speakers
because, this way, we can increase the pool of available speaker variability following
the same SNR and noise variation structure as in Valentini-Botinhao et al. (2016). We
have 109 available speakers in VCTK, out of which we split into 80 for training, 14
for validation, and 15 for testing. We force different speakers per split to study the
generalization of the enhancement algorithm to unseen speakers.

To further lessen the intersection between splits, we run preprocessing to look
for the least possible intersection in terms of textual contents between them. We find
a total of 44,085 text files in the corpus, but with simple preprocessing, we obtain
approximately 14,000 unique ones at the sentence level. We process the text files
by lowercasing and eliminating any carriage return characters, punctuation signs,
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and repeated spaces. This way, we obtain strings that can be compared literally
among speakers (even though some strings can still have same spoken contents but
slightly different text files, with some spontaneous missing determinants such as
“the”). Based on this simple rule, we select the 15 speakers that have minimum text
intersection with others for testing. The validation set is made of 14 speakers within
the remaining pool of 94 available ones after test selection. We also retain gender
balance to remain consistent in each subcorpus.

The noise conditions imposed with the abovementioned structure and scripts
are 10 different noises with 4 SNR levels each for training and 5 different noises with
other 4 SNR levels each for testing. The SNR conditions were {0, 5, 10, 15}dB for
training and {2.5, 7.5, 12.5, 17.5}dB for testing. The noises used were (1) synthetic
babble: many speakers in background; (2) real cafeteria: a busy office cafeteria; (3)
real car: in a private passenger vehicle; (4) real kitchen: inside a kitchen preparing
food; (5) real meeting; (6) real metro: a subway; (7) real restaurant; (8) synthetic
ssn: white noise low-pass filtered; (9) real station; and (10) real traffic: a busy traffic
intersection; for training/validation, and (1) real bus; (2) real cafe: the terrace of a
cafe at a public square; (3) real living: inside a living room; (4) real office; and (5) real
square: a public town square with tourists; for testing (noise types were randomly
selected).

5.2.2 Baselines

We compare our model with two sets of baselines: (1) classic methods that do not re-
quire training parameters and (2) two deep learning methods that work in the spec-
tral domain. Regarding the classic methods, we used a Wiener filter together with
a statistical model based on the LogMMSE estimator. Both are taken from Loizou
(2013). The deep learning methods are based on discriminative learnable nonlinear
mappings. First we have models mapping noisy spectrum frames to clean spectrum
frames. Based on Xu et al. (2015) and the modifications of the deep neural network
baseline by Fu et al. (2017), we first build a deep neural network (DNN) with fully
connected units, where we inject C input log-power spectral frames and obtain a
single clean one. Consequently, we have a context window for which we clean up
the central frame (Fig. 5.3). The structure of the network is a stack of 4 hidden lay-
ers of 1024 units each and an output layer that projects to the proper dimensionality
to match the number of frequency bins F of our signal. We refer to this model as
log-power spectrum DNN (LPS-DNN). Every hidden layer is a stack of an affine
transformation, followed by a multiparametric PReLU activation and batch normal-
ization. The FFT resolution remains for all experiments at 512, so that we address
F = 257 bins. We then consider L1 and L2 losses and variations of C to check the
regime of values in which we have a competitive baseline.

We also implement a bidirectional LSTM network for its known good modelling
capacity for sequential problems like this (Maas et al., 2012; Weninger et al., 2015;
Weninger et al., 2014; Erdogan et al., 2015). Our BLSTM has 650 cells, followed by a
multi-layer perceptron to perform a final transformation and dimension adaptation.
This last module’s parameters are shared at all time-steps, and the hidden layer is of
size 1024, following the LPS-DNN output structure. This network is designed to be
comparable in terms of parameters to those of the LPS-DNN with C = 1, where only
the sequential processing structure is changed. We also perform the L1 and L2 loss
variations. We find that the LPS-BLSTM models require more careful tuning than the
LPS-DNN given their tendency to stop learning because of gradient propagation is-
sues if activations and gradients do not have the proper magnitudes (Hochreiter and
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FIGURE 5.3: (a) LPS-DNN: Deep neural network baseline mapping of a context window of
C log-power spectral frames to the central clean frame. (b) LPS-BLSTM: Bidirectional long-
short term memory recurrent neural network that maps the full input noisy sequence to the
clean one. The output of the BLSTM (forward and backward extracted features) is fed to an
additional multi-layer perceptron to fullfil a final transformation and dimension adaptation

sharing weights through time.

Schmidhuber, 1997). For this reason, we normalize the first two statistical moments
of the inputs and apply gradient clipping to stabilize and promote the proper learn-
ing during back-propagation through time (Pascanu et al., 2013), which we observe
to be beneficial in this case.

Finally, we also make a fully convolutional auto-encoder structure trained as a
plain L1 regression, hence decoupling the adversarial component from the system
presented in section 5.1. The specific configuration of this model is the best one
resulting from the ablation study performed in section 5.3.1, so that only the adver-
sarial component is removed. This is an interesting way to assess the effect of the
adversarial component for the considered tasks.

All models were trained with the Adam optimizer (Kingma and Ba, 2015) with
default parameters as in PyTorch version 0.4.1 (Paszke et al., 2017). They are trained
with all noise types, SNR conditions, and speakers (section 5.2.1). Note that these
approaches do not use any supervision such as speaker identity or noise type. This
way, we expect them to generalize to the different kinds of noises and speakers,
which we also do with our model. These baselines are competitive counterparts to
our waveform-based model. Specially the LPS ones as they work with more con-
densed information, with a prelocation step we perform that focuses on the spectral
magnitude, where additive noise can be detected and removed easily.

5.2.3 Objective Metrics

We evaluate the quality of the enhanced speech with a set of well-known objective
metrics, which serve as tools to obtain an estimation on how well the models work.
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All of them compare the enhanced signal with the clean reference of 4,432 test set
files. They have been computed with our Python reimplementation of the algo-
rithms in Loizou (2013), which were available at the publisher website. The metrics,
their meaning, and their range of values are as follows:

• PESQ: Perceptual evaluation of speech quality using the wide-band version
recommended in ITU-T P.862.2 (ITU-T, 2007).

• CSIG: Mean opinion score (MOS) prediction of the signal distortion attending
only to the speech signal (Hu and Loizou, 2008).

• CBAK: MOS prediction of the intrusiveness of noise (Hu and Loizou, 2008).

• COVL: MOS prediction of the overall effect (Hu and Loizou, 2008).

• SSNR: Segmental SNR (Scalart and Filho, 1996).

• STOI: Short-time objective intelligibility (Taal et al., 2010; Taal et al., 2011).

The PESQ metric ranges between -0.5 and 4.5. MOS regression metrics (CSIG, CBAK,
and COVL) take values between 1 and 5. SSNR, in dB, is in the range [−10, 35], as
we trim it following the abovementioned implementation. STOI takes values in the
range of 0 to 1. For all metrics, the higher the score is, the better the speech quality
and the intelligibility.

5.3 Results

In the following, we make two blocks of analyses. In the first block, we conduct
an ablation study of different SEGAN configurations and structures. The depart-
ing structure follows a simplistic design, where the generator includes conservative
striding factors of 2 in each convolutional layer with kernel width 31. Moreover, its
skip connections are non-learnable, hence behaving as identity functions. Addition-
ally, the latent vector z is present unless the contrary is specified. The exact configu-
ration of the convolutional filters is described down below for more detail. The dis-
criminator features the same encoder structure (including filters, kernel width and
strides) as G but with two input channels, as well as including batch normalization
in each layer (Pascual et al., 2017). Note that D never has a z vector. The new config-
urations built upon this allow us to obtain an improved version of SEGAN, namely
SEGAN+. In the second block of analyses, we make performance comparisons be-
tween SEGAN/SEGAN+ and baseline systems, which comprises both objective and
subjective evaluations.

5.3.1 Model Variations

The variations introduced in the first block of experiments to improve SEGAN are
the encoder/decoder stride size, encoder/decoder kernel size, optimizer, normal-
ization schemes, enhancement with z, and skip connections design. All variation
results are shown in table 5.1, where model variants have an identifier that follows
a tree development, from V1 (first SEGAN) toward the latest leaves in the V1.2.8.x
level. We highlight the best node (SEGAN+) of the tree in bold. We follow these
different node details in the following sections, where a set of takeaways emerge:
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• It is important to have an aggressive decimation factor per encoder stage while
maintaining a large kernel width. This approach allows for an efficient archi-
tecture that, as a result of the large receptive field, maintains satisfactory per-
formance.

• Some normalization mechanism, either spectral normalization from Zhang et
al. (2018a) (G and D) or batch normalization (D), is essential for the correct
training of the system. Both increase performance in a similar way, allowing
for better training gradient flows for a deep structure such as the one we con-
sider.

• Learnable skip connections are a significant improvement on the G architec-
ture. Using a scalar factor per hidden feature allows for importance filtering
of feature maps from encoder to decoder. These are precisely the values al
in equations 5.1 or 5.2, depending on whether we sum or concatenate feature
maps. This approach provides better results with the same stability and similar
gradient propagation as regular skip connections.

• The latent vector z is not clearly used as a generative component in noise re-
moval, but we find that it helps as a regularization factor of G (without any ad-
ditional requirements of dropout, batch normalization, or weight magnitude
restrictions).

In the following subsections, we comment each variation in detail.

TABLE 5.1: Objective performance for different architecture variations. SEGAN is the first
approach we developed in Pascual et al. (2017) but is evaluated over the new dataset (V1).
SEGAN+ is the new best-performing model out of the different variations (V1.2.8). For both
COVL and SSNR metrics, higher is better. Letters η and ω denote the learning rate and

kernel width, respectively.

Model Description COVL SSNR

V1
(SEGAN)

SEGAN first version with a stride of 2, a kernel
width of 31, and batch norm in D.

2.77 5.15

V1.1 V1 made smaller and narrower, with a stride of
4 and a kernel width of 11.

2.58 4.38

V1.2 V1 made smaller with the same kernel sizes,
with a stride of 4 and a kernel width of 31.

2.89 6.65

V1.2.1 V1.2 with spectral normalization in G and D
and ηG = 10−4, ηD = 4 · 10−4.

2.33 6.42

V1.2.2 V1.2 with spectral normalization in G and D
and ηG = 10−4, ηD = 4 · 10−4, and no batch
norm in D.

2.72 6.56

V1.2.3 V1.2 with Adam and no batch norm in D. 2.10 3.35
V1.2.4 V1.2 with spectral normalization in G and D

and ηG = 10−4, ηD = 4 · 10−4, Adam, and no
batch norm in D.

2.88 6.59

V1.2.5 V1.2 with no batch norm in D. 2.00 3.75
V1.2.6 V1.2 with Adam. 2.73 6.84
V1.2.7 V1.2 with convolutional skip connections. 2.73 3.30
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V1.2.8
(SEGAN+)

V1.2 with learnable scalar skip connections
initialized at 1.

3.00 7.05

V1.2.8.1 V1.2.8 with skip connections initialized at 0. 2.89 6.83
V1.2.8.2 V1.2.8 with summation merge of feature maps. 2.83 6.82
V1.2.8.3 V1.2.8 skipping post-activation feature maps. 2.90 6.04
V1.2.8.4 V1.2.8 without z vector. 2.20 4.19
V1.2.8.5 V1.2.8 without biases. 2.88 7.11
V1.2.8.6 V1.2.8 modifying kernel widths: ωGenc = 31,

ωGdec = 4, and ωD = 31.
2.61 6.37

V1.2.8.7 V1.2.8 modifying kernel widths: ωGenc = 31,
ωGdec = 4, ωD = 31, and no biases.

2.83 5.96

5.3.1.1 Encoder/decoder stride and kernel sizes

Section 5.1 introduces SEGAN as a flexible deep convolutional design. The first
SEGAN proposal (V1) is composed of convolutions/deconvolutions of stride 2 and
kernel width 31, as mentioned before (Pascual et al., 2017). The feature map config-
uration of the G network is as follows: 16384× 1, 8192× 16, 4096× 32, 2048× 32 ,
1024× 64, 512× 64, 256× 128, 128× 128, 64× 256, 32× 256, 16× 512, and 8× 1024.
This configuration is mirrored in the decoder to go back to 16384 × 1 resolution,
with some possible doubled feature channels if we use concatenative skip connec-
tions (section 5.1).

One of the goals of our design is its speed, and decimation is a key factor to
increase speed in a fully convolutional setup. An initial step we take is to reduce
the size of the first model, hence increasing its computational efficiency, by means
of increasing the stride factor from 2 to 4. After changing the stride to 4, we re-
duce the amount of layers from 22 to 10 such that we obtain the feature map struc-
ture 16384× 1, 4096× 64, 1024× 128, 256× 256, 64× 512, and 16× 1024 in the G
encoder. Our first interest was reducing the model depth itself while maintaining
the quality, but we found a quality increase, and we hypothesize that this factor
might be related not only to less depth but also to the change in decimation, as we
observe a change in high-frequency artifacts appearing in the G output with this
structural change. Recently, the aliasing effect increasing with convolutional pool-
ing was shown to degrade classification tasks with a waveform injected into the
network (Gong and Poellabauer, 2018). Nonetheless, it remains unclear how this
aliasing affects the quality of waveform generative models (Donahue et al., 2019), as
it may be used to reconstruct missing frequency bands when upsampling from the
latent space in GAN frameworks.

In this first level of experiments, we determine the effectiveness of increasing ker-
nel stride in terms of both stability and performance, in addition to the degradations
in performance associated with smaller kernel widths (V1.1 and V1.2, table 5.1). This
condition also makes G more efficient, yielding a generation process that is 1.7 times
faster than real time on a CPU and 17 times faster on a GPU.

5.3.1.2 Normalization schemes

After experimenting with different normalization schemes, we determine how im-
portant they are to stabilize the adversarial training. Hence, either batch normaliza-
tion in D or spectral normalization in both networks (G and D) is required to obtain
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training stability. Nonetheless, they should not be applied jointly because the perfor-
mance would degrade. These observations are shown in results V1.2.1–6 (table 5.1),
where we vary optimizers and normalization schemes.

Whenever we do not use any form of normalization (V1.2.3 and V1.2.5), we ob-
tain more unstable results that lead to lower objective scores, particularly in terms
of SSNR, as outputs are quite noisy. Hence, unless we use some form of normal-
ization somewhere in the full GAN structure, either training diverges or the results
are noisy and of poor quality. Moreover, we encountered no substantial difference
between using virtual batch normalization as we did originally (Pascual et al., 2017)
or plain batch normalization while reproducing SEGAN on the current data (V1).
Thus, we use plain batch normalization for the sake of simplicity in all our current
experiments. Spectral normalization, a promising technique for conditioned gen-
erator structures, is based on upper bounding gradient magnitudes (Zhang et al.,
2018a). Nonetheless, we could not obtain a better result than the one we had with
plain G and batch normalization in D.

5.3.1.3 Optimizer

We also find that both Adam and RMSprop optimizers (Tieleman and Hinton, 2012)
are effective and yield a stable training across the different configurations with vary-
ing learning rates (V1.2.1–6, table 5.1). We depart from the optimizer configuration
of V1, with small and balanced learning rates ηG = ηD = 5 · 10−5, and we also im-
plement the recent two-timescale update rule (TTUR; Heusel et al., 2017). TTUR is a
promising schedule to emulate a discriminator that is updated more often than the
generator by simply applying a scaled ratio ηD

ηG
= 4, thus ensuring ηD = 4 · 10−4 and

ηG = 10−4 (Heusel et al., 2017). Even though we achieve competitive results with
TTUR (even better than those of V1), we discard them because the results are not bet-
ter than that of V1.2. We therefore continue using RMSprop with ηG = ηD = 5 · 10−5.

5.3.1.4 Skip connections

We see that including skip connections with a simple learnable scalar boosts the
performance of the system. Skip connections facilitate gradient flow, while learn-
able scalars are trained to determine which level of detail from the encoder layers is
shuttled to the decoder layers. We also found that skip connections in G help to sta-
bilize the training process (so much that if we try to train the system without them,
it collapses). In V1, we have the simplest skip connections possible: they forward
the feature map through an identity function to shuttle features, and gradients flow
back and reach the deepest part of the structure. We decided to make them learn-
able such that the optimization process can weight their importance independently
because they can act as pseudo-attention mechanisms of what levels of features are
more important to be shuttled in the decoding process. Experiment V1.2.8 shows
the effectiveness of this approach, surpassing the performance of V1.2.4 (table 5.1).

Following the finding that learnable skip connections can enable additional pro-
cessing that helps the decoding stages, we also tried configuring them as convo-
lutional layers of kernel width 11. This approach was expected to allow them to
transform certain filter bands or shift subsignals temporally in the hidden layers,
as much as the kernel width. However, the result of this scheme was not positive
(V1.2.7). We hypothesize this is due to the possible introduction of noisy transfor-
mations when shuttling the data and to the fact that phase transformations are not
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well indicated for the task of denoising the speech. Overall, we suggest that convo-
lutional skip connections could be useful in future tasks if we have strong misalign-
ments between input and output signals, so that these connections can operate with
signal shifts from encoder to decoder.

In addition to determining that learnable scalar skip connections give us the best
result so far, we experiment with two different initialization weights on them: 0 and
1. We reach the conclusion that 1 (V1.2.8) is better than 0 (V.1.2.8.1). This result
is an intuitive one, given the issues in gradient and data flow provoked having no
connections at the beginning. We also try the summation merge described in sec-
tion 5.1 (V1.2.8.2), which is ultimately worse than both concatenation alternatives
with different initialization schemes. Still, the use of this scheme might be of interest
for running the system in environments where memory and/or computing power is
restricted, as having fewer feature maps (and thus parameters) can be important. Fi-
nally, we also check what happens if we pick the feature activations after the PReLU
(V.1.2.8.3) instead of prior to it (V1.2.8) in the encoder to shuttle them up. These are
injected into the input of each mirrored decoder layer as before. Performance de-
grades in this case, thus indicating the superiority of the linear projection before the
activation for the skip connection.

5.3.1.5 Latent z

We find it beneficial to have a latent vector z at the core of the G structure, which
yields better enhancement performance due to a possible regularization effect in the
denoising task. In the GAN context, z serves as a stochastic element to make novel
samples at each inference, thus providing generative characteristic to G. Our first in-
tention to place it in G is because the enhanced signal is a regeneration of the noisy
one. However, the preliminary hearing results of z suggest that it only minimally af-
fects any hearable structure in the output (with the same input noisy signal sounding
similar to different z), which was already noted in the research of conditional gener-
ators when incorporating GANs (Isola et al., 2017). Nonetheless, when we remove
z, we systematically find a worse performance in all objective metrics (V1.2.8.4, ta-
ble 5.1). We hypothesize that this effect is related to some form of overfitting when
we lack this noise. Further training checkpoints yielded similar performances, in-
cluding the model checkpoint of parameters at the epoch with minimum validation
error in COVL and SSNR.

Although z has a reduced relevance as a generative component in the speech
denoising application, it can become a key piece in a speech restoration task. In sec-
tion 5.5, we apply SEGAN+ on a more difficult signal regeneration task, specifically,
to construct pitch contours from damaged, silent speech. In this new task, we em-
pirically observed the generation of different but plausible pitch contours with the
same input. An example of this approach is shown in Fig 5.8.

5.3.1.6 Biases

After experimenting with the introduction and absence of biases in the full convo-
lutional structures of G, we choose to maintain them as they give a higher peak
performance in perceptual objective results. Nevertheless, it is worth discussing the
importance of not having biases and considering this feature for future implemen-
tations. The intuition behind the absence of bias is that if we have pure silence in
the input, we should have pure silence in the output. This condition arises only
if we have a multiplicative interaction within the network with a zeroed-out signal,
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FIGURE 5.4: One-dimensional transposed convolution (‘deconvolution’) with both kernel
width and stride equal to 4. The same kernel with weights wi ∈ R with i ∈ [1, 4] (in a

one-channel input case) does not overlap itself with neighboring samples.

which is guaranteed if we do not have bias terms in our convolutions. This variation
(V1.2.8.5) shows a slightly better SSNR than V1.2.8, but COVL shows a degradation
(table 5.1).

5.3.1.7 Transposed Convolutions

We also note the importance of having large kernel widths even in the decoder of
the generator. We tried to reduce them to avoid overlapping in the transposed
convolution operations, owing to high-frequency artifacts that appear in the out-
put waveform. These could be related to the checkerboard artifacts appearing in
image generation transposed convolutions (Odena et al., 2016), something already
observed in other GAN-based speech generation systems (Donahue et al., 2019). A
plausible mechanism to remove them is working with non-overlapping interpolated
segments.

We thus try to reduce the kernel width in the decoder layers in an attempt to
make non-overlapping interpolations. Fig. 5.4 shows a schematic of the transposed
convolution concept with a non-overlapping form. If we have a kernel width larger
than the stride, information between inputs would be mixed in the output of the
layer (in the example figure samples, yi with i > 4 would also depend on x1). Intu-
itively, for a learnable interpolation in the decoder, a non-overlapping upsampling
could suffice, provided that the encoder has sufficient capacity to extract a repre-
sentation with a large receptive field over the input signal. Nevertheless, we find
empirical evidence of a worse performance, particularly in terms of SSNR (compare
V1.2.8 with V1.2.8.6–7).

5.3.2 Comparative Results

We now report the results of the aforementioned second block of experiments, com-
paring SEGAN (V1) and SEGAN+ (V1.2.8) with the baselines (section 5.2.2). We first
report objective performance, assessed on a held-out split (section 5.2.1). Next, we
report the results of a subjective preference test, based on the mean opinion scores
(MOSs) of 42 subjects.

5.3.2.1 Objective Performance

Table 5.2 shows the comparison between SEGAN, SEGAN+ and the considered
baselines. First, we observe that all deep learning baselines are over the classic base-
lines, specially for CBAK and COVL. Nonetheless, the SSNR of the LogMMSE is
much better than the one of the spectral deep learning baselines: the SSNR of the
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TABLE 5.2: Objective evaluation results with the considered baselines. The L1/L2 prefix of
DNNs and LSTMs describes the regression loss used, and the C value describes the amount

of context frames. For all metrics, higher is better.

Model CSIG CBAK COVL PESQ SSNR STOI

Noisy 3.28 2.28 2.56 1.92 0.03 0.74

Wiener 2.91 2.43 2.43 2.13 3.32 0.73

LogMMSE 3.16 2.67 2.64 2.27 5.00 0.72

L2-DNN-C1 3.82 2.70 3.02 2.26 2.98 0.70

L2-DNN-C7 3.98 2.83 3.22 2.47 3.22 0.73

L1-DNN-C7 3.95 2.81 3.17 2.42 3.38 0.72

L2-BLSTM 3.75 2.65 2.96 2.21 2.59 0.71

L1-BLSTM 3.82 2.69 3.01 2.24 2.84 0.70

SEGAN 3.52 2.69 2.77 2.10 5.15 0.73

SEAE+ 3.66 2.84 3.00 2.42 5.00 0.73

SEGAN+ 3.66 2.97 3.00 2.37 7.05 0.75

LPS-DNN and LPS-BLSTM systems is actually at the level of the Wiener filter or be-
low. The LPS-BLSTM approaches achieve better perceptual scores, but do not reach
the level of the LPS-DNN systems in this setup. In terms of PESQ and MOS-like
metrics, LPS-DNN and LPS-BLSTM systems generally perform better than other
systems. For LPS-DNN, increasing the context C actually helps the DNN, as ex-
pected. We also observe that there is a slight difference between using L2 and L1
losses in spectral deep learning baselines, but both behave comparably.

It is notorious that the speech enhancement auto-encoder (SEAE+) is objectively
comparable to SEGAN+ across perceptual metrics. Nonetheless, CBAK and SSNR
show some benefit on using the adversarial component to reduce the intrusiveness
of background noise. This result is reasonable for a purely denoising task, where it
suffices to remove noisy components as in a regression problem, as stated by Don-
ahue et al. (2018). However, it does not suffice for other applications that require
better generative characteristics as in reconstruction (see section 5.5).

In terms of STOI, we observe comparable values between all approaches, with
SEGAN+ presenting the best average, suggesting a better resulting intelligibility
over all presented models. We also observe that SEGAN+ is superior to all other
systems in terms of SSNR, which is related to removing more noise, although it has
slightly worse PESQ and MOS-like metrics than the DNN-C7 baselines. We suspect
that this result is related to the generative capability of the system: the network re-
generates a signal that sounds plausible, but such signal still differs from the original
one used for evaluation. Another possible source of trouble is high-frequency arti-
facts that we identify listening to some samples during model development. Such
artifacts can introduce accentuated distortions that lower model scores.

5.3.2.2 Subjective Performance

Objective evaluations such as the ones in the previous section are useful indicators,
comparing spectral distortions and noise against clean speech levels. However, such
evaluations are not completely fair when we face the generation of new data that can
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TABLE 5.3: Subjective evaluation results comparing the considered systems. BCK stands
for background noise removal and SPE for speech distortion introduced by the system (see
section 5.3.2.2). For both values, higher is better. Each cell shows the mean of each system

(standard deviation in parentheses).

Model BCK SPE

Noisy 2.84 (1.10) 4.59 (0.81)

Wiener 3.19 (1.12) 4.47 (0.87)

LogMMSE 3.43 (1.08) 4.44 (0.93)

L1-DNN-C7 4.26 (1.08) 4.12 (1.22)

SEGAN 4.24 (1.01) 4.11 (1.21)

SEGAN+ 4.27 (1.09) 4.21 (1.12)

include audible artifacts noticeable to humans but not accounted for by the metric.
In addition, if the regenerated signal differs from the ground truth in terms of ampli-
tude, phase, or other properties that make it intelligible and natural but not an exact
fit, objective scores identifying exact matches between low-level properties can lead
to misleading results. For these reasons, a subjective test was conducted to assess,
with an averaged opinion among many people, how the system performs with re-
gard to the regeneration of plausible speech that resembles a clean reality. For this
test, we select the subset of best objectively performant systems per category to com-
pare against SEGAN+. We take the LPS-DNN and LogMMSE as best representatives
of the deep learning (spectral) and classic groups, and also maintain the baseline
SEGAN and Wiener used in Pascual et al. (2017) as incremental references.

The test was taken by 42 subjects. Each subject was presented with 8 utterances,
with each utterance being enhanced by 6 systems. Thus, each user had to rate 8×
6 = 48 audio samples. For each audio, we asked participants to give a MOS rate
regarding (a) how intrusive was the background noise (BCK: 5–Not noticeable, 4–
Slightly noticeable, 3–Noticeable but not intrusive, 2–Somewhat intrusive, and 1–
Very intrusive) and (b) how much speech was distorted (SPE: 5–Not distorted, 4–
Slightly distorted, 3–Somewhat distorted, 2–Fairly distorted, and 1–Very distorted).
Table 5.3 shows the results for these metrics.

We first focus on the background noise being removed (BCK). We can confirm
the incremental gap from Noisy to Wiener and from Wiener to LogMMSE. After
LogMMSE, we have the three deep learning systems falling within a comparable
range of values, with SEGAN+ achieving a marginally better BCK. In terms of the
amount of speech distortion (SPE), we observe a detrimental gap in performance
from Noisy to Wiener and LogMMSE, and then the three deep learning systems.
Overall, we can understand this result as a trade-off between how much noise they
remove and how much speech they destroy. Notably, SEGAN+ remains better than
the other two deep learning options for this score, although its performance lies
under the classic baselines, as expected, because it clears more intrusive noise as
shown in the BCK metric. A conclusion from this result is that with the current
subjective results, SEGAN+ seems more selective destroying intrusive signals and
that improvements on SEGAN+ make it perform better than the original SEGAN
both objectively and subjectively.
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5.4 Language and Noise Transfer in SEGAN

Speech enhancement deep learning systems usually require large amounts of train-
ing data to operate in broad conditions or real applications. This makes the adapt-
ability of those systems into new, low resource environments an important topic. In
this section, we want to quantify how SEGANs perform on languages and noises
for which they have not been trained, and assess the amount of new data required
to transfer what they have learnt to the new setting. Some of the main research
questions we aim to answer in this section are: Does the system perform well for a
language it has not been trained for? And for noises? If not, which is the amount of
data necessary to adapt the system to the new language/noise? Is it worth to retrain
from scratch or is it better to reuse a pre-trained GAN? In both cases, how critical
is the selection of training data for adapting the system to the new task? To answer
these transfer learning questions in the context of speech enhancement and GANs,
we resort to the first SEGAN architecture presented in section 5.3, although these
results are exportable to the enhanced SEGAN+ version.

We investigate transfer learning from English to Catalan and from English to Ko-
rean1, as well as the requirements for noise generalization with two experiments for
each target language. Experiment 1 trains SEGAN over different speech durations
for two baselines: one pre-trained with English (preeng), and the other one based on
random parameters (scratch). With this experiment we want to show the amount of
speech data required to saturate performance in the transfer learning process. Ex-
periment 2 trains SEGAN over a number of different noise types for both English
and random initializations in order to see how generalization to unseen test noises
varies with training noise types. Both experiments 1 and 2 consider unseen speakers,
sentences, and noise types in the test sets (further details on experiments below).

The English data set consists of a total of 30 speakers (15 male, 15 female), with
each speaker recording 400 sentences from the Voice Bank Corpus (Veaux et al.,
2013). To train the English baseline, 28 speakers (14 male, 14 female) were chosen,
mixed with 40 noise conditions (10 noise types, 4 SNR: 15, 10, 5, and 0 dB). Therefore,
around 10 sentences have each noise condition (Valentini-Botinhao et al., 2016). The
test set contains 2 speakers contaminated by 20 different conditions from 5 types of
noise with 4 SNR each (17.5, 12.5, 7.5, and 2.5 dB).

The Korean data set consists of around 20 minutes of speech for 12 speakers
(6 male, 6 female; Chungnam National University students). Recordings were con-
ducted in a quiet room with the speaker and recorder together, with sentences cho-
sen from the Korean web portal NAVER Open Podium and NAVER Encyclopedia.
The Catalan data set consists of recordings from 12 speakers (6 male and 6 female)
as part of the FestCat project (Bonafonte et al., 2008). Each speaker recorded at least
1h of short paragraphs, which were selected from a set of novels to achieve phonetic
and prosodic coverage. The recordings took place in a recording studio. We selected
20 minutes/speaker to balance with Korean data for experiments.

To obtain the training data set for Experiment 1, for each language, we added
noise in the same way as the English baseline. The training data set for Experiment 2
was made by adding different amounts of noise types (gradually from 1 to 10). The
test data set, for each language, considered 20 noise conditions of 5 different noise
types and 4 SNRs from the noise conditions of the training data set for 2 speakers.

Experiment 1: Based on English and random initializations, we train SEGAN
over a range of speech durations: 24 s, 1, 2, 4, 10, 20, 50, 100, and 200 minutes. We

1The Korean experimentation was a product of a collaboration with Prof. K. Ahn and M. Park from
Chungnam National University in Korea.
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FIGURE 5.5: Objective metrics for Catalan (top row) and Korean (bottom row). Blue line
(preeng): Pre-trained with English. Orange line (scratch): trained from scratch. Green

dashed line: SEGAN level without fine tunning. Black dash-dotted line: Noisy level.

train the models several times with different utterance selection as follows: ten times
for the 24 s, 1, and 2 minute durations, and five times for the 4, 10, 20, 50, 100, and
200 minutes durations. In this way, we can observe the performance differences be-
tween the two initialization schemes, with varying speech durations in order to ex-
plain transfer learning and data requirements.

Experiment 2: Verification of performance with unseen noises is conducted by
training over different noise types. After conducting Experiment 1, we found that
20 minutes duration of training data is enough to saturate performance, so we use
this amount. We perform five trainings with each randomly selected noise, increas-
ing one by one the amount of noises until they are ten. Consequently, training is
performed 50 times in total. At this time, as in Experiment 1 different utterances are
selected for every training, until the training data duration reaches 20 minutes.This
allows us to observe the performance differences between the number of training
noise types, to include with transfer learning behavior.

The English model is trained for 86 epochs with RMSprop (Tieleman and Hinton,
2012) optimizer, with same hyper-parameters as in the first SEGAN design. All Cata-
lan and Korean models are trained with batches of 100 samples for 30 epochs. The
amount of epochs was reduced to a third of the original setting for faster experimen-
tation given the large amount of models. Architecture details remain as in Pascual
et al. (2017). To evaluate the quality of the enhanced speech, we compute the same
objective measures presented in section 5.2.3.

5.4.1 Language and Noise Transfer Results

The results of the previous metrics as a function of training data time for both Cata-
lan and Korean are shown in Fig. 5.5. Interestingly, despite the important differences
between Catalan and Korean, the results for the two languages show very similar
trends. We now elaborate on them.

First of all, we note that the pre-trained English system alone does not perform
well with the new languages. We can see it with the green dash-dotted lines, cor-
responding to the non-adapted SEGAN performance, which is always below the
dotted black line, corresponding to the noisy test data without processing. Next,
and more importantly, we observe that only a few minutes of new training data
are needed to drastically improve performance. In fact, even the minimal training
time considered in our methodology (24 s) significantly improves test performance.
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To put this result into context, we can compare with the results in Xu et al. (2014),
where speech enhancement of a resource-limited language was achieved through
cross-language transfer learning of 1 min, so we observe a similar trend in our case.

Apart from the aforementioned performance increase, we also see that all the
evaluation metrics present a knee at about 10 min, a threshold where more training
data shows diminishing returns, with comparable results to those of SEGAN in En-
glish from section 5.3.2. This is also amazingly small compared to the training time
for English, which was 9.4 h and for 86 epochs, thus three times more epochs than
the adaptation experiments. These results also indicate that transfer learning can
overcome a lack of training epochs with random initialization.

When deploying a system into the real world it is important to consider the fi-
nal conditions in which the system will work. In speech enhancement, one may be
worried about the final noise conditions being quite different from the training ones,
and whether the different types of noise in the training data are sufficient to gen-
eralize to such unseen noise. To quantitatively assess this situation we conduct the
aforementioned Experiment 2, whose results are depicted in Fig. 5.6. This is the re-
sult of training a model 5 times per amount of noises, sampling the noises randomly
from the pool of possibilities at every realization of every tick. Once the 5 models
are trained, the mean and variance (vertical bar) are shown. Strikingly, the objective
test metrics do not present a dependence on the number of types of training noise.
Whether the training is with English pre-training or from scratch, performance to
unseen noises is not affected by the amount of training noises. The only difference
between both versions seems to be in the variance of the results, with the scratch
version presenting a much larger variance (vertical bars in the orange curves). This
implies that, in the case of training from scratch, one should be careful in which
types of noise are considered for training. A possible explanation for the invariabil-
ity on average, however, might be related to the model separating what is speech
from what is non-speech. And this decision might be less volatile if the system is
trained with more noise types as in the preeng case.

Finally, we turn our attention to test noise types (Fig. 5.7). Here we also observe
consistent behaviors between languages and metrics, with office and bus noise types
performing best and street noise, living room, and cafe noises (in this order) per-
forming worse. As a further, more anecdotal note, we see that office and bus noise
seem to ‘cluster’ in some metrics (e.g., COVL) in the upper side of the plots, while
street noise, living room, and cafe noises also ‘cluster’ in lower metrics.

5.5 Whispered SEGAN

In this section we begin exploring the enhancement capabilities of SEGAN+ beyond
the specific task of denoising (i.e., eliminating additive noises of many kinds). An
important set of enhancement applications are those that directly affect the speech,
allowing for the recovery of a more natural spoken utterance out of a damaged one.
As a first step in this direction, we begin exploring the application of whispered-to-
voiced speech conversions. We refer to this conversion as dewhispering or voicing
of the speech signal.

Whispered speech can be uttered on purpose, but it is also expressed by people
suffering from disease or trauma that manifests as aphonia (e.g., patients after a
total laryngectomy). The dewhispering process is typically performed in the spectral
domain or with vocoder features, similarly to the denoising case. Once these features
are obtained, some statistical models such as Gaussian mixture models (Toda et al.,
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FIGURE 5.6: Noise experiment results for Catalan (top row) and Korean (bottom row). Blue
lines (preeng): Pre-trained with English. Orange lines (scratch): trained from scratch. Each
line shows the resulting objective evaluation of a certain metric depending on the amount
of training noises used to test the curve. The amount of noises ranges from 1 to 10, thus the
total 10 available in the training set. Qualitatively similar plots were obtained for the PESQ,

CSIG, and CBAK metrics.

2008; Nakamura et al., 2011; Nakamura et al., 2012) or DNNs (Gonzalez et al., 2017a)
are applied to reconstruct corrupted/missing components, and then, features are
reverted to the time domain.

This work is done in collaboration with J.A. González from Sheffield Univer-
sity. The whispered utterances are obtained with an articulator motion capture de-
vice (Fagan et al., 2008) that monitors the movement of the lips and tongue, tracking
the magnetic field generated by small attached magnets. Then, an existing synthesis
module generates speech from articulatory data by means of an RNN model trained
on parallel articulatory-to-speech samples (Gonzalez et al., 2017a; Gonzalez et al.,
2017b). The speech produced by this system has a reasonable quality but sounds
monotonous and robotic, owing to limitations when estimating the pitch (i.e., the
capturing device does not have access to any information about the glottal excita-
tion). Hence, we can use the RNN to generate a reconstructed whispered speech out
of articulatory data while discarding the predicted pitch and then apply SEGAN+
as an enhancement over it. SEGAN+ recovers a more natural sounding speech with
a whispered input such that it must implicitly generate pitch curves with proper
intonations embedded in the waveform. Here, we compare our model against the
existing system that employs the RNN-based architecture to regress pitch and per-
forms a vocoder-based synthesis (Gonzalez et al., 2017b).

5.5.1 Experimental Setup

Importantly, because of the data acquisition and synthesis procedures, small tempo-
ral misalignments remain between the input and output records (i.e., whisper and
natural speech differ in length and are not accurately parallel). Therefore, the origi-
nal SEGAN version is not immediately effective when receiving the new data, par-
ticularly because the L1 regularization loss is restricted to work when the output is
fully aligned with the input. Similarly, we also expect an L1 auto-encoder to not
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FIGURE 5.7: Performance on different test noise types. From top to bottom (first solid, then
dashed lines), noise types correspond to: office (red), bus (blue), street (purple), living room
(orange), and cafe (green) noises. Qualitatively similar plots were obtained for the PESQ,

CSIG, and CBAK metrics.

be effective in the regeneration of missing components, as stated in section 5.3.2.1.
Nonetheless, we consider the SEAE+ architecture in this setup too, as a standalone
reconstruction system.

The amount of data we have to carry out this experimentation is 30 min of train-
ing utterances plus 3 min of test utterances2 (it is important to note the large gap in
terms of amount of data to train on, from SEGAN/SEGAN+ models, which handle
32 h, relative to this small set of 30 min). We noticed that this data shortage has two
main effects: (1) it introduces artifacts at many frequencies, particularly the high
ones, and (2) intelligibility is sometimes lost in the reconstruction phase. Hence,
we had to make two reformulations to SEGAN+ to adapt it to the current task. We
denote this reformulated version as WSEGAN to specify its applicability to dewhis-
pering.

First, time-domain regularization is removed from the loss of G, and we use only
the power loss as a regularizer (van den Oord et al., 2017). In this way, we try to mit-
igate the allocation of energy in non-speech-like frequency bins and thus reduce the
aforementioned artifacts. We also add a denoising SEGAN+ processing system on
top of WSEGAN to remove erratic artifacts and corrupted speech segments, which
acts specifically on silence regions. Second, we introduce a new adversarial loss that
enforces content preservation between the input and the output of G. More specifi-
cally, a synthetic signal (0 in the LSGAN binary coding, section 3.2.2.1) is triggered
whenever we have the current clean reference signal x and another randomly chosen
clean signal xr. Both signals are clean and look natural, and the only difference is the
content mismatch; thus, D must learn that mismatched information is not realistic.

2The corpus contains a single English male speaker that recorded a random subset of the CMU
Arctic corpus (Kominek and Black, 2004).
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TABLE 5.4: Mel cepstral distortion results for the three considered systems: RNN baseline,
SEAE+ (L1 auto-encoder), and WSEGAN.

RNN SEAE+ WSEGAN

MCD [dB] 8.01 17.19 12.81

With these two changes, the WSEGAN loss becomes

min
D

V(D) =
1
3

Ex,x̃∼pdata(x,x̃)[(D(x, x̃)− 1)2]+

+
1
3

Ez∼pz(z),x̃∼pdata(x̃)[D(G(z, x̃), x̃)2]

+
1
3

Ex,xr∼pdata(x)[D(x, xr)
2]

min
G

V(G) = Ez∼pz(z),x̃∼pdata(x̃)[(D(G(z, x̃), x̃)− 1)2]+

+ α Ez∼pz(z),x̃∼pdata,x∼pdata
[|Φ(G(z, x̃))−Φ(x)|],

(5.4)

where x̃ ∈ RT is the whispered utterance; x ∈ RT is the natural speech; xr ∈ RT

is a randomly chosen natural chunk within the batch; G(z, x̃) ∈ RT is the enhanced
speech; D(x, x̃), D(G(z, x̃), x̃), and D(x, xr) are the discriminator decisions for each
input pair; and Φ(x) corresponds to the short-time Fourier transform magnitude in
dBs (20 ms windows, 10 ms stride, and 2048 bins), with α = 10−3 corresponding to
the weighting of this term.

5.5.2 Results

First of all, we perform an objective evaluation with mel cepstral distortion (MCD).
MCD is an indicator of correct uttered content generation and speaker identity match
in speech synthesis. We use the same formulation as in the TTS work from sec-
tion 4.4.4. Table 5.4 shows the results for the baseline RNN, the SEAE+ and WSEGAN.
Firstly, we can see that SEAE+ has the highest distortion rate, indicating its lack of
reconstruction capacity from the whispered signal towards the clean one. Actually,
qualitative listenings allow us to appreciate how it is not able to reconstruct voiced
segments, and the best it does is a low pass reconstruction of the input whispered
signal itself. The application of the adversarial component is thus more critical in
this setup as our intuition from section 5.3.2.1 suggested. The qualitative listenings
for WSEGAN reveal pitch reconstructions that match natural intonations and the
expected modelled male identity (no low-pass effect is observed in this case). Re-
garding the RNN, it obtains the best score objectively, thus indicating possibly the
best match to the clean signal. It is expectable to obtain such score as the model
was directly optimized to minimize its quadratic error towards the clean spectral
components. Nevertheless, low distortion scores are not always an indicator of a
natural sounding voice in speech synthesis. In fact, a model with increased variance
in its acoustic predictions (as in the case of WSEGAN), which in turn increments
speech naturalness, can be an objectively inferior model (Henter et al., 2018). Hence,
a subjective evaluation is normally the best procedure to assess the generated speech
naturalness.

For the case of generated intonations of the two successful models, Fig. 5.8 lets us
appreciate examples of generated pitch contours. We can first observe an increased
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FIGURE 5.8: Natural pitch contour in blue and three example reconstructions. Orange is
the RNN baseline contour, with a relatively flat behavior. Green and red are two different
voiced versions from WSEGAN, produced with different latent codes z1 and z2 (i.e., different

random seeds).

FIGURE 5.9: Subjective test preference results on naturalness rating between RNN regression
baseline and WSEGAN. Blue denotes WSEGAN preference, orange denotes RNN preference

and gray denotes that both are equally preferred.

variance in the pitch contours of the signal for WSEGAN as opposed to the RNN.
The figure also shows different trajectories that match plausible intonation contours
depending on a randomly selected latent description zi, which is enabled by the
generative capacity of the model. We can also appreciate that the regenerated sig-
nal has different voiced/unvoiced regions (unvoiced regions are denoted by a 0 Hz
signal). We hypothesize that these mismatches with the ground-truth signal may be
corrected with the addition of more data, as the network could better estimate the
right placement of pitch contours within the spoken contents of the damaged signal.

A subjective test was carried out to assess the improvement of WSEGAN with
respect to the pitch regression RNN baseline system (online samples are available
online3 so that the reader can evaluate the differences qualitatively). A set of 25 sub-
jects listened to and rated 10 randomly selected test utterances from a pool of 44,
choosing whether they preferred the naturalness of one system, the other one, or
both of them (the order of the two systems per utterance was shuffled). The results
of this test are shown in Fig. 5.9, where WSEGAN (green) is preferred in 54.6% of the
utterances, against the 37.7% of preference for the RNN system (red). Additionally,
we observe no clear difference of preference between expert and nonexpert listeners
(12 participants declared having expertise with speech signals and audio processing
techniques). Participants noted that WSEGAN could sound more natural, implic-
itly producing proper intonations matching the sentences, but loses intelligibility in
some utterances, potentially owing to the lack of data for such a large model. Inter-
estingly, a native English listener even unveiled the geographic accent of the English
speaker accent after WSEGAN recovery.

3http://veu.talp.cat/whispersegan

http://veu.talp.cat/whispersegan
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5.6 Generalized SEGAN

After demonstrating the effectiveness of SEGAN+ to recover the voicing speech
components, we take a step further and make it generalize to more distortions.
Hence in this section we extend the generalization from dewhispering and con-
sider the problem of reconstructing speech that has been degraded by a number of
(different) signal manipulations, each of them being potentially highly perceptually
harmful. We propose to mix up such manipulations together with several speaker
identities at training time, with the objective of being able to train generative algo-
rithms to recover multiple (and diverse) speech components simultaneously. As a
first approximation towards this generalized speech enhancement task, we consider
the following signal manipulations:

• Whispered speech: This distortion is similar to the one introduced in the
WSEGAN section 5.5. However, it differs in the fact that the work in section 5.5
used a magnetic sensor to acoustic contours conversion for alaryngeal speech
conversion, where voicing is inherently missing as it is not sensed from the
real speaker. Here, on the other hand, instead of using magnetic sensors, we
synthesize whispering speech by encoding the clean speech with a vocoder, re-
moving the log-F0 (i.e. making all frames unvoiced), and recovering the signal
into a version that whispers, hence artificially removing voicing. The vocoder
used is Ahocoder with the default parameters (Erro et al., 2011).

• Bandwidth reduction: We downsample the audio signals with different sever-
ity factors, ranging from ×2 to ×8, thus reducing the bandwidth. Then the
generalized enhancement model must reconstruct entire frequency bands, ac-
cording to the clean signals seen in training.

• Chunk removal: For the parts of the waveform that contain speech (detected
automatically with a voice activity detector), a random number of chunks are
subtracted by inserting silences. Thus, we cancel the signal at random tem-
poral sections that contain speech. The length of a silence is sampled from
one of two distributions N (0.05, 0.025), and N (0.1, 0.05) (numerical values in
seconds).

• Clipping: The waveform is clipped globally by different severity factors rel-
ative to the maximum absolute peak of the whole utterance (e.g., 30%). The
regenerated signal thus has to re-condition the signal inside a proper, non-
distorted range of amplitudes.

To better deal with the added difficulty that these signal manipulations can in-
troduce to the speech signal, we propose two modifications to the existing SEGAN+
pipeline: the addition of two acoustic losses and the introduction of a two-stage
training schedule for applying such losses.

5.6.1 Acoustic Losses

In general, D can be understood as a learnable loss function, where the realistic
features we want to generate are implicit in the back-propagation, and G gets better
because of D’s gradient flows (Goodfellow et al., 2014). This builds a need for D
to be a competitive feature extractor, so that the better the features extracted by D,
the better G can capture reality. Athough GANs were designed as an unsupervised
learning strategy, they are proven to be more stable and effective when coupled with
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labels that are either injected as input conditionings (Radford et al., 2016; Brock et
al., 2019) or that help classify some traits about the data being generated (Odena
et al., 2017; Lučić et al., 2019). Also the successful speech synthesis model parallel
WaveNet (van den Oord et al., 2017) proved that a multi-task aggregation on top of
the speech generative model is beneficial to improve speaker identity, prosodic, and
content traits. Hence, the use of auxiliary classifying labels in D is generally helpful.
Additionally, multi-task setups can boost generative modeling performance, where
multiple factors of the signal are predicted at the output of the generative model to
enforce modeling better perceptual qualities of the signal (van den Oord et al., 2017).
This is applicable to the SEGAN setup where the discriminator only learns features
that lead to a real or fake decision, but is not concerned about specific factors of
the signal that are important to remark the reconstructed speaker identity, prosody,
or contents. Note that we can also have some additional regularization loss in the
output of G too, aggregated to the adversarial loss coming from D. For instance the
first version of SEGAN used an L1 regularization term that made G output a zero-
centered signal (Pascual et al., 2017), and the posterior WSEGAN implementation
substituted it by a less restrictive power loss (van den Oord et al., 2017; Ping et al.,
2019), enforcing proper energy allocation in the frequency bands.

Following the aforementioned multi-task improvement criteria, we propose the
use of an additional acoustic loss that opens a new branch in the end of D. This
makes D necessarily aware of additional acoustic components that can inform G
about important mistakes when mismatching identities, intonations, or contents in
the reconstruction without necessarily injecting any additional conditioning in the
input of G besides the distorted signal x̃. This is advantageous in terms of avoid-
ing restricting the generalization of G, as we do not inject any code limited by a set
of possible classes to specify identities, distortion types, or any other kind of infor-
mation. This new D output branch grows from a certain level in the convolutional
structure, where the time decimation factor is 256, thus each time-step corresponds
to 16 ms stride over the waveform (emulating a short-time Fourier transform sliding
window). At each output frame, it predicts a concatenation of LPS bins, MFCC, and
prosodic features. We design it using this collection of features as we hypothesize
they properly convey different levels of acoustic cues, ranging from power allocation
expressing identity, to content and intonation clues. This branch is just in addition
to the binary output neuron that tells real and fake, and is only active when this
binary activation is real with input x or x̃ (when G tries to fake). The proposed
acoustic loss in D and power regularization in G redefines the loss function as

min
G

V(G) =
1
2

Ez∼pz(z),x̃∼pdata(x̃)[(D(G(z, x̃), x̃)− c)2]

+
1
2

Ez∼pz(z),x,x̃∼pdata(x,x̃)[(δ(G(z, x̃), x̃)−Θ(x))2]

+ α Ez∼pz(z),x,x̃∼pdata(x,x̃)[Φ(G(z, x̃))−Φ(x)],

max
D

V(D) =
1
4

Ex,x̃∼pdata(x,x̃)[(D(x, x̃)− b)2]

+
1
4

Ex,x̃∼pdata(x,x̃)[(δ(x, x̃)−Θ(x))2]

+
1
4

Ez∼pz(z),x̃∼pdata(x̃)[(D(G(z, x̃), x̃)− a)2]

+
1
4

Ex,xr∼pdata(x)[(D(x, xr)− a)2],

(5.5)
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FIGURE 5.10: Setup of new multi-task framework with acoustic loss, power loss, and adver-
sarial outcomes (F and R).

where x, x̃, xr and z are the same as in equation 5.4, a = −1, b = 1, and c = 0
contrarily to the previous sections that used binary coding, Φ(x) corresponds to the
short-time Fourier transform magnitude in dBs (20 ms windows, 10 ms stride, and
2048 bias), and α = 10−3 is a weighting term Pascual et al., 2018b. The LSGAN con-
stants a, b, and c are changed in this section because after some preliminar listenings
comparing both coding schemes this seemed to raise better results with the same
amount of iterations for this task. The δ function is the discriminator output at some
intermediate layer of our choice, and Θ(x) is the feature extractor of LPS, MFCC and
prosodic features. Hereafter, we will refer to the joint power loss regularization and
acoustic loss as acoustic losses.

5.6.2 Adversarial Pre-Training

Whereas SEGAN with only an adversarial loss is stable and learns in a steady equi-
librium (equation 3.24), the addition of the acoustic losses induces a particular un-
balance effect during training. The addition of these terms makes D learn quicker
and converge faster in both losses, conversely making G converge slower. Impor-
tantly, both G and D should maintain an equilibrium learning from each other, so
making one of them quickly better discourages the other to perform properly Good-
fellow et al., 2014. We hypothesize that scheduling the learning of the discriminator
as a two-stage process makes the addition of these acoustic losses more effective
for it first gets high-level representations classifying, and then focuses on specific
speech properties by doing regressions. Hence we first do an adversarial warm up
in D with equation 3.24 formulation, and then add the acoustic losses.

5.6.3 Dataset

We again employ the VCTK Corpus for this experimentation (Veaux et al., 2017). We
select 80 speakers for training and 14 for test. We trim large silence regions to 100 ms
with the help of a voice activity detector. After this, we get roughly 20 h of train-
ing speech and 3 h of test speech. We incorporate the aforementioned distortions
with an online process jointly working with training. When we construct a train-
ing minibatch, we (1) load the clean utterance, (2) get a random ≈1 s chunk (16384
samples) inside the utterance, and (3) apply a series of transforms that get activated
independently under a probability p = 0.4. This way one or two distortions coincide
often, and zero (thus purely autoencoder) or more than two coincide less. Table 5.5
shows this activation distribution with up to the 4 mentioned combinations. In ad-
dition to being active or not, each transform has a certain severity level or factor, as



5.6. Generalized SEGAN 83

TABLE 5.5: Frequency of number of training active transformations using p = 0.4.

Num. of transforms 0 1 2 3 4
Relative frequency 0.14 0.34 0.33 0.15 0.04

mentioned before (section 5.6). The only transform with just one level of severity
is the whispering transform. Hence every time a transformation is activated in the
pipeline, one of the possible factors is randomly selected. These possibilities are:
clip factors of 30%, 40% and 50%, signal resampling factors of 2, 4, and 8 and, in the
case of chunk removal, we allow the system to zero out up to 5 chunks from speech
regions. Then, inside each region, the length of the chunk is sampled from one of
the two mentioned Gaussian distributions.

For the test split, we have two different setups, one for an objective evaluation
and another one for a subjective one. For the objective test set, we proceed as with
the training set. For the subjective test, we generate a special split with two subsets
in order to account for two different effects present in the system outcomes. The first
subset is designed to focus on generated speaker identity (SpkID pool). To do so,
we just use the most severe version of bandwidth reduction (×8) and the whisper-
ing manipulations, so the ones that affect the most this feature. Then, for each test
speaker we degrade four utterances, two with bandwidth reduction and two with
whispering. The second subset focuses on the generated speech naturalness (Nat
pool). To evaluate this aspect, we pick 4 test speakers (two male and two female)
and apply clipping, resampling, and whispering to 6 utterances in total (two utter-
ances per distortion). Both clipping and resampling have severity factors 30% and
×8, respectively.

5.6.4 Experiments

We experiment with three models applied over the aforementioned data. Firstly, we
use SEGAN+ in a plain adversarial setup with the LSGAN loss as in equation 3.24,
where the only signal comes from real or fake decisions. This is the baseline,
which is trained for 400 epochs with two-timescale update rule (TTUR) learning
rates (Heusel et al., 2017) ηD = 4 · 10−4 and ηG = 1 · 10−4. Secondly, we apply the
acoustic losses presented in section 5.6.1. This system trains also for 400 epochs, but
the learning rates are balanced equal ηD = ηG = 5 · 10−5, because the discriminator
already has an advantage with the extra signals and TTUR involved a noisier result
on G. We name this approach SEGAN-Aco. Finally, we include our improved pro-
posal, for which we pre-train the system over 100 epochs the same way we do with
the baseline, and then we activate the acoustic losses for the remaining 300 epochs,
also lowering the learning rates to ηD = ηG = 5 · 10−5. We name this approach
SEGAN-PTAco.

In terms of architecture for this application, the discriminator is the only diverg-
ing component with respect to WSEGAN. The change happens in the classification
part of the network, i.e. after the convolutional stack. We substitute the previous
average pooling with a single output neuron for a MLP with 16384 inputs (1024×16
feature map, unrolled), 256 hidden PReLU units, and the single output for real and
fake predictions.

Secondly, we find the acoustic branch for SEGAN-Aco and SEGAN-PTAco mod-
els at the fourth convolutional layer, which outputs 512×64 feature maps for an in-
put of approximately 1 s at 16 kHz sampling rate. These corresponds to 64 frames,
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each one injected into the acoustic prediction MLP of 128 hidden PReLU units and
277 linear outputs. These outputs predict 257 log-power spectral bins, 16 MFCCs,
1 log-F0 value of the frame, 1 voiced/unvoiced frame flag, 1 frame energy coefficient,
and 1 frame zero crossing rate. Mini-batches of 150 samples are used for all mod-
els. Additionally, D implements spectral normalization to avoid sudden exploding
gradients leading to training collapse (Zhang et al., 2018a; Miyato et al., 2018) and
phase shuffle of 5 to reduce high-frequency artifacts in the output of G (Donahue
et al., 2019).

5.6.5 Evaluation

To assess each model result we perform two evaluations. First, we run a number
of objective distortion metrics, often applied in speech synthesis problems: the mel
cepstral distortion (MCD; in dB) as previously done with WSEGAN. We also com-
pute the F0 root mean squared error (RMSE; in Hz), and the voiced/unvoiced frame
prediction error (UV) Pascual and Bonafonte, 2016a. These errors give us a first clue
on how close is each system to the clean original signal in terms of content, identity,
and intonation.

Given the importance of perceptual scores, we also conduct a subjective evalu-
ation with 26 listeners. This has two stages, with two tasks to be evaluated by the
listeners: speaker identification and naturalness rating. For speaker identification,
listeners are asked to determine how close a reconstructed signal is towards the orig-
inal speaker identity. They are presented with 4 randomly-selected utterances out
of the SpkID pool (section 5.2.1). For each utterance, the clean reference is shown,
as well as the four systems to be rated: (1) the degraded input signal to G, (2) the
SEGAN+ baseline, (3) SEGAN-Aco, and (4) SEGAN-PTAco. Due to the fact that we
impose incremental changes over the SEGAN+ baseline, and all the models should
also perform incrementally better than the distorted signals, the rating is as simple
as ordering the systems by preference. Additionally, using a MOS score for this test
could cluster different systems together with the distorted reference due to preferred
artifacts by some listeners, thus obtaining confusing results. This way the compari-
son among systems is simplified and more discriminative. In this ranking, position
1 is for the system closest to the reference and position 4 is the furthest one. For
naturalness rating, 6 utterances taken randomly out of the Nat pool (section 5.2.1)
are shown to each listener. For each utterance, the four different aforementioned
systems are shown and asked to be ranked from most natural (1) to least natural (4).
There is no reference shown for this case as there is no similarity trait like a speaker
identity, it is only comparing the perceptual quality of the synthesized utterances. In
all subjective evaluations, systems are shown in random order at every utterance.

5.6.6 Results

Objective results are shown in table 5.6. We can see how, in all metrics, SEGAN-
PTAco is the best system and the least noisy one. A lower MCD can be assumed to
correlate with better content preservation, identity reconstruction, and naturalness
generation (Pascual, 2016). The lower values obtained for F0-RMSE and UV error
also typically denote better intonation schemes matching the input identity with
prosodic contents. The distorted signals have the noisiest behaviors, with large vari-
ances in all error metrics. Also expectedly, we observed that increasing the number
of signal degradations yielded worse objective metrics.
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TABLE 5.6: Objective metrics for the different systems (standard deviation into parenthesis).
For each metric, lower is better.

Model MCD [dB] RMSE [Hz] UV [%]
Distorted 7.6 (5.6) 52.9 (75.9) 22.3 (25.5)
SEGAN+ 8.2 (3.5) 37.2 (43.5) 9.1 (11.4)
SEGAN-Aco 7.4 (2.7) 37.5 (53.5) 20.0 (23.4)
SEGAN-PTAco 6.5 (2.7) 22.7 (28.5) 5.8 ( 6.3)

TABLE 5.7: Subjective mean ranking score (lower is better).

Model Speaker ID Naturalness
Distorted 2.87 (1.07) 3.00 (1.04)
SEGAN 2.85 (1.03) 2.69 (1.04)
SEGAN-Aco 2.88 (0.83) 2.78 (0.92)
SEGAN-PTAco 1.41 (0.74) 1.52 (0.84)

Subjective results are shown in table 5.7. In general, they also highlight the im-
portance of both the acoustic losses and the two-stage adversarial training schedule.
We can see that the baseline and SEGAN-Aco are clustered together with the dis-
torted signals for the Speaker ID test. This implies that, for both bandwidth exten-
sion and dewhispering problems, neither systems reconstruct a proper speaker iden-
tity from the input signal. A qualitative listening in this case tells us that the baseline
imposes an arbitrary identity to the reconstruction, and SEGAN-Aco sounds robotic
and muffled. In contrast, SEGAN-PTAco is consistently ranked above the distorted
signal, and we can clearly hear a competitive identity consistency with the condi-
tioning. In the naturalness task, the baseline and SEGAN-Aco systems do better
than the distorted signals. This was expected, as they involve an enhancement pro-
cess that removes very noticeable artifacts and recover speech nuances. Neverthe-
less, SEGAN-PTAco is still the best system by a large margin. Some audio samples
are available at http://veu.talp.cat/gsegan/.

5.7 Discussion and Conclusion

In this chapter, we proposed a speech enhancement method framed within the GAN
methodology using raw audio. We explore some variations of it that make it more
efficient and effective. The model is an encoder-decoder fully convolutional struc-
ture, which makes it adaptable to deal with sequences of any length. With the in-
troduced variations, we unveil some possible future paths to further improve the
architecture, specifically in terms of encoder structure to obtain a better decimation
scheme. The current results suggest that our approach performs better than classic
baselines such as Wiener or LogMMSE. They also show that the approach is com-
petitive with custom-tuned deep learning models in the log-power spectral domain,
trained with a regression on the magnitude, where a major amount of noise is de-
tected and removed. Our approach, on the other hand, requires little preprocessing,
working on the raw waveform, and is more flexible to work with other enhancement
tasks. We also verify the effectiveness of the adversarial component over the fully
convolutional regression system.

We also show that transfer learning is very efficient for inter-language speech
enhancement by generative adversarial network. Pre-trained SEGAN with English
achieves high performance even for short training time of Catalan and Korean (24 s)

http://veu.talp.cat/gsegan/
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with unseen speakers and noise, allowing us to adapt the system to low resource
environments. We also find that the number of noise-type in training is not crucial
factor to the performance of the speech enhancement. While training SEGAN is a
difficult task, our results imply that one can detour the problem through transfer
learning using a pre-trained network.

Finally, we propose the application of speech enhancement GANs in a more gen-
eralized signal recovery framework. First, we build a speaker dependent model to
solve the dewhispering problem, improving the generated naturalness over that ob-
tained with a baseline RNN system, as proven by objective and subjective results.
Then, we scale the generalization to different adverse conditions by introducing
four aggressive distortions applied to the speech signals. Next, we introduce a new
acoustic regression component in the SEGAN+ discriminator and, in addition, we
propose a two-stage adversarial training method to make the new acoustic regres-
sion component reach an appropriate performance. Objective and subjective results
are provided, showing how both the regression losses and and the two-stage sched-
ule outperform the regression losses alone and the purely adversarial approach.

This chapter is devoted to the construction of an end-to-end speech enhancement
model, hence it makes no assumption on the input data or features. The feature
extraction and signal regeneration is learned in the optimization loop itself with the
end-task. We can observe, however, that inducing prior knowledge improves the
model performance, boosting specially its generated quality for adverse conditions
as shown in section 5.6. To achieve this, we make use of a self-supervised output
branch (see section 2.3) that predicts a mixture of acoustic features which correlate
with a perceptual description of the signal. In the next chapter we will mix a raw
waveform based speech encoder and the self-supervised framework. With this, we
are merging the best of end-to-end processing (no assumptions about the input data
and feature pre-computation) with a prior knowledge based design.
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Chapter 6

Learning Problem-Agnostic Speech
Representations from Multiple
Self-supervised Tasks

Despite the recent progress detailed in chapter 2, applying self-supervised learn-
ing to speech remains challenging. Speech signals are not only high-dimensional
(i.e. long) and variable-length sequences, but also entail a complex hierarchical struc-
ture that is difficult to infer without supervision (phonemes, syllables, words, etc.).
It is thus hard to find a single self-supervised task that can learn general and mean-
ingful representations able to capture this latent structure.

To address this issue, we propose to jointly tackle multiple self-supervised tasks
using an ensemble of simple neural networks that cooperate to discover good in-
termediate speech representations. Importantly, the self-supervised tasks are de-
signed upon prior knowledge about the structure of speech. Hence, we will in-
duce the discovery of multiple levels of well-known and effective speech features
like the MFCCs, the LPS, prosodic features, and contextual relations among speech
frames in terms of pseudo-stationarity or sequentiality. The intuition behind this
self-supervision in a multi-task scenario is that each task may bring a different view
or soft constraint on the learned representation. Even though not all the tasks may
help for a final supervised problem of interest (e.g. speaker recognition), there is
likely a subset of them that could be useful. Moreover, even when some tasks may
not be useful, they may not be harmful either to any other supervised task. An im-
portant implication of this proposal is that our approach requires consensus across
tasks, hence naturally imposing constraints into the learned representations.

This way, our approach is likely to learn general, robust, and transferable fea-
tures, and less likely to focus on superficial features of the signal which may be
sufficient for the given training data but are insufficient when considering broader
types of data. To highlight the latter property, we call our proposed architecture
the problem-agnostic speech encoder (PASE). PASE encodes the raw speech wave-
form into a representation that is fed to multiple regressors and discriminators. The
regressors deal with standard features computed from the input waveform, resem-
bling a decomposition of the signal at many levels. On the other hand, the discrimi-
nators deal with either positive or negative samples and are trained to separate them
by minimizing binary cross-entropy as in Ravanelli and Bengio (2019). Both regres-
sors and discriminators (hereinafter called workers) contribute to add prior knowl-
edge into the encoder, which turns out to be crucial to derive meaningful and robust
representations.

Importantly, a number of design choices make the encoder efficient and easily



88
Chapter 6. Learning Problem-Agnostic Speech Representations from Multiple

Self-supervised Tasks

exportable, facilitating its direct usage or adaptation to different problems. We be-
gin testing PASE representations on 3 supervised tasks: speaker recognition, emo-
tion recognition and speech recognition. The latter is tested both in clean and noisy
conditions (i.e. distant speech recognition). We also propose the use of the result-
ing problem-agnostic speech embeddings in a multi-speaker acoustic model for TTS
based on the SampleRNN generative model. This way, we feed the acoustic model
with speaker acoustically-dependent representations that enrich the waveform gen-
eration more than discrete embeddings unrelated to these factors. Finally, we also
close the gap between this new learnable representation and the previously pro-
posed end-to-end system for generalized speech enhancement with some prelimi-
nary results.

We first describe the proposed PASE framework in section 6.1. The details about
the designed encoder are described in section 6.1.1. Then, a detailed description of
the designed self-supervised tasks to train the encoder is given in section 6.1.2. What
follows is a description of the self-supervised training strategy we perform upon the
proposed encoder in section 6.1.3. A brief description in how PASE can be used
after self-supervision is given in section 6.1.4. Then, the different corpora to carry
both training stages are described in section 6.2, as well as the details about each su-
pervised task to assess the final quality of PASE representations. The results on the
aforementioned classification tasks are discussed in section 6.3. Importantly, the use
of such classifiers allows us to first evaluate how better or worse PASE becomes with
the subtraction of each worker in the self-supervised loop, hence an ablation study.
Secondly, we can compare PASE features with other classic ones such as MFCCs or
FBANKs, known to be robust and widely used for recognition tasks. Finally, the
transferability of PASE features to new acoustic conditions not seen during training,
such as noisy ones, can also be studied. Then, once we have assessed the qual-
ity of these representations to convey information like the speaker identity, we can
use PASE features to condition a speech generation module such as a TTS acoustic
model. This application is explored in section 6.4.

6.1 Problem-agnostic Speech Encoder

The PASE architecture, depicted in Fig. 6.1, is built as a fully-convolutional neural
network. This is followed by seven MLP workers, which cooperatively solve differ-
ent self-supervised tasks. We now describe these modules.

6.1.1 Encoder

The first layer of the encoder is based on the recently-proposed SincNet model (Ra-
vanelli and Bengio, 2018b). SincNet performs the convolution of the raw input
waveform with a set of parameterized sinc functions that implement rectangular
band-pass filters. While CNNs learn all elements of each filter (see section 3.1.2),
SincNet learns their low and high cutoff frequencies only, leading to a very compact
model (Ravanelli and Bengio, 2018a). Therefore, an interesting property of SincNet
is that the number of parameters does not increase with the kernel size. Similarly
to Ravanelli and Bengio (2018b) and Ravanelli and Bengio (2018a), we use a large
kernel width W = 251 to implement F = 64 filters with a stride S = 1. The subse-
quent composition is a stack of 7 convolutional blocks (Fig. 6.1). Each block employs
a one-dimensional convolution, followed by batch normalization (BN) (Ioffe and
Szegedy, 2015), and a PReLU activation (He et al., 2015). For the 7 blocks we use
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SincNet (251, 64, 1) 

7 x ConvBlocks (W, F, S) 

Linear (100)
BN

...

Waveform LPS MFCC PROSO LIM GIM SPC

...

FIGURE 6.1: The PASE architecture, with the considered workers.

kernel widths W = {20, 11, 11, 11, 11, 11, 11}, F = {64, 128, 128, 256, 256, 512, 512}
filters, and strides S = {10, 2, 1, 2, 1, 2, 2}. An additional layer performs a fully con-
nected projection, mapping the 512 features per time-step of the last convolutional
layer to embeddings of dimension 100. The final PASE representation is produced by
a non-affine BN layer that normalizes by the mean and variance of each dimension.

Note that, similarly to common speech feature extractors based on the short-
time Fourier transform, we emulate an overlapping sliding window using a set of
convolutions. The convolution, in fact, employs a sliding kernel over the signal that
extracts localized patterns at different time shifts. In our case, we use stride factors
S > 1 for most of the convolutional blocks, such that the input signal is decimated
in time by a factor of 160. Therefore, given an input waveform of T samples, the
amount of output feature vectors (frames) is N = T

160 . At 16 kHz, this is equivalent
to a 10 ms stride, similar to common speech processing pipelines. As such, PASE
could easily replace previous feature extractors. The receptive field of the encoder
is about 150 ms, making each output frame aware of a relatively large temporal con-
text. The key motivation behind having a problem-agnostic speech encoder is to
have a representative structure that can be used across tasks that require speech as
input. We will see in the rest of this chapter how we can leverage the representation
that this encoder yields out of waveforms.

6.1.2 Workers

Workers are fed by the encoded representation and solve seven self-supervised tasks,
defined as regression or binary discrimination tasks (Fig. 6.1). In all cases, workers
are based on very small feed-forward networks, composed of a single hidden layer
of 256 units with PReLU activation (the only exception is the waveform worker, see
below). Notice that we here employ simple networks on purpose. This way, we en-
courage the encoder, and not the workers, to discover high-level features that can be
successfully exploited even by classifiers with limited capacity.
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We first consider the use of regression workers, which break down the signal
components at many levels in an increasing order of abstraction. These workers are
trained to minimize the mean squared error (MSE) between the target features and
the network predictions (again the waveform worker is an exception, see below).
Features are extracted with Librosa (McFee et al., 2019) and Pysptk (Yamamoto
et al., 2019) using default parameters, if not stated otherwise. As regression workers
we consider:

• Waveform: we predict the input waveform in an auto-encoder fashion. This
is the only worker that is not a single MLP, as we have a decimated latent
representation that must be interpolated back to time domain. This is why
three deconvolutional blocks (see section 3.1.3) are used with strides 4, 4, and
10, thus up-sampling by a factor 160. After these, an MLP of 256 PReLU units
is used with a single output unit per time-step. This worker then learns to
reconstruct waveforms by means of mean absolute error (L1) minimization.
The choice of L1 is driven by robustness, as the speech distribution is very
peaky and zero-centered with prominent outliers. This is the same type of
regression used in section 5.1.

• Log power spectrum (LPS): as with the next features, we compute it using a
Hamming window of 25 ms and a step size of 10 ms, with 1025 frequency bins
per time step. These features are measured in dBs.

• Mel-frequency cepstral coefficients (MFCC): we extract 20 coefficients from
40 mel filter banks (FBANKs).

• Prosody: we also predict four basic prosodic features per frame, namely the in-
terpolated logarithm of the fundamental frequency (log F0), voiced/unvoiced
probability, zero-crossing rate, and energy. These features are called “Prosody”,
inheriting a terminology often used in emotion recognition (Neumann and Vu,
2017; A. Paeschke, 1999). Importantly, these features are correlated with into-
nation, expressiveness, and voicing.

All these features are normalized by their first two statistical moments, as explained
later in section 6.1.3.

Next, we also consider three binary discrimination tasks, learning a higher level
of abstraction than that of signal features. These tasks rely on a pre-defined sampling
strategy that draws an anchor xa, a positive xp, and a negative xn sample from the
pool of PASE-encoded representations available in the training set. The reference
anchor xa is an encoded frame extracted from a random sentence, while xn and xp
are encodings drawn using the different sampling strategies described below. An
MLP then minimizes the following formulation of the binary cross-entropy:

L = EXp [log(g(xa, xp))] + EXn [log(1− g(xa, xn))],

where g is the discriminator function, and EXp and EXn denote the expectation over
positive and negative samples, respectively. Intuitively, by minimizing L, the model
learns a speech embedding such that positive examples end up closer to their an-
chors than the corresponding negatives. Notice that the encoder and the discrimi-
nators are not adversarial here as in the case of GANs (Goodfellow, 2016), but must
cooperate to derive good representations. In this work, we explore the following
approaches to sample positive and negative examples:
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• Local info max (LIM): as proposed in Ravanelli and Bengio (2019), we draw
the positive sample from the same sentence of the anchor and a negative sam-
ple from another random utterance, which likely belongs to a different speaker.
Since the speaker identity is a reliable constant factor within random features
of the same utterance, this worker can learn a representation that embeds this
kind of information. Hence, in this case xa and xp will be two random PASE
frames from the current utterance, whereas xn will be a random PASE frame
from another random utterance.

• Global info max (GIM): in this and the subsequent worker, we compare global
representations rather than local ones. The anchor representation is obtained
by averaging all the PASE-encoded frames of a random utterance within a long
random chunk of 1 s. The positive sample is similarly derived from another
random chunk within the same sentence, while the negative one is obtained
from another sentence. This way, we encourage the encoder to learn represen-
tations containing high-level information on the input sequence, that are hope-
fully complementary to those learned by LIM. GIM is also related to Deep In-
foMax (Hjelm et al., 2019), which recently proposed to exploit local and global
samples to learn image representations.

• Sequence predicting coding (SPC): in this case, the anchor is a single frame,
while positive and negative samples are randomly extracted from its future
and past elements. In particular, xp contains 5 consecutive future frames, while
xn gathers 5 consecutive past ones. To make the task less trivial, we avoid
sampling inside the current-frame receptive field (150 ms). On the other hand,
to avoid making this task too complex or even unfeasible, we sample up to
500 ms away from the anchor. We expect this worker to capture information
about the sequential order of the frames and the signal causality, encouraging
PASE to embed a longer time contextual information. This approach is similar
to the sampling strategy used in the contrastive predicting coding work (van
den Oord and Vinyals, 2017). The main difference is that our negative sample
is extracted from the past of the same sentence, rather than coming from a
different one.

6.1.3 Self-supervised Training

Encoder and workers are jointly trained with backpropagation by optimizing a total
loss that is computed as the average of each worker cost. Within the encoder, the
gradients coming from the workers are thus averaged as well, and the optimization
step will update its parameters pointing to a direction that is a compromise among
all the worker losses (Serrà et al., 2018). To balance the contribution of each regres-
sion loss, we standardize all worker outputs using their mean and variance train
set statistics, before computing the regression loss (either MSE or L1). The encoder
and the workers are optimized with Adam (Kingma and Ba, 2015), using an initial
learning rate of 5 · 10−4 which is halved every 30 epochs. We use mini-batches of 32
waveform chunks, each with 16 k samples corresponding to 1 s at a 16 kHz sampling
rate. The system is trained for 150 epochs (i.e., until the validation losses reach a
plateau for all the workers).
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6.1.4 Usage in Supervised Classification Problems

The representations discovered by the encoder can be later used for supervised clas-
sification in different ways. One possibility is to keep the encoder frozen while train-
ing the classifier (PASE-Frozen). The encoder is thus used as a standard feature ex-
tractor and the features do not dynamically change during training. A better way
consists of fine-tuning both the encoder and classifier during supervised training
(PASE-FineTuned). This way, the extracted features are further optimized to bet-
ter adapt themselves to the application of interest. For comparison, our results also
include the case where PASE is trained on the supervised task from scratch, with
random initialization (PASE-Supervised).

6.2 Corpora and Tasks

The self-supervised training of PASE is performed with the portion of the LibriSpeech
dataset (Panayotov et al., 2015) used in Ravanelli and Bengio (2019). Speech sen-
tences have been randomly selected to exploit about 15 s of training material for
each of the 2484 speakers.

To assess the quality of the learned representations, we consider three supervised
problems: (1) speaker identification (Speaker-ID), (2) speech emotion classification
(Emotion), and (3) automatic speech recognition (ASR)1. For speaker identification,
we use the VCTK dataset (Veaux et al., 2017), which contains 109 speakers with dif-
ferent English accents. To make this task more challenging and realistic regarding a
possible need for exportability of PASE to low resource environments, we consider a
subset of it that only contains 11 s of training for each speaker. For emotion recogni-
tion, we use the English utterances of the INTERFACE dataset (Hozjan et al., 2002).
This corresponds to approximately 3 h for training, 40 min for validation, and 30 min
for test. In this dataset we have two speakers (male and female) and eight emotions
to be recognized: anger, disgust, fear, neutral fast loud, neutral, joy, surprise, and sadness.

For speaker and emotion recognition, the predicted posterior probabilities are
averaged over all the time frames and we take the class with the highest score. To
evaluate the capability of PASE to learn phoneme representations, a first set of ASR
experiments is performed with the standard TIMIT dataset (Garofolo et al., 1993).
Next, to assess our approach in more challenging noisy and reverberant conditions,
in Section 6.3.3 we use the DIRHA dataset (Ravanelli et al., 2015). Training and val-
idation sets are based on the original WSJ-5k corpus (consisting of 7138 sentences
uttered by 83 speakers) that is contaminated with a set of impulse responses mea-
sured in a real apartment. The test set is composed of 409 WSJ sentences uttered by
six American speakers and is based on real recordings in a domestic environment
with a reverberation time of 0.7 s and an average signal-to-noise ratio of about 10 dB.
ASR experiments are performed with the PyTorch-Kaldi toolkit (Ravanelli et al.,
2019) and are based on the DNN-HMM framework. The DNN is trained to predict
context-dependent phones and an HMM decoder is later employed to retrieve the
sequence of phonemes for TIMIT or words for DIRHA (using the language models
of the Kaldi recipes (Povey et al., 2011)). The DNN labels were derived by perform-
ing a forced alignment procedure using Kaldi (Povey et al., 2011).

1This work is a product of the collaboration with Mirco Ravanelli and Yoshua Bengio. Mirco Ra-
vanelli conducted the speech recognition experiments.
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6.3 Results

In this section three types of results are presented. First, an ablation study that helps
us assess the importance of each worker, so that we can ensure that all of them con-
tribute to the learning strategy. Secondly, the performance of PASE features in the
different conditions in which it can be used, described in section 6.1.4. Finally, we
evaluate PASE capacity to transfer its representation to a distant speech recognition
environment, hence working in noisy acoustic conditions that were not seen dur-
ing self-supervision. Throughout the different results, classification accuracies for
speaker and emotion recognition are at utterance level, whereas speech recognition
results report phoneme level accuracy.

6.3.1 Worker Ablation

First of all, we study whether all considered workers contribute to the final accuracy
of PASE, and assess their impact on different target problems. To do so, we retrain
the encoder discarding one of the workers at a time. We then extract PASE features
(using the frozen encoder described in section 6.1.4), and we use them to feed MLP
classifiers that solve the considered supervised problems. The experiments in this
section are conducted with simple MLP classifiers based on a single layer, except for
ASR, where we use three layers.

The classification accuracies of Table 6.1 show that no worker is dispensable.
The best results are achieved with all workers, and we never observe performance
improvements when discarding any of them. Nevertheless, while some workers
are helpful for all the speech tasks, the benefits of some others turn out to be more
application-dependent. For instance, Waveform, LPS, and MFCC regressors are gen-
erally helpful for all the applications, since they force the encoded representation to
retain low-level information of the speech signal itself. The MFCC worker, in partic-
ular, is the most crucial one since it injects valuable prior knowledge on the most im-
portant frequency bands of the speech sequence. The prosody worker, instead, has
a remarkable and expectable impact on emotion recognition only (+131% in relative
error). This is due to the fact that our prosody features are correlated with intona-
tion, expressiveness, and voicing, which are crucial clues for detecting emotion. LIM
and GIM seem to be more helpful for Speaker-ID and Emotion rather than for ASR.
These workers are designed to extract high-level information of speech that can be
better exploited by higher-level classification tasks. A similar trend is observed for
the SPC worker. This tends to extract longer contextual information, which turns
out to be helpful for speaker and emotion recognition (+16% and in +13% relative
error, respectively). The adopted receptive field of 150 ms, instead, embeds a context
large enough for a DNN-HMM ASR system, as observed in Ravanelli and Omologo
(2018).

6.3.2 Comparison with Standard Features

We now compare our PASE representations with more standard features such as
MFCCs and FBANKs (McFee et al., 2019). Despite being proposed more than 40
years ago in Davis and Mermelstein (1980), these coefficients are still the most com-
mon speech features, and it is not easy to find alternatives that consistently outper-
form them. To provide a more fair comparison, MFCCs and FBANK are gathered in
context windows that embed contextual information of about 150 ms (similar to the
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TABLE 6.1: Accuracies using PASE and an MLP as classifier. Rows below the “all work-
ers” model report absolute accuracy loss when discarding each worker for self-supervised

training.

Model Classification accuracy [%]
Speaker-ID Emotion ASR

(VCTK) (INTERFACE) (TIMIT)
PASE (All workers) 97.5 88.3 81.1
−Waveform −1.3 −3.9 −0.3
− LPS −1.5 −5.3 −0.5
−MFCC −2.4 −3.2 −0.7
− Prosody −0.5 −5.3 −0.1
− LIM −0.8 −1.3 −0.0
− GIM −0.6 −0.5 −0.3
− SPC −0.4 −1.6 −0.0

TABLE 6.2: Accuracy comparison on the considered classification tasks using MLPs and
RNNs as classifiers.

Model Classification accuracy [%]
Speaker-ID Emotion ASR

(VCTK) (INTERFACE) (TIMIT)
MLP RNN MLP RNN MLP RNN

MFCC 96.9 72.3 90.8 91.1 81.1 84.8
FBANK 98.4 75.1 94.1 92.8 80.9 85.1
PASE-Supervised 97.0 80.5 93.8 92.8 82.1 84.7
PASE-Frozen 97.3 82.5 91.5 92.8 81.4 84.7
PASE-FineTuned 99.3 97.2 97.7 97.0 82.9 85.3

receptive field of the encoder). MFCCs are also augmented with their first and sec-
ond derivatives. As mentioned, we also compare with the purely supervised version
of PASE, trained from scratch on the target task.

Table 6.2 shows the classification accuracies obtained with both MLP and RNN
classifiers based on GRU. The hyper-parameters of all classifiers (number of hid-
den layers and neurons, learning rate, batch sizes, dropout rates, etc.) are inde-
pendently tuned on the validation set and for each problem. PASE features pro-
vide most of the times a performance better than MFCCs and FBANKs, even when
freezing the encoder (PASE-Frozen). The performance improvement becomes more
evident when pre-training the encoder and fine-tuning it with the supervised task
of interest (PASE-FineTuned). This approach consistently provides the best perfor-
mance over all the tasks and classifiers considered here, also outperforming the
PASE-Supervised baseline. Our best Speaker-ID result compares favorably with
some recent works on the same dataset, such as Wang et al. (2019) and Chang et
al. (2017). The phoneme accuracy of 85.3% on the TIMIT dataset (an error rate of
14.7%) is a competitive performance as well, especially when compared to state-of-
the-art results that do not use complex techniques as system combination, speaker
adaptation, or multiple steps of lattice rescoring and decoding (Povey et al., 2011;
Ravanelli et al., 2019; Ravanelli et al., 2018; Michálek and Vanek, 2018).
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TABLE 6.3: Word error rate (WER) obtained on the DIRHA corpus.

WER [%]
MFCC 35.8
FBANK 34.0
PASE-Supervised 33.5
PASE-Frozen 32.5
PASE-FineTuned 29.8

6.3.3 Transferability

Finally, we study the exportability of PASE to acoustic conditions that are very dif-
ferent from the clean one used to train it. Table 6.3 reports the results obtained with
the DIRHA dataset, which contains speech signals characterized by considerable
noise and reverberation. We here employ the same version of PASE encoder used so
far (trained on clean LibriSpeech data) coupled with a GRU classifier. Interestingly,
PASE clearly outperforms the other systems. Even the frozen version of PASE over-
takes FBANKs, MFCCs, and the supervised training baseline. PASE-FineTuned also
outperforms previous results obtained with the standard SincNet model (Ravanelli
and Bengio, 2018a). This result suggests the ability of PASE to effectively transfer its
representation abstractions to different acoustic scenarios.

6.4 PASE Embeddings for Text-to-Speech

In TTS, an important dimension of study apart from naturalness is the acoustic map-
ping adaptability to generate voices from new speakers (i.e. unseen during training).
In this section we study the use of PASE embeddings to build both a multi-speaker
acoustic model for TTS based on SampleRNN, as well as a speaker adaptation mech-
anism2. We feed the acoustic model with speaker acoustically-dependent represen-
tations that enrich the waveform generation more than embeddings unrelated to
these factors, like typical one-hot codes (Álvarez et al., 2019).

6.4.1 Multi-Speaker SampleRNN Acoustic Model

SampleRNN, introduced as a state of the art neural vocoder in chapter 2, was de-
signed as an autoregressive likelihood based model (see section 3.2.1) by Mehri et al.
(2016). In our work we use it as a multi-speaker acoustic model that directly predicts
the waveform samples out of linguistic, prosodic and identity features. As depicted
in Fig. 6.2, SampleRNN propagates data from upper to bottom layers and from pre-
vious to next time steps. In each layer, different scales of previous samples are used
to condition the lower layer until it predicts the next sample in the last layer. The
lowest layer is called sample-level layer and the others are called frame-level layers.
We want to control both the content of the speech and the speaker identity, so we
inject these two conditionings apart from previous samples to the system.

In order to inject identity information, we first experimented injecting the con-
ditioning frames at the top-level layer (as in existing vocoding applications of Sam-
pleRNN (Barbany et al., 2018)). However this solution had difficulties to generate

2This work is the product of a collaboration with the master student David Álvarez and he con-
ducted the TTS experiments and SampleRNN implementation.
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FIGURE 6.2: Original SampleRNN architecture with 2 frame-level layers and upsampling
ratios {4, 20}

intelligible speech in our acoustic model for multiple identities, or at least to con-
verge fast enough. To solve that, we use a similar strategy as in Zhou et al. (2018),
combining both the original inputs with a global feature vector composed of speaker
and linguistic features. These new feature vectors are used as inputs in the frame and
sample level layers and are then concatenated with the other inputs before getting
into the recurrent units.

Given a speaker i with its feature vector eeei ∈ RE and the linguistic feature vector
of a certain time interval lll∆t ∈ RV , we use a linear layer to obtain a global condition-
ing vector ccci,∆t ∈ RC. Fig. 6.3 gives an overall scheme of this conditioning method-
ology along with other inputs of frame-level layers. Besides, the initial states of the
frame-level layers hz,0 are learned via backpropagation. For the case of the sample-
level module, it follows a similar structure but without time-step conditioning.

6.4.2 Acoustic Seed

The speaker identity vectors can be introduced either with embedded one-hot codes
as in previous approaches (van den Oord et al., 2016b; Pascual, 2016), or with some
feature extractor out of speech signals that serve as seeds (Chen et al., 2019; Jia et al.,
2018), like PASE. Fig. 6.43 shows the result of projecting the average PASE features
per utterance, colorized per speaker label in two different datasets (i.e. averaging the
frames in time for a full utterance). These are t-SNE projections, configured with a
perplexity of 30 and converging during 1 k iterations. We can see how each speaker

3The PASE version used in these plots follows a slightly different configuration as that of section 6.1
in terms of architecture and some additional regression task, but equally proves our point of clustered
identities.



6.4. PASE Embeddings for Text-to-Speech 97

Frame-Level
Module

Speaker
Conditioning Linguistic Conditioning 

�� �Δ�

 
Linear	Layer
� + � → �

��,Δ�

... �� ��+Δ

Previous Layer
Conditioning

Previous Time Step
Conditioning

Next Time Step
Conditioning

Next Layer
Conditioning

FIGURE 6.3: Combination of speaker and linguistic features along with other SampleRNN
model-specific conditioning inputs

is clustered separately with homogeneous regions, which are prone to be local in
the PASE hyperspace given the nature of the t-SNE projection (Maaten and Hinton,
2008).

Due to these observations, it is reasonable to use average PASE embeddings to
describe speaker identities out of a frozen pre-trained PASE. We call these averaged
embeddings acoustic seeds. We then experiment with training a TTS acoustic model
per conditioning type: one-hot codes and PASE codes. We also explore the capabil-
ity of these acoustic seeds to encode out-of-corpus speaker identities to do speaker
adaptation without retraining. Our goal is that using PASE embeddings as speaker
descriptors, the system is able to generalize even to unseen identities.

6.4.3 Experimental Setup

To train the acoustic models, we use utterances from two different datasets: VCTK
(Veaux et al., 2017) and CMU Arctic (Kominek and Black, 2004). We decide to use
speakers from both datasets because CMU Arctic contains more recorded speech per
speaker, but it does not contain enough speakers to include a high variability factor
for our experiments. Additionally, to avoid excessively modelling of silences, we
trim them to a maximum length of 100 ms with the help of a voice activity detec-
tor. To train the base models, we select the 20 speakers of each gender with most
speech duration, allocating a total amount of 40 speakers for this purpose. Then, for
each of those speakers, we select a total of 45 s of speech for the validation split and
another 45 s to perform objective tests. The remaining data of each speaker is then
allocated to the training split, obtaining an unbalanced training dataset where the
less representative speaker (VCTK speaker) has about 10 minutes of speech and the
most representative one (CMU Arctic speaker) reaches the 64 min. In total, the sum
of the individual contributions of the 40 speakers reaches the 12 h of training data
and 30 min. of validation and test data.
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CMU Arctic test 4 speakers VCTK test 10 speakers

FIGURE 6.4: t-SNE projections of 4 CMU test speakers (left) and 10 VCTK test speakers
(right) in clean conditions.

For the adaptation phase, we select 5 different random speakers per gender (10
speakers) and allocate enough data in the training split to experiment with seed sig-
nal lengths T up to 120 s. Note that we do not adjust the model weights, but we still
require a training set of utterances to have enough T samples to build the acoustic
seed. We then assess the adapted speaker similarity towards the target identity using
a different test split with 180 s of data per speaker and a set of objective metrics.

We objectively evaluate the performance of our experiments by comparing the
original utterances with the ones generated by our systems in two terms. First we
have direct likelihood metrics as SampleRNN is a classifier computing the proba-
bility of the next waveform sample given the previous ones. This means we get
a score that correlates with perceptual quality in the likelihood validation and test
curves. Secondly, we have spectral distortion measures that depict how good is the
waveform generation embedding speaker, prosodic and content characteristics in
the speech (without an explicit modeling of spectral features themselves). Hence,
we measure the MCD (in dB) and the RMSE of F0 (in Hz), as usually done in acous-
tic models assessment for TTS. Their formulations follow the same ones introduced
in chapter 4 section 4.4.4.

6.4.4 Results

Fig. 6.6 illustrates the likelihood convergence in validation and the acoustic distor-
tion metrics in test for four different model variations: .

• Linguistic features + one-hot codes

• Linguistic features + log F0 contour + one-hot codes

• Linguistic features + PASE codes

• Linguistic features + log F0 contour + PASE codes

We chose to train each model for 50 epochs for comparability purposes, but the
different models can converge further as shown in these results. Nonetheless, some
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FIGURE 6.5: Validation negative log-likelihood loss. Lower loss indicates higher likelihood
of the generated waveforms to be like the ground-truth ones, hence more similar to the actual

speech.

evidences appear at this point worth commenting. First, in Fig.6.5 we can clearly
see that the two experiments using our acoustic embeddings converge quicker than
with the standard approach overall terms of validation likelihood. The similar trend
is shown for the acoustic distortions shown in Fig. 6.6. The peaks we observe at some
points in the spectral distortions are probably a reflect of under-optimized models,
but we can still observe a clear convergence acceleration trend in the validation loss
for models involving PASE embeddings that make these TTS variations comparable.

Moreover, the distortions of the models with log F0 contours as inputs are lower
than those that lack them. This is expected because these contours supply long-term
information that is useful for SampleRNN to retain far-past information better than
it might in its internal states, as observed first in van den Oord et al. (2016b). Nev-
ertheless, the experiment with PASE embeddings that lacks log F0 generally obtains
better results than those of the one-hot embeddings with the log F0 contours. We
hypothesize that this happens due to PASE embeddings capturing some bias in each
speaker prosodic traits, but we still have an averaged representation in this case so
it does perform worse than when we use PASE embeddings with the prosodic con-
tours where dynamic long-term information is still fully present. These observations
allow us to make a preliminar study of a speech generation task where PASE can be
applied, apart from the previous classification ones presented in section 6.2. How-
ever, further development of this research direction will require also a subjective
evaluation, as well as models with further convergence, where they reach a level of
naturalness to be competitive to the state of the art.

Regarding the speaker adaptation experiment, we only take the PASE embed-
dings (without log F0 contours) model to proceed. This way we decouple any inter-
ference in prosodic or acoustic modeling coming from the log F0 contour. For each
new speaker, we randomly sample chunks of lengths T = {1, 10, 60, 120} seconds to
build their time-average acoustic PASE embedding. Then, the 10 different speaker
distortion curves (one per adaptation speaker) for both RMSE and MCD are aver-
aged and depicted in Fig. 6.7. There we observe that the more seed signal we have,
the less distortion we obtain across speakers, especially for MCD. The decreasing
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FIGURE 6.6: Top: RMSE of F0 for new speakers with respect to the length of speech used
for the embedding generation. Bottom: MCD for new speakers with respect to the length of

speech used for the embedding generation.

distortion trend depending on the amount of seed speech shows so far a promising
direction towards generalizing speaker identities without fine-tuning TTS models.
However, better optimized models are a potential need as shown in these results as
models could converge further, hence biasing the adaptation curves to lower dis-
tortion rates with the same seed lengths. Qualitative results are available online in
an audio samples webpage4. Informal listenings by the authors and different col-
leagues suggest that PASE embedding improve slightly the quality upon one-hot
codes, and that systems are better if F0 is included as input in prosodic terms for
both cases. Nonetheless, after a further development of more tunned acoustic mod-
els a formal subjective evaluation should be performed to establish this comparison
firmly. The system proposed allows to generate speech with the identity of unseen
speakers providing just the PASE embedding. As a general rule, 10 s are required to
capture a similar identity to the target one. On the other hand, for the quality, the

4http://veu.talp.cat/samplernn_pase

http://veu.talp.cat/samplernn_pase
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FIGURE 6.7: MCD and RMSE of F0 for new speakers with respect to the length of speech
used for the embedding generation

acoustic model does benefit from average embeddings with longer segments (10-
60 s), potentially to avoid sampling only major silence regions which would include
to identity and makes it sound more distorted.

6.5 Conclusion

The proposal in this chapter was twofold. On the one hand, we propose a multi-task
self-supervised approach to learn speech representations. On the other hand, we
provide an effective and exportable speech encoder that conveys waveforms into a
sequence of latent embeddings. As evidenced by the considered problems, the dis-
covered embeddings turn out to carry important information of the speech signal,
related to, at least, speaker-identity, phonemes, and emotional cues. Learnt embed-
dings also showed their potential for of transferability to different datasets, tasks,
and acoustic conditions. PASE is easily extendable as a semi-supervised framework
and can embed in the future many other self-supervised tasks. After checking the
information stored in the PASE embeddings with the supervised classification tasks,
we also try PASE to extract speaker identifiers out of some seed voice from an arbi-
trary speaker, injecting them into a speech synthesis system to imitate the seed voice.
The distortion results obtained in the first preliminary experiments, built upon a
SampleRNN acoustic model, suggest that PASE allows for faster convergence than
usual discrete one-hot codes. Additionally, this mechanism also allows us to do
speaker adaptation by creating new seed PASE identifiers out of example utterances
from target speakers. This requires no retraining of the SampleRNN nor the PASE
itself, and proofs to be more effective specially when large utterances are available
for the target speaker to minimize the spectral distortion towards the target speaker.
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Chapter 7

Summary and Future Perspectives

In this thesis several questions have been addressed to study the possibilities of deep
learning in the new context of speech processing and speech generation technolo-
gies: Can we make speech generation systems more efficient and yet maintain the
same synthesized speech quality level? Can we also build an end-to-end deep gen-
erative model that works efficiently to do speech enhancement, agnostically to the
speaker identity and the noise conditions? Does this model transfer easily its per-
formance to new languages and noises? Can we go beyond the speech denoising
task and truly unveil the generative capabilities of the model, hence reconstructing
clean speech out of distorted signals? Finally, can be build compact and informative
speech representations with unsupervised learning techniques? Can these embed-
dings be used simultaneously to work on several tasks that require speech as input?
These questions, that cover a broad set of research directions within speech process-
ing, motivated the investigations presented in this thesis (section 1.1). In the light of
the results presented in this thesis, we can repeatedly answer: yes.

7.1 Summary of Contributions

The first problem tackled in this thesis is presented in chapter 4, in the context of text-
to-speech (TTS). There we answer the question on whether we can increase efficiency
of the recurrent structures that give state of the art results in two-stage parametric
speech synthesis systems, and yet reach competitive results. The solution is found
in the pseudo-recurrent structures, where quasi recurrent neural networks (QRNNs)
seem to be most effective as an alternative to RNNs.

Secondly, we took the research direction of deep generative models, proposing
an end-to-end speech enhancement model based on GANs. In this case we pro-
posed a fully convolutional design that consumes noisy waveforms and generates
clean waveforms in its output. The model, with its fully convolutional design, as
well as with the GAN setup it conforms, is much more efficient than its autoregres-
sive counterparts, reaching performance quotas beyond real-time (see section 5.3.1).
We also explore the capabilities of this model to adapt its operability to new lan-
guages once it is trained in English. We demonstrate a quick adaptation capacity to
new language conditions under a minimum amount of training data (in the range
of seconds). Additionally, the model seems to be invariant to being adapted to new
noises towards the test phase. This may happen due to a decision boundary be-
tween speech and non-speech intrinsic to the model regeneration process. Hence,
adapting to the new language speech patterns seems more critical to reduce the final
distortion, as measured in section 5.4. Furthermore, the use of a deep generative
model can be potentially extended beyond a denoising condition, and as such we
conduct the experimentation of applying the proposed SEGAN to a generalized set
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of distortion conditions that directly affect the speech signal, and hence its missing
and corrupted components must be regenerated.

Finally, unsupervised learning for speech representations has been explored in
chapter 6. More concretely, a multi-task self-supervised framework has been de-
signed to train a fully convolutional speech encoder that consumes waveforms and
returns compact frames conveying multiple levels of features. This design mixes
both types of constructions: the raw signal consumption of end-to-end models with
the prior knowledge based design of appropriate self-supervised tasks (section 6.1).
This model is named problem-agnostic speech encoder (PASE), as it yields frames
useful for different tasks that require speech as input, but it is trained without any
information about the end-tasks it can be applied to. Precisely, the self-supervised
training methodology ensures no superficial features are learned, as well as their
exportability. First, we exemplified the exportability of PASE by plugging classifiers
trained on top of the feature extractor to make speaker recognition, emotion recog-
nition and speech recognition. Secondly, we framed the encoder in speech genera-
tion. To that end, we applied PASE as an identity descriptor for speaker identities
in a multi-speaker TTS system. The TTS results suggest that PASE contains relevant
acoustic information that allow for a faster convergence in the TTS acoustic model
when compared to discrete one-hot identifiers.

To sum up, this thesis contributes to the study of deep learning architectures ap-
plicable to speech synthesis, enhancement and processing in terms of efficiency, end-
to-end designs and self-supervised learning applied to the construction of speech
representations. More specifically:

• It provides a comprehensive overview of the available literature on speech
generation for both text-to-speech and speech-to-speech applications, as well
as unsupervised learning to create speech representations. This includes a re-
view from classic concatenative techniques until the most recent deep genera-
tive models that shift these problems towards end-to-end approaches.

• It provides a study of pseudo-recurrent alternatives to do speech synthesis.
These alternatives include the QRNN and the self-attention model, both widely
used and successful in natural language applications. This study yields a much
more efficient linguistic–acoustic mapping system using QRNNs, with which
we achieve a 11.2 times speedup on CPU and 3.3 times on GPU with respect to
the LSTM based model.

• It proposes, to the best of the author’s knowledge, the first approach to tackle
a speech processing task with generative adversarial networks (GANs). More
specifically, it provides an end-to-end speech enhancement GAN (SEGAN),
designed as a fully convolutional network to be fully parallelizable (hence ef-
ficient).

• It provides an extensive study on the improvements to be made in an auto-
encoder architecture like SEGAN’s. The adaptability of the proposed system
to new languages and noises is also studied.

• It proposes a new trend with a long-term perspective to tackle a more general-
ized speech enhancement framework, where different distortions of the signal
have to be palliated in addition to the usual denoising and dereverberation
tasks. This comes jointly with the recent application of deep generative mod-
els to speech-to-speech transformations, as the one shown in this thesis.
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• It provides a multi-task setup to adapt the SEGAN system to obtain more per-
ceptually relevant results in terms of palliating the proposed distortions within
the generalized speech enhancement problem.

• It proposes, to the best of the author’s knowledge, the first self-supervised
multi-task approach to learn abstract speech representations.

• It proposes, to the best of the author’s knowledge, the first attempt to create
a problem-agnostic speech encoder whose design allows for exportability and
efficiency in the feature extraction process. The proposed encoder reflects the
aim of the author to make an encoder ready to be used by speech researchers
of different fields. The encoder is made to gather different levels of speech
features, exploiting the huge statistical averaging benefits of deep learning to
build robust representations absorbing variabilities in the data to abstract high-
level representations.

The outcomes of the research presented in this thesis have been published in the
form of several papers in international conferences, journals, blog posts and open
source projects. A list of online demo pages with audible samples from the obtained
results on speech generation is available in an annex to this thesis (Appendix A).
The full list of the authors’ publications is also provided in an annex to this thesis
(Appendix B).

7.2 Some Future Perspectives

This thesis begins tackling two different problems, namely speech synthesis and
speech enhancement, which can be related by the fact that both generate a clean,
well structured speech signal. In the course of developing both systems, deep neu-
ral networks of different kinds have been used. Moreover, both end-to-end and non
end-to-end approaches have been taken. In the process of developing these different
systems, a convergence between speech enhancement and speech synthesis (usually
known for text-to-speech applications) emerged. This potentially points towards a
direction where a speech generation module, under the light of current deep gen-
erative models presented in section 3.2, may be plugged on top of a proper front-
end that can extract features that represent a certain source signal to be converted.
This source signal may either come from text as in TTS, or may come from another
speech signal as in STS applications. Recent works prove the possibility to build sys-
tems that can do voice conversion and TTS simultaneously (Zhang et al., 2019), by
sharing an acoustic model decoder by two specialized encoders. Similarly, our ex-
periments shown in section 6.4 show that the problem-agnostic speech embeddings
can also be used to tackle TTS. Hence, it is potentially true that there is a future con-
vergence of the different STS and TTS applications to happen, where the different
tasks will be tackled by the same model depending on what inputs do we feed.

A first possible point of convergence will be that of voice conversion and speech
enhancement. This may come from a similar model to the one proposed in this the-
sis, the SEGAN (see chapter 5), where the decoder will contain an explicit speaker
identifier to decode a changed identity, apart from being able to decode a clean rep-
resentation of the distorted input. The identifier may be fed as current GAN condi-
tionings through conditional normalization layers (Huang and Belongie, 2017; Kar-
ras et al., 2019), or as we recently proposed with a hyper-conditioning scheme as in
Blow (Serrà et al., 2019). On the other hand, the identifiers themselves could be PASE
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embeddings, as we have seen their effectiveness in retaining the speaker identity in
the utterance average representation (see section 6.4). Also, owing to the effective-
ness of PASE to represent the content as well as the speaker identity, a pre-trained
PASE could extract both the local features in a frame by frame basis (content) and
the global features (identity). Then, we could operate algebraically in that space to
subtract the global features of the source, and then we would add the target speaker
global representation. A decoder model would learn the correspondence between
PASE frames and acoustic frames, and a neural vocoder would convert the frames
to waveforms. This methodology would require training only a small part of the
model, the one consuming PASE features and yielding acoustic features. Hence,
less data would be required to optimize such a model with respect to an end-to-end
alternative.

Another research direction made possible due to the PASE self-supervised de-
sign is the one of language discovery focused on low resource text-to-speech. This is
aligned with the recently proposed zero-speech challenge, also named "TTS without
T" (Dunbar et al., 2019). The goal of this task is to discover subword units in an un-
supervised way by using a unit discovery dataset, and then align these units to the
voice recording in a way that works best for the purpose of synthesizing novel utter-
ances from novel speakers (Muthukumar and Black, 2014; Scharenborg et al., 2018).
Hence, PASE representations should be discretized, probably in a process similar to
the one of the vector quantized variational auto-encoder (van den Oord and Vinyals,
2017). The potential usefulness of discretizing PASE representations for this task is
an open issue to be tackled, but potentially effective due to its proven factorization
of the high-level features from the speech waveforms. Actually, as stated in the zero-
speech challenge, an effective representation of the linguistic units can then be fed
into a generative model that reconstructs a speech waveform conditioned on certain
speaker identity, similar to voice conversion. Nonetheless, an important matter to
consider in this case is the exploration of low bit-rate encodings of the speech, hence
enforcing a high compression in the latent space, something not explored with PASE
so far.

Furthermore, the use of acoustic losses in an end-to-end model like the SEGAN
has proven to be effective (see section 5.6.1). Nevertheless, those acoustic losses are
still using low-level spectral features such as log-power spectrum frames or prosodic
contours like logF0. A convergence point between SEGAN and PASE can also be the
use of pre-trained PASE features as targets for a self-supervised SEGAN training,
with the use of PASE in a distillation framework (Hinton et al., 2015). In this case a
frozen pre-trained PASE may be plugged on top of the generator network to enrich
its learning process, potentially making it converge faster and to a more perceptually
relevant solution than with the vanilla adversarial setup or with the plain use of low-
level acoustic features in the discriminator. This setup could also be a viable option
for a robust generalized speech enhancement model, designed with the mixture of
end-to-end and prior knowledge based models.
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Demo Pages: Audio Samples

Efficient Neural Acoustic Modeling in Text-to-Speech
http://veu.talp.cat/efftts

Speech Enhancement Generative Adversarial Network
http://veu.talp.cat/seganp

Whispered SEGAN
http://veu.talp.cat/whispersegan

Towards Generalized SEGAN
http://veu.talp.cat/gsegan

PASE for Multi-speaker Text-to-Speech and Speaker Adaptation
http://veu.talp.cat/samplernn_pase

http://veu.talp.cat/efftts
http://veu.talp.cat/seganp
http://veu.talp.cat/whispersegan
http://veu.talp.cat/gsegan
http://veu.talp.cat/samplernn_pase
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Publications by the Author

B.1 Chapter 4

Self-Attention Linguistic-Acoustic Decoder
Santiago Pascual, Antonio Bonafonte, Joan Serrà. IberSPEECH 2018.

Exploring Efficient Neural Architectures for Linguistic–Acoustic
Mapping in Text-To-Speech
Santiago Pascual, Joan Serrà, Antonio Bonafonte.
MDPI Applied Sciences. Special Issue IberSPEECH 2018: Speech and Language Technolo-
gies for Iberian Languages.

B.2 Chapter 5

Time-domain Speech Enhancement Using Generative Adversarial Networks
Santiago Pascual, Joan Serrà, Antonio Bonafonte. Elsevier Speech Communication 2019.

SEGAN: Speech Enhancement Generative Adversarial Network
Santiago Pascual, Antonio Bonafonte, Joan Serrà. INTERSPEECH 2017.

Language and Noise Transfer in Speech Enhancement
Generative Adversarial Network
Santiago Pascual, Maruchan Park, Joan Serrà, Antonio Bonafonte, Kang-Hun Ahn.
ICASSP 2018.

Whispered-to-voiced Alaryngeal Speech Conversion with
Generative Adversarial Networks
Santiago Pascual, Antonio Bonafonte, Joan Serrà, Jose A. González.
IberSPEECH 2018.

Towards Generalized Speech Enhancement with Generative Adversarial Networks
Santiago Pascual, Joan Serrà, Antonio Bonafonte. INTERSPEECH 2019.

B.3 Chapter 6

Learning Problem-Agnostic Speech Representations from
Multiple Self-Supervised Tasks
Santiago Pascual, Mirco Ravanelli, Joan Serrà, Antonio Bonafonte, Yoshua Bengio.



110 Appendix B. Publications by the Author

INTERSPEECH 2019. Nominated for the best student paper award.

Problem-Agnostic Speech Embeddings for Multi-Speaker Text-to-Speech
with SampleRNN
David Álvarez, Santiago Pascual, Antonio Bonafonte.
ISCA 10-th Speech Synthesis Workshop.

Multi-task self-supervised learning for Robust Speech Recognition
Mirco Ravanelli, Jianyuan Zhong, Santiago Pascual, Pawel Swietojanski, Joao Mon-
teiro, Jan Trmal, Yoshua Bengio. Submitted to ICASSP 2020.

B.4 Byproducts

Sample Drop Detection for Distant-Speech Recognition with Asynchronous De-
vices Distributed in Space
Tina Raissi, Santiago Pascual, Maurizio Omologo. Submitted to ICASSP 2020.

Blow: a Single-Scale Hyperconditioned Flow for Non-Parallel Raw-Audio
Voice Conversion
Joan Serrà, Santiago Pascual, Carlos Segura. NeurIPS 2019.

Wav2Pix: Speech-Conditioned Face Generation Using Generative
Adversarial Networks
Amanda Duarte, Francisco Roldan, Miquel Tubau, Janna Escur, Santiago Pascual,
Amaia Salvador, Eva Mohedano, Kevin McGuinness, Jordi Torres,
Xavier Giro-i-Nieto. ICASSP 2019.

Spanish Statistical Parametric Speech Synthesis Using a Neural Vocoder
Antonio Bonafonte, Santiago Pascual, Georgina Dorca. INTERSPEECH 2018.

Multi-Speaker Neural Vocoder
Oriol Barbany, Antonio Bonafonte, Santiago Pascual. IberSPEECH 2018.

Real Non-Volume Preserving Voice Conversion
Santiago Pascual, Joan Serrà, Antonio Bonafonte. NeurIPS LXAI Workshop 2018.
http://veu.talp.cat/santi_slides/rnvpvc.pdf.

Towards a Universal Neural Network Encoder for Time Series
Joan Serrà, Santiago Pascual, Alexandros Karatzoglou. CCIA 2018.

B.5 Open Source Projects

B.5.0.1 Chapter 4

MUSA TTS (PyTorch >= 0.4.1): https://github.com/santi-pdp/musa_tts.
9 stars & 4 forks on Nov 2019.

http://veu.talp.cat/santi_slides/rnvpvc.pdf
https://github.com/santi-pdp/musa_tts
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B.5.0.2 Chapter 5

SEGAN (TensorFlow <= 0.12.1): https://github.com/santi-pdp/segan.
518 stars & 213 forks on Nov 2019.

SEGAN (PyTorch >= 0.4.1): https://github.com/santi-pdp/segan_pytorch.
141 stars & 40 forks on Nov 2019.

B.5.0.3 Chapter 6

PASE (PyTorch >= 1.0.1): https://github.com/santi-pdp/pase.
126 stars & 25 forks on Nov 2019.

B.6 Blog post Tutorials on Convolutional Neural Networks

Receptive Fields in Convolutional Neural Networks
Santiago Pascual. Medium blogpost 2018.
https://tinyurl.com/santty128-rfconvs.

How PyTorch Transposed Convs1D Work
Santiago Pascual. Medium blogpost 2018.
https://tinyurl.com/santty128-deconv.

https://github.com/santi-pdp/segan
https://github.com/santi-pdp/segan_pytorch
https://github.com/santi-pdp/pase
https://tinyurl.com/santty128-rfconvs
https://tinyurl.com/santty128-deconv
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