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Abstract

This thesis explains the design, development, test on the benchmarking dataset DUD-e and the

application to an industrial VS project of the PELE VS platform.

The most common and quick tools used on VS campaigns do not take into account the induced-fit

(IF) effect, although there are some methodologies capable of reproducing this effect they are either

time consuming or very limited on which transformations the protein may undergo. In this thesis

with the development of the PELE VS platform we aim at using the simulation software Protein

Energy Landscape Exploration (PELE) to account for the IF effect.

The PELE software uses a Monte Carlo (MC) algorithm coupled with an energy minimization

step to explore the ligand conformations and model the protein. This approach allows the program

to account for both big conformational changes and small local changes of the protein and to perform

a good conformational search of the ligand, which coupled can account for the if effect with only a

quick simulation.

PELE has been traditionally, and successfully, used in the enzyme engineering field where only

a few compounds per protein are usually tested and studied. In order to apply the program to the

VS field, where thousands of compounds are tested in silico, the first step was to automatize the

whole procedure of preparing, launching and analysing the simulations. Thus, during this thesis the

PELE VS platform has been developed altogether with other auxiliary tools.

Once the platform was developed, we wanted to test the behaviour of PELE on a well known

benchmarking dataset, thus we tried our methodology on the DUD-e dataset. Since this dataset is

formed by more than 100 proteins, we chose a few proteins for each of the families present in the

dataset, reducing the number of proteins to 21 systems. Then, we tried to use a general protocol

for all the chosen proteins in order to improve the results of currently used scoring function (SF)

in the field. After studying the simulations and trying several protocols on this subset we observed

that every protein (or at least family) that we want to study needs an specific simulation protocol

in order to correctly reproduce the IF effect and improve the results of the most used SF Glide from

Schrödinger.

Finally, we applied the platform and our previous hypothesis to an industrial VS campaign, as

part of the collaborative Retos project: Silicoderm. In this case we worked with only one protein
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and several compounds and we confirmed the need for a tailored simulation protocol for the receptor

in order to improve results.
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Preface

The drug discovery field is responsible for the apparition of new drugs and therapies against diseases.

Behind each new drug that reaches the market there are usually from 15 to 20 years of work from

an interdisciplinary team of people, from chemists to doctors. Although the clinical assays seem

to have improved their success rates, investing into a drug development project is still a high risk

investment, due to the high amounts of compounds that never reach the market.

The work developed in this thesis wants to improve the ratio of compounds that can reach the

later phases of the drug discovery process, and eventually reach the market, by taking into account

protein flexibility and the IF effects produced upon ligand binding when performing the first steps

of the drug discovery process, the Virtual Screening (VS). In the traditional methodologies used in

the VS process the flexible behaviour of the proteins has been often neglected or treated minimally,

and we hope that introducing it will improve the success rates of the selected compounds.

In order to introduce the flexible behaviour of the proteins into the process we will use the

simulation software PELE, which has been shown to be good at predicting the right binding modes

of molecules.

One of the main objectives of this thesis was to develop and test a platform that allows the use

of PELE within the scope of VS projects.

While testing the platform we also wanted to develop a general methodology capable of improving

the VS results of a gold-standard methodology.

Finally, we aimed at applying this new methodology to an active VS project in collaboration

with a pharmaceutical company.

As the reader will be able to read all these objectives have been accomplished and they will be

explained through the different chapters of this thesis; which is structured into five chapters plus 2

annexes.

The first chapter is an introduction explaining the basic concepts needed to understand this

thesis, the state of the art of the VS field methodologies, the problems of this field, the motivation

for this thesis and the thesis main objectives.

The second chapter called PELE VS contains the explanation about the software developed

during this thesis. It explains the problems each program solves, how the programs are structured
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and the reasons for their design.

The third chapter is called DUD-e Study. It contains the results of applying the VS framework

(which is explained in chapter 2) combined with PELE simulations to the DUD-e dataset[66], and

an explanation of the results obtained.

The fourth chapter is called ”Retos project: SilicoDerm”. It explains the methodology used and

the results obtained during my participation in the collaborative SilicoDerm project. This project

is carried in collaboration with the company Almirall thanks to a Retos grant provided by the

MINECO

The fifth chapter are the conclusions; it summarizes the level of accomplishment of the objectives

and it provides the general and specific conclusions of this thesis as well as some further work.
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Chapter 1

Introduction

1.1 Introductory concepts

The aim of this thesis is the development of a new methodology to improve the Virtual Screening

(VS) procedure with the inclusion of the induced-fit (IF) effect by simulating the protein-ligand

complex using the Protein Energy Landscape Exploration (PELE) program and a re-score process

of the new structure.

These three lines involve a quite complex process depicted in Figure 1.1 which will be explained

through all this thesis. In order to understand the process, we first need to understand some key

concepts such as VS, drug, target/protein and IF.

1.1.1 Drugs and proteins

The first concept in our list is “drug”. A drug is any molecule capable of causing an effect in the

human body. This effect can go from calming a stomach-ache to combating cancer, and from being

localized (anesthetize a tooth) to global (control the sugar level in blood).

Most of currently used drugs accomplish their effect by targeting one protein, that is, the drugs

interact with the protein by binding to it. Logically, we now need to know what a protein is, our

second concept.

A protein is a sequence of bonded by peptide bonds. The amino acids (aas) are molecules with

the structure in Figure 1.2a where R represents a variable group called sidechain. In nature there

are 20 standard side chains used by all forms of life from microorganisms to humans (Figure 1.2b.

The sequence of the aas that form the protein is encoded by the DNA.

Proteins are present in every part of the cells and oversee most of cell’s functions, from capturing

the environmental stimuli to the replication of DNA. Thus, the malfunction of a protein most

likely will cause a disease. Some examples include: (i) when the amyloid precursor protein isn’t

1
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(a) Thesis graphic abstract

Figure 1.1: This thesis graphic abstract
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(a) general structure.

(b) 20 standard structures.

Figure 1.2: Standard grouped by their electrostatic properties.
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Figure 1.3: Two structures of the human beta2 adrenergic receptor in complex bound to two different
ligands to show the conformational differences due to binding. The protein’s structure is shown using
the cartoon (backbone) and lines (BP) representations, while the ligands are shown using the ball
and stick representation.

correctly processed the β-amyloid protein generated misfolds and aggregates causing alzheimer in

the long term [29], (ii) when the p-53 protein malfunctions it causes cancer [61, 36], (iii) when the

DiAminoOxidasa (DAO) enzyme doesn’t work correctly it causes the DAO deficiency syndrome [60],

(iv) the malfunction of insulin or its receptors causes diabetes.

The malfunction of a protein can be given (i) by an overactivity, or (ii) by a reduced or lack of

activity of the protein. The first case can be produced by an overexpression of the protein or by an

undesired activation of the protein, due to an excess of the native compound or to the interaction

with non-native compounds caused by mutations of the DNA that modifies the binding site (BS) or

binding pocket (BP), the region of the protein that interacts with the compounds. The second case

can be caused by the lack of production of the protein itself, by a misfolding of the protein or by a

mutation of the DNA that affects the protein’s structure and/or its dynamics, or a small change in

the BP that prevents the binding of compounds, from now on called ligands, and/or the chemical

reaction that should take place

The proteins fold into dynamic complex 3D structures, these can be resolved by X-ray crystal-

lography, by cryo-EM or by NMR. The X-ray crystallography requires the protein’s crystal; thus,
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(a) Conformational selection mechanism

(b) Lock and key mechanism (c) induced-fit mechanism

Figure 1.4: Schematics of the different Binding Mechanism theories.

it only provides a snapshot of the protein under non-cellular conditions. We can find crystallo-

graphic structures of a protein without ligands (apo-structure) and with different ligands bound

(holo-structure), where we might appreciate changes in the protein structure. One example is the

adrb2 protein shown in Figure 1.3. In this Figure we can appreciate how the beta andro-receptor 2

( a membrane receptor pertaining to the G-protein coupled receptor 1 family) changes it’s structure

upon binding of different ligands. These changes in conformation occur naturally in cell conditions

because a protein is a flexible entity that can accommodate different ligands.

Proteins oversee many different functions of the cells: they are in charge of receiving signals,

contract the cell, build new proteins, read and duplicate the DNA, produce energy, etc. We can cat-

egorize them according to the function they perform, their sequence similarity and/or their structural

similarity; each of these categories of proteins is called a protein family.

That proteins are capable of binding different ligands is something proven by the experimental

data, but the exact mechanism of the binding process is still unclear. There are three main theories

about how binding occurs: (i) the lock and key theory, (ii) the conformational selection and (iii) the

induced-fit theory. Figure 1.4 shows a schematic of each theory

The first theory that tried to explain the ligand binding process is the lock and key [20] proposed

by Fischer in 1894 (Figure 1.4b). According to this theory the ligand and the protein are rigid

entities that fit perfectly with one another. The binding occurs when the protein and ligand meet.

The second theory is the conformational selection [22] proposed by Frauenfelder, Parak, & Young

in 1988 (Figure 1.4a). According to this theory the protein and the ligand are flexible entities that

sample a given number of conformations, the bound conformation among them. The binding occurs

when both systems happen to have the right conformation.

Lastly in 1958 Khosland, proposed the induced-fit theory [48] (Figure 1.4c) which states that
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the protein undergoes the conformational changes needed to bind the ligand when this is in close

proximity, and both elements change their conformation to fit perfectly.

Nowadays, with all the experimental data that we have at our disposal the lock and key theory

has been discarded, and the binding process is described using the conformational sampling theory,

the induced-fit theory or a mix of both theories. These theories treat the protein as a flexible entity,

making the protein flexibility a key point, even if traditionally neglected, of the drug discovery

process.

We have now introduced the third important concept of the thesis: the IF; we’ll try to model it

using the PELE software.

So far, we’ve seen what is a drug that targets a protein, what is this protein and how the drug

binds to the protein, which can be explained by a mix of the conformational selection and the IF

mechanisms. The last basic thing we need to know is how to differentiate between the compounds

that will become good drugs and those that won’t.

The ideal measure of a compound’s potency, or binding affinity, is the Free Energy of Gibbs

or ∆G; which tells us how good a binder is. Usually, experimental assays, however, measure half

maximal inhibitory concentration (IC50), the dissociation constant (Kd) or the inhibition constant

(Ki).

The IC50 value is the concentration at which the compound inhibits the biological function of

the protein by half. Kd is an equilibrium constant measuring the dissociation/association of a given

ligand. In addition, it equals the concentration of the free ligand at which half of it is associated

with the receptor. Ki measures the equilibrium constant in competitive inhibition studies, and it’s

equivalent to Kd in single ligand cases.

Keq =
IC50

1 + [L]
Km

(1.1)

∆G = −RTln(Keq) (1.2)

The IC50 value can change depending on the experiment used to obtain it, thus it cannot

be compared among different targets or even the same target if the experimental conditions have

changed. But it can be converted to the equilibrium constant (either Ki or Kd) using the formula in

equation 1.1 where Keq is the equilibrium constant, IC50 is the value obtained from the experiment,

[L] is the maximum concentration of the ligand used for the experiment and Km is the concentration

of ligand at which the target’s activity is at half maximal.

In turn the equilibrium constants (Ki or Kd) can be converted into ∆G value using the equation

1.2. Where the R is the gas constant, T is the temperature and Keq is the Ki or Kd values.
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1.1.2 Drug discovery process

The drug discovery process is a long and expensive process with really high attrition rates. This

process can be divided in the following stages: (i) target discovery, (ii) target validation, (iii) hit

finding, (iv) hit to lead, (v) lead optimization, (vi) pre-clinical stage and (vii) clinical stages.

The exact number of compounds that make it from the VS campaign to the market is really

difficult to obtain, since most of the research is kept confidential until the compound reaches the

clinical phases. The success rate of the clinical phases can be computed from the public information

available, but it’s a complex calculation highly influenced by the data used [14, 35, 77]. The latest

analysis show that the probability of success of the clinical phases also varies greatly depending on

the study’s target [77]. Roughly, only 10% of the compounds reaching clinical phase I eventually

reach the market.

We can say there are two main reasons for this low rate of success: (i) the apparition of undesired

secondary effects on later phases (toxicity issues and lack of efficacy are the main reasons for the

low success rates in clinical phases) and (ii) the low ratio of true positives derived from the initial

VS that can move to the next phases.

The apparition of undesired secondary effects is a hard to asses problem, because sometimes the

effects cannot be detected until the compound is experimentally tested in a complex model such as

animals or humans, due to the lack of different tissues in the in vitro models and the simplistic model

of the in silico screening where only one protein is studied instead of the hundreds of thousands of

proteins that are acting at any moment in a human body. The prediction of adverse effects is very

challenging as it can be linked to population polymorphisms that are not tested in phases (i) to (iii).

The low ratio of true positives derived from an initial screening of compounds is an equally

complex issue. The most successful high-throughput screening (HTS) can present a 5% of active

compounds, usually it renders between 2% and 3% of active compounds. 90% of the compounds

obtained in this phase will present undesired secondary effects such as toxicity, low solubility or low

activity, which will discard them from becoming drugs. From this percentages it is easy to imagine

how many thousands of compounds have to be tested to obtain a few that will become prospective

drugs.

If we combine these two problems with the fact that the chemical space is almost infinite, we end

up with a combinatorial problem of huge proportions; which cannot be solved experimentally due

to the amount of time and money required to solve it. Thanks to the advances of the computational

methods and technology nowadays we can tackle this problem by using computational methodologies

called VS.

The VS methodologies include any and all the computational methods used during the drug

discovery process. These methodologies allow us to test more compounds, in a more inexpensive

and quicker way [28]. These methodologies do not replace the experiments completely but are used

as a complement to the experimental HTS assays.
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In a HTS assay from 1000 compounds to 100000 compounds are tested, depending on the re-

sources available and it can take from months to years [43]. While with the VS methodologies we

can test millions of compounds in a few days.

1.2 VS state of the art

Thanks to the general improvement of the computational field, both the resources at our disposal

and the computational methods have evolved rapidly over the last decades, and thus the VS process

has evolved from an experimental methodology that may or may not improve the results, to an

integral step in this process. The VS process allows the researcher to improve the quality and

increase the chemical variability of the compounds chosen to undergo further experiments, at the

same time reducing the cost and time spent searching for compounds that may become prospective

drugs [28].

The VS process is nowadays an important step of the drug discovery field, that encompasses

different stages in itself starting from filtering compounds from databases to the structural studies

of how the compounds may bind the receptor; thus, even providing information on the mechanism of

action of the compounds. There are many good reviews that explain in more detail the complexity

of this process and the possible steps in which it can be divided. [28, 51, 53, 21, 8, 57, 12, 31]

For the scope of this thesis what we need to know is that the VS methodologies can be divided into

two categories: the ligand-based VS (LVS) and the structure-based VS (SVS). The main difference

between these two types lays in what they base the search of new compounds on [5, 46, 21].

The classification of the VS methodologies into LVS and SVS doesn’t translate into a separation

of techniques. Some techniques such as molecular fingerprints or pharmacophores [52, 3] can be

included into both categories depending on the structure they use to build the models.

This categorization of the methods doesn’t make them incompatible, in fact in many cases

the process involves the use of both types of screenings in a hierarchical manner. First, the LVS

techniques are used to filter the millions of compounds available. Once filtered the SVS is used to

further filter the compounds and to estimate their affinity to the target.

1.2.1 Ligand based VS

The LVS uses the known ligands to look for new compounds based on their properties; this type of

methodologies are usually faster than the SVS and present similar results [65, 50]. These methods

are dependant on the existence of known ligands of the receptor.

The LVS can be divided into 2-D methodologies and 3-D methodologies [21], depending on

whether they take into account only the type of atoms and bonds present in the molecule while

performing a similarity search [59] or they take into account the conformation of the molecule.
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In this category we can also include the filtering criteria used to choose compounds based on

their physico-chemical properties such as the Lipinski rules [56], the number of rotatables bonds

present in the compounds, since it has been shown their influence in the oral availability of drugs

[75, 2] or their logD, which has been proven to influence the drugs intestinal permeability [19].

The main issue with this type of methodologies is that they require the knowledge about known

ligands, in most cases this information will be available, but for the most novel targets we may not

have it. The other issue that may arise is that this type of methodology tends to produce similar

compounds to those already known; which is a problem if we are searching for novel compounds to

patent.

1.2.2 Structure-based method

The SVS uses the structural information of the receptor, or when available the information about

known ligands-receptor complexes. This information can be obtained from a structure derived from

experimental methodologies or from modelling processes [11].

In this category are included plenty of techniques such as pharmacophores derived from the

receptor’s structure, the fingertips describing the ligand-complex interactions [13], docking and even

molecular dynamics (MD).

In order to use these methodologies, we need to know the target’s structure, or at least the

structure of proteins with a similar structure, in order to create a homology model. Since proteins

from the same family are assumed to present similar structures, due to the similarity in their sequence

and function, they are used to create models of the target’s structure.

For those targets where we have structural information about how they bind to known com-

pounds, or known ligands, we can extract the BP characteristics. This information can be added

into the search for new compounds in order to better filter them.

However, if this information is not available, there are methods that allow us to estimate the

BP such as homology modelling or druggability studies. Also, some of these methods, like the

pharmacophores or docking ones, can be used to make exploratory searches over compound databases

that bind to the expected BP.

One of the most common techniques used to search for new prospective ligands, or hits, is the

docking methodology. The common step among all the docking techniques is the modelling of the

protein and the ligand as two grids that need to interlock with the minimum clashes possible. In

order to do so they split the process into two steps: the sampling and the scoring. During the

sampling phase the ligand explores the 3D space looking for the empty gaps inside the BP, thus,

optimizing the contacts and minimizing the clashes between the molecules. In the scoring phase the

poses are scored, and the program selects the best one based on this score.

When these technologies appeared both grids were considered rigid and the ligand was simply

moved in the 3D space in order to match the BP during the sampling phase. As the computational
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resources available improved, these technologies started to take consider the ligand flexibility, by

using multiple conformations of the molecule which undergo both phases. The main differences

between the different docking techniques lay in how they asses the sampling phase and the score

they use.

1.2.3 Incorporation of flexibility to the docking

As mentioned before, nowadays most docking methodologies take into account the flexibility of the

ligand but still neglect protein flexibility due to the computational cost required to account for it.

Nonetheless, in the last years several methods to incorporate this flexibility have appeared. These

new methods have been shown to be able to obtain prospective ligands in several cases [41].

Several of the methodologies used have been based on the ensemble docking methodologies [40],

where the docking is performed on multiple structures of the same target. In this category we

can find programs ready to use multiple structures for the docking such as HYBRID and FRED

programs [64, 63] owned by OpenEye, or the 4D docking developed by ICM [73]; and programs that

provide tools to generate the multiple structures needed and/or analyse the results of a traditional

docking over multiple targets of the same protein. The methods used to obtain the structures needed

for the ensemble docking can include: the generation of multiple structures using experimental

methodologies such as X-ray (crystals with different ligands but same receptor) or NMR experiments;

the use of different snapshots obtained from a simulation [18] or from modelling approaches.

There are also methods capable of performing structural re-arrangements by means of adding

a step where the sidechains present in the BP explore several possible conformations in order to

somehow emulate the IF effect. Some of the methodologies included in this category are the IFD

developed by Schrödinger [72] or the SCARE methodology from ICM[7], which mainly perform a rigid

docking on a modified BP to minimize steric clashes and then samples sidechains of the residues that

clash with the best poses, but these methods do not sample the backbone. Although these methods

are almost as quick as the traditional docking methodologies and are capable to reproduce some of

the IF effects, due to the lack of backbone sampling, these methods aren’t capable of reproducing

big conformational changes affecting the protein’s backbone.

The other way to account for target flexibility when performing SVS is to use MD or other

simulation methodologies such as MCPRO from Jorgensen[44] or ProtoMS[78] from Essex’s lab. As

we have seen, the simulations can be used to obtain multiple structures of the receptor (or target)

in order to perform the docking. It can also be used in order to perform mechanistic studies of

the binding procedure or to introduce the IF effect and to estimate the binding affinity or ∆G of

a compound. [41]. These methods allow to reproduce any kind of IF effect produced upon ligand

binding., Nevertheless they are also extremely time-consuming: while a traditional docking can

asses thousands of compounds in just a few hours, these methodologies require several hours per

compound to asses.
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1.3 Introduction to PELE and examples of use

Figure 1.5: This image represents the steps that the PELE simulation performs. It has been ex-
tracted from the book: Monte Carlo Techniques for Drug Design: The Success Case of PELE [27]

The PELE Method

PELE [45, 58, 6] introduces an unconventional Monte Carlo (MC) procedure where a stochastic

perturbation is followed by a relaxation step using protein structure prediction algorithms. The

code was intended to map the energy landscape of a protein-ligand complex and expanded later to

model protein-protein and protein-DNA interactions. It was designed to use massively parallel High

Performance Computer (HPC) , where a computing core runs an individual trajectory; typically,

simulations involve from tens to hundreds of processors for thousands of MC steps.

More in detail, the heuristic MC procedure of PELE involves the following steps (Figure 1.5):

Ligand Perturbation. The ligand, which is built by a rigid core and a set of rotatable fragments, is

initially perturbed by forcing a translation and a rotation. From a list of different perturbation

poses (typically between 1 and 20) PELE chooses the one with the lowest total energy. Each

pose is randomly generated, where several moves are tried until a free-clash combination is

found. Based on the different goals, translation and rotations take different values: a binding
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site search uses large translations (around 3-6�A), while a local exploration of the active site is

typically restricted to values ¡ 1�A. To enhance the sampling of rare events, the translational

vector may be kept for a given number of MC steps.

Protein Perturbation. As a second step, the backbone is perturbed following normal modes cal-

culated using the Anisotropic Network Model (ANM) or a user-given vector(s), for example

built from a Principal Component Analysis (PCA) derived from X-ray structures, molecular

dynamics, etc. It is possible to use a single mode, or to mix several ones; if using ANM (the

most common approach) modes are selected from (typically) the 6 lowest frequency modes,

since they are the ones more closely related to conformational movements. To apply the move-

ment harmonic constraints are placed on the CAs target positions, and an all-atom energy

minimization is performed using the multi-scale Truncated Newton algorithm.

Side Chain Sampling. Side chains readjustment is done for a selected list of residues, such as

those surrounding the ligand. The side chains that increased their energy the most along

the previous perturbation step, and for the ligand itself. The sampling first considers only

rotamers as possible conformations and places the best rotamer (after clustering) in a residue

by residue way. This is iterated until two rounds do not significantly change the prediction.

Minimization. The sampling procedure ends by a multi-scale Truncated Newton minimization

where atoms representing the nodes in the ANM phase might be weakly constrained (so we

do not undo the perturbation).

As in other MC procedures, the resulting structure is then accepted or rejected based on a Metropolis

test. Overall, each MC step takes between 20 seconds and a minute, depending on the system size,

number of perturbation tries, number of side chains to predict, etc. PELE uses the OPLS 2005

or the AMBER99sbBSC0 energy function and parameters along with one of the three different

implicit solvents implemented: the OBC model [70] with a non-polar term following the ACE model

[25], the Surface Generalized Born (SGB) model [24] and the Variable Dielectric Generalized Born

model [62]. PELE allows placing specific discrete water molecules and has recently incorporated an

additional perturbation step performing a quick MC on selected explicit waters (following the ligand

perturbation). In addition, an enhanced sampling strategy using adaptive techniques and reward

functions has been recently introduced, AdaptivePELE [55]. In this approach, several iterations of

standard PELE simulation are run for a reduced number of MC steps ( 4-20): the epochs. After

each epoch, all conformations are clustered and each cluster is assigned a reward value that favours

(by default) clusters less explored; additional rewards might be defined from user defined properties

such as reaction coordinates, ligand exposure to solvent, etc. Then, the next epoch is started using

selected conformations based on the reward function, as new seeds.
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Examples of PELEs applications

PELE was designed to map ligand migration pathways. In its initial application, with only few hours

of a small computational cluster (4 cores) it mapped how a palmitate fatty acid escaped the fatty

acid binding protein, without any bias [55]. The fast performance of PELE , for example, allowed the

first ligand migration study on the (tetramer) human hemoglobin, identifying differences between

the α and β subunits and between their T and R states [71]. Using larger HPC resources, PELE

could perform a complete non-biased exploration, mapping the entire active site search and binding

on significantly challenging systems, such as prolyl oligopeptidase [49], the binding of porphyrin

into Gun4 [47], or in cisplatin non-covalent binding into a DNA receptor, etc. [10]. Such type of

analysis was further enhanced with the development of AdaptivePELE [4]. This procedure improved

approximately one order of magnitude the exploration performed by PELE , as seen in its applica-

tion in GPCR or in Nuclear Hormone Receptors . PELE’s modelling capabilities drove significant

biomedical/pharmaceutical studies, attracting, in addition, the interest from some pharmaceutical

companies. Application studies included research on cancer targets such as mTOR [17] and BCL-2

[39], on the glycosylation disorder through the study of the human phosphomannomutase2 receptor

[1], and on diverse NHRs , in collaboration with AstraZeneca [16, 30]. Additional biomedical stud-

ies in this line, for example, include the prediction of drug resistance in the HIV protease (hiv)-1

protease receptor, where PELE was able to (blindly) identify high resistance patients using their

viruses sequence data [37].

Besides biomedical applications, PELE has been successfully used in enzyme engineering biotech-

nological applications. Mutational designs have introduced improved enzymes on several systems,

including oxidation of secondary alcohols in flavin systems, 2-phenyethanol oxidation in toluene

4-Monooxygenase [38], laccases [26], etc.

We’ve chosen to use this methodology for the thesis because, although it is a simulation method-

ology, it allows us to perform both local and global samplings in a short time. The user can choose

to perform a local sampling, consuming as little as half an hour, or to perform big conformational

changes, in several hours. The usual simulation is in the middle of these two types of exploration,

optimizing the sidechains while allowing for some small changes in the backbone, and it takes a

few hours. PELE has been developed by the EAPM group in the Life Science department at the

Barcelona Supercomputing Center (BSC), where this thesis has taken place.
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1.4 Objectives

In the last years the protein’s flexibility has been proven to be a key point for the VS procedure. As

such several methods and procedures have been developed to take it into account.

The focus of this thesis lays on the development of methodologies that allows us to use PELE

on VS campaigns.

1. The development of a platform to allow the use of PELE in VS campaigns where thousands

of compounds need to be tested in silico.

2. The development of a general simulation protocol capable of improving the VS results com-

pared to a gold-standard methodology

3. The use of the developed platform and simulation protocol in a real-life industrial VS campaign.



Chapter 2

PELE VS

This chapter explains the design and implementation of the PELE VS platform, which I’ve developed.

The platform is capable of generating a ranking of the compounds provided based on their estimated

activity, taking into account the IF effect they produce on the protein, by performing a PELE

simulation and computing several scoring functions (SFs).

This platform automatically prepares and analyses PELE simulations, selecting the best struc-

tures from each of the simulations, and re-scores them using multiple scoring functions to generate

a ranking of the compounds.

The platform is also capable of introducing mutations into the proteins structures and plac-

ing missing atoms into the protein residues. This allows the user to use incomplete structures or

introduce mutations into known crystals in order to observe the possible changes in activity.

It can also compute several public and proprietary scoring functions and generate a .csv file to

simplify analysis. This way the user can study how well the different SF perform, combine them

into one, or just pick the best one according to the user’s criteria.

In this chapter I’ll explain the PELE VS platform developed during this thesis. The main purpose

of this platform is the automation of our procedure due to the amount of data to be treated and the

repetitive nature of the processes involved.

2.1 General Problem description

During a VS campaign up to a few millions of compounds are assessed in a short period of time using

computational techniques. The result of the VS is a ranking of the assessed compounds, according

to their estimated affinities. The top compounds from this ranking will be experimentally tested to

ascertain their binding properties and their fitness as a drug candidate.

We hope that by introducing a short simulation, done by the group’s simulation program PELE,

we can improve the protein-ligand complexes structures, in order to create a new ranking with any

15
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of the supported scoring function (SF). We expect that the new ranking has either a better ratio of

true binders in the top positions or that the potency of these compounds is better, ideally both will

be attained. Due to the computational cost of our approach, we don’t expect to asses millions of

compounds, but thousands of them.

In order to process thousands of compounds the procedure needs to be automated. If we were

to do it manually, the initial preparation, launch, and analysis of the simulations of approximately

200 compounds can take up to 2 months of work.

A second step would be to compute all the SF supported by the platform, when done manually

one by one it requires up to another 2 months. The last step is to extract the data from the outputs,

which amounts to another month.

If we want to apply our procedure to thousands of compounds, doing so manually would take

years, which is unsustainable. Thus, we need to automate the procedure in order to make it efficient

and competitive in a VS campaign.

2.2 Protein preparation

This section explains the mut prep4pele module. It explains what problem is solved by this module,

the workflow designed to solve the problem and finally how the workflow has been implemented.

Each of these explanations corresponds with one of the following subsections: 2.2.1, 2.2.2 and 2.2.3

2.2.1 Problem description

The first requirement of our simulation program PELE, is a 3D structure of the protein with no

missing atoms. It also requires a non-standard nomenclature for certain residues; mainly those with

multiple protonation states. Finally, like many other simulation programs, it requires that the atoms

of the protein are named in a specific way.

In order to obtain structures that meet the aforementioned requisites I’ve developed a program

called mut-prep4pele which is available at https://github.com/Jelisa/mut_prep4pele. This pro-

gram is capable of placing hydrogens, complete residues with missing atoms in their sidechains and

produce mutated structures for the 20 standard aa.

The program will change residue names and atom names to match the naming requirements of

PELE. If the structure is complete and it has the protonation states already set, the program won’t

modify them; otherwise the program will set the standard protonation states.

The standard protonation states will render: the arginine and lysine positively charged, the

glutamate and aspartate negatively charged and the histidine neutral with the hydrogen placed on

the carbonE atom.

Another requirement of PELE is that the ligand should be placed in its own chain and if it is

not of proteic nature its atoms should present no repetition of names; in consequence, the program

https://github.com/Jelisa/mut_prep4pele
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has the option to change the atom names to make them unique inside a specified chain.

PELE is also used on the field of enzymology, where the research is focused on improving the

protein’s activity by modifying its BP, which means introducing mutations onto the protein. Thus,

the program has the option to introduce mutations into the proteins.

2.2.2 Workflow

Figure 2.1 is the graphical representation of the main program’s workflow, which will be explained

in more detail in the following lines.

The program input is the complete path to a 3D structure of a protein or protein-ligand complex

and the options chosen by the user.

The program parses the options chosen, which involves making sure the options provided are

valid, and if a mutation is required, check whether it’s valid or not.

Then the program tries to read the 3D structure provided by the user. If it’s unreadable the

program will generate an error and crash, otherwise it will read the file and find the initial and last

residues present.

If the structure presents insertion codes, the program will renumber the structure to eliminate

them. The insertion codes are used when two residues have the same residue number in order

to differentiate them but PELE is unable to work with them correctly. Thus, when present, the

program will renumber the structure to eliminate them.

Then, the program will check for the presence of gaps in the structure using a distance criterion.

With the crystallization process sometimes the more flexible parts of the proteins cannot be obtained

thus generating an incomplete structure with gaps. The program will detect a gap if the C atom

of a residue and the N atom of the following one are at more than the user-defined distance, the

pdb resolution option, or a default value of 1.55�A. The resolution of a pdb file sets the minimum

distance at which the bonded atoms can be placed without error, that means a pdb file with a

resolution of 3�A can present this distance between the C atom of a residue and the N atom of the

following residue without presenting any gaps, thus this bigger distance should be used to avoid

detecting inexistent gaps.

The following step that the program performs is to fix the residues’ names to match the PELE

nomenclature. In this step the program checks whether the residues’ names match the PELE nomen-

clature or not. If they don’t match the names will be changed to match the nomenclature. It will

look for the hydrogens present for the histidine, lysine, glutamic and aspartic aa and depending on

them it will adopt the residue name respective to the protonation state.

Next, the program checks and fixes the atoms’ names. During this step the program will ensure

that the atoms of each residue match the atomic names of the residue with the PELE nomenclature.

Then, the program will check the structure looking for any missing atoms, any extra atoms, any

metal to coordinate and the residues without a PELE template. The presence of the two first cases
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Figure 2.1: mut prep4pele.py flowchart.
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requires that the structure is fixed; in case of metals to coordinate the program will provide this

information to the user so they can take them into account when preparing the PELE simulation.

The user should be aware that mutprep will only correct those residues with a template.

If there are any extra or missing atoms the program will eliminate or add the needed atoms

or transform those that need to be changed. The atoms will need to be changed only if the

charge terminals option is chosen, in which case the program will add one extra hydrogen atom

to the N-terminal residue so it’s positively charged, and transform one hydrogen atom into an oxy-

gen atom and eliminate one hydrogen from the C-terminal residue.

Following the check and correction of the structure to meet the PELE requirements the program

reaches a point where its dual nature shows. On one hand, this program is designed to introduce

mutations to the protein structure provided while ensuring their “correctness” to be used by PELE.

On the other hand, it’s been adapted to meet the needs of VS campaigns.

If no mutation is provided the program will check the option make unique. If it has been used,

the program will change the atoms’ names of the chain provided by the option in a way that no two

atoms present the same name.

Otherwise, for each mutation provided, the program will check whether the mutation is valid or

not. If it’s valid it will apply the mutation, then check for clashes and try to solve them.

In any case, at the end of both paths, the program will write the new structure obtained into a

.pdb file.

2.2.3 Implementation

In this subsection we’ll present how the previous workflow has been implemented into several pack-

ages and classes, and how do they interact. We’ll also present the module’s dependencies and its

inputs, outputs and options as well as an example of use.

Dependencies

The script has the following dependencies:

ProDy 1.8.X A library to read 3D structures of biomolecules in pdb format and manipulate them.

Numpy A mathematical library.

Modules

Figure 2.2 shows each of the modules and their relationships. This program is quite complex and as

such its composed by one main module and 11 auxiliary modules.

There are three basic modules that provide information to the rest of the program: the

enviroment parameters, the parameters help and the global variables modules. The mod-

ules on this level do not present dependencies to other modules, while being extensively used by



CHAPTER 2. PELE VS 20

Figure 2.2: Module’s relationship for the mut prep4pele package.

the modules in the next three levels of the tree. The enviroment parameters module contains

information about where the program is installed, and its only variable should be modified upon

download of the program. This variable allows the user to call the program from wherever he wants.

The parameters help module contains all the information about the program options. Lastly, the

global variables modules contains all the constant variables the program may need.

On the next level of the module’s tree in Figure 2.2, we find the modules: global processes,

program own classes and coordinates modules.

The global processes module contains the general use functions. As such it contains the

functions that process the options provided to the program and the functions that affect the whole

protein at the same time. This module depends on the parameters help and the global variables

MODULES.

The program own classes contains the implementation of the two classes developed for this

program. The coordinates module contains all the functions used to modify a residue’s position,

or the atom’s positions. This module depends on the enviroment parameters. This dependency

is due to the classes’ dependency on the information contained in the Data folder; this folder is

provided with the program thus the dependency at the module’s level.

The coordinates modules contains the functions in charge of computing and modifying the

atom’s coordinates, together with the functions implementing the mathematical functions needed.

This module doesn’t depend on other modules.

On the middle level of the tree we have the checks module, the mutations map and the

hydrogens addition modules.

The checks module module contains the functions that perform any kind of check. The checks

the program has to perform go from checking the requested mutation, to check the protein’s

structure. This module depends on the global processes, the program own classes and the

global variables modules. The module uses just one of the implemented functions in the

global processes module one time inside one of the function’s implemented. While the other
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(a)

Figure 2.3: UML representation of the classes used by mut prep4pele.

two modules needed are more extensively used throughout all the functions implemented in this

module.

The mutations map contains the information about how the program should perform the muta-

tions. This module has no functions and it has no dependencies on any other modules. Although

the information in this module is constant, it’s only used by one other module, thus I decided to

incorporate it into a separate module from the global variables module.

The hydrogens addition module contains the functions needed to place hydrogen atoms into

the protein. This module depends on the coordinates modules.

At the fourth level of the tree there are only two modules: the adjustments module and the

mutational module.

The adjustments module contains functions that perform corrections on the protein to ensure

that its format and its structure won’t cause a malfunction of the simulation program PELE. This

module depends of the following modules: global processes, checks module, global variables,

program own classes and coordinates modules.

The mutational module implements the functions in charge of performing the mutations and/or

modifying the protein’s structure. It depends on the modules: checks module, program own classes,

coordinates modules, mutations map and hydrogens addition.

The last level contains the main module, the mut prep4pele module. This is the module

the user should invoke in order to use the program. The programs depend on the modules:

global processes, checks module, adjustments module and the mutational module.
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Classes

Figure 2.3 shows the UML representation of the classes and their relationship. As we can see, the

program has two independent classes: the ROTAMERLIB class and the ZMATRIX class.

The ROTAMERLIB is used to parse and store the information contained in the rotamer libraries files

used by PELE. These files contain the information about how the aa sidechains can be positioned.

This information is used to minimize the number of sidechain’s clashes of a mutated residue with

the rest of the original protein.

The ZMATRIX class stores an extended Zmatrix information extracted from the PELE Templates.

The Zmatrix of a molecule gives information on the canonical bonding distances, angles and dihedral

angles present. The PELE Templates also provide information on how the molecule’s atoms are

connected, and energetic information, this information is also saved into the class, thus the extended

Zmatrix. This class is used whenever a modification of the protein has to be done. It’s also used to

check the correct form of the residues.

Input and Options

The script has only one mandatory argument, and then it has several optional arguments.

Its only mandatory argument is called input pdb or ipdb. This parameter specifies the path to

the .pdb file(s) with the structure(s) to prepare for PELE or mutate.

Additional arguments include:

output pdb or opdb takes the path to write the final pdb. If it isn’t specified, the program will

generate a pdb with the same name as the initial pdb but with the suffix processed.

mutation or mut specifies the desired mutation(s). It should be a string with the desired muta-

tion(s) in the following format: ’residue XXX N to YYY’ where: XXX is the original residue,

N is the number of the residue and YYY is the desired aa. The names of the residues should

be the three letters code for the aa, with the exception of the histidine residue for which one

of the following names should be used: HID, HIP, HIE, depending on the desired protonation

state.

mutants from file or mut file specifies a path to read the output names and the mutations from a

file. The file should have one mutation per line and no blank lines. Each line should have the

following format “output name→XXX N C YYY ”, where: → indicates a tab space, marks

a space character, XXX is the initial aa in 3 letters code, N the residue number, C the chain

to modify and YYY the desired aa in 3 letters code.

mutant multiple argument is a flag to indicate that all the given mutations should be placed

on the same 3D structure. When present the program will create one structure with all the

mutations specified without checking for steric clashes.
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charge terminals option is a flag to indicate the program that it should charge any terminal

residue, those at the beginning and ending of the sequence and those involved in a gap.

no gaps ter option is a flag. When this option is present the program won’t add a TER mark

whenever it finds a gap in the sequence.

pdb resolution takes as argument a float indicating the pdb resolution. This number will be used

as the maximum allowed between the N atom of a residue and the C atom of the previous

residue when checking for gaps. In this check the minimum distance that will be used is 1.55A.

make unique option takes a single argument: a letter from the alphabet. It should be used to

specify the name of a chain present in the structure for which the program will set unique

atom’s names.

remove terminal missing option is a flag. when chosen the program will remove the terminal

residues in case they are missing heavy atoms in the backbone of the protein(that is: N, CA,

C, O).

The mut prep4pele.py script is the main module in the mut preplibrary package

2.3 Virtual Screening Framework

This section explains how the VS platform general workflow, its structure and the reasons behind

the platform’s design.

The problem this framework wants to solve has been previously explained in Section 2.1. In sum-

mary, this framework aims to rank the provided compounds according to their estimated ∆G, taking

into account the IF effect. In order to account for the IF effect we’ll perform PELE simulations; to

estimate the compounds ∆G, we’ll use a SF.

2.3.1 Workflow

The platform workflow has five parts: (i) simulation preparation, (ii) PELE simulation, (iii) pose

selection, (iv) re-score procedure, (v) and (vi) other analysis tools. Each and every ONE of these

parts is automatized, and most of the code was developed during this thesis, with the exception of

the part (ii) which is manual and only uses the group’s software PELE.

The workflow depicted in Figure 2.4 represents the aforementioned parts; although the names

that appear in the image agree with the names of each of the packages that compose the framework

instead of the parts names. Each of the packages implements one of the parts mentioned at the

beginning of this subsection.

The reasons for this division of processes is a combination of the amount of computational

resources needed for certain steps and the licensing of the external programs used, which prevent the
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Figure 2.4: The VS framework general workflow. The names agree with the module’s names that
can be found at the GitHub repository.

installation of the software in certain types of machines, thus, the different steps are run in different

machines rendering the complete automatization of the platform too complex for the scope of this

thesis. Nevertheless, the development of a wrapper script that allows the complete automatization

of the whole process should be an easy task if all the programs are present in one place.

The platform input is a series of files containing 3D structural biomolecule coordinates, which

can either be protein-ligand complexes (with the same or different proteins), or a series of ligands

and one receptor with which the ligand-protein complex will be formed. Independently of the type

of input provided, the first step of the platform will generate a folder containing all the files and

data structure needed to perform PELE simulation for each of the files in the input.

The PELE simulation has to be launched by the user manually, wherever they have installed

the software. During this simulation, from hundreds to thousands of new structures are generated

depending on the parameters, for each of the files provided; the new structures generated represent

the same biomolecule as the initial one but with some changes in their conformation (structural

rearrangement). Thus, from now on, they’ll be called poses.

Then, the platform selects the best pose(s) according to a metric selected by the user. These

poses will be extracted into a folder selected by the user, and in this folder there will be one sub-folder

per input containing the extracted pose(s) of that system.

The next package will compute the selected SF for each of the inputs provided, generating one

output file per selected score and input file.

Lastly, another package will extract the scores values into a csv file, which will rank the different

ligands or complexes provided as the initial input.
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Each package is composed of several modules that work together for one purpose, with the

exception of the package 04 analysis tools, which is a compilation of simple stand-alone scripts used

to perform different types of analysis or tasks, such as plot energy profiles or merge all the reports

produced by PELE.

In order to better understand what each part of the framework is responsible of, each of the

packages is explained in more detail within the following sections with the exception of the package

called 04 analysis tools. Due to its toolbox nature; all the other packages present several options

and can be used in many forms, but always with the same goal.

2.4 Simulations preparation

2.4.1 Problem description

This package meets the need to automatically generate all the files and folders needed to run a PELE

simulation.

In order to perform the simulation, PELE requires a pdb file containing the biological system to

simulate and the Data and Documents folders. The Documents folder contains information about

the format of the control file for the PELE simulation, while the Data folder contains the Templates,

RotamerLibraries and solvent information for the common aa that form the proteins, and for the

most common molecules present like waters, and some ions.

In order to store these files for our specific system like: the ligand, non-natural aa, heme groups,

etc. we can either modify the Data folder and add the needed files or use the DataLocal folder. Due

to the size of the Data folder and the fact it’s needed for all PELE simulations the recommendation

is to have only one general copy of Data, and to use the DataLocal folder to store the data of our

specific system.

As we’ve seen, we need a few files to run PELE simulations; to launch this process manually for

one system is not a problem, it can take from 2 to 10 minutes. However, when we need to prepare the

files for a thousand systems, the 2-10 minutes become 33-167 hours. Since in a VS campaign we’ll

work with thousands of compounds the amount of time needed to prepare them manually becomes

absurd. Thus, we need to automatize this process.

That is this module’s main function: to automatically prepare all the files needed to run thou-

sands of PELE simulations. The script will generate one folder for each input file containing all the

data needed to launch a PELE simulation. In order to generate this data structure the user should

call the sims preparation.py script inside the 00 pre sim folder of the VS framework repository,

which uses a couple other supporting scripts inside the folder and calls a couple external scripts

developed by other members of the group.
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2.4.2 Workflow

Figure 2.5: Sims preparation.py flowchart.
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In Figure 2.5 we can observe the flowchart describing the program’s workflow. The main function

of the program is to create one folder containing all the information needed to run a PELE simulation,

for each file in the input. In order to achieve this, the program takes several steps and may skip

those systems that, for any given reason, cannot be simulated.

The first step is to read all the input files into a list. Next it checks whether the output folder

where the data should be generated is created or no. If it doesn’t exist it asks the user if it should

be created, if so, the program will create the folder, otherwise it will stop.

The second step is to understand which kind of data the program is dealing with as input: either

simple ligands or complexes protein-ligand. In order to do so it checks whether the receptor option

has been selected or not.

If the receptor option hasn’t been selected the program will treat the input files as protein-ligand

complexes files and process them. On the other hand, if it has been set, the program will use the

structure provided by this option as the protein receptor and it will treat the input files as small

molecules.

This means the program will check whether the file provided as receptor is in pdb format, or

not, and if it isn’t it will convert it to .pdb format. Then, it will launch the external program

mut prep4pele.py to ensure that the receptor has the right format to enter the PELE simulation

software, and that the chain chosen to contain the ligand (provided as input) isn’t already in use on

the receptor structure.

The next step is to iterate over all the input files provided until all the files have been processed.

For each of the files provided the first step is to pre-process the file, in order to do so two sub-actions

are taken: (i) create the basic data structure and (ii) check the format.

To perform the first of these steps, the program will extract a general name out of the complete

path provided for the file by using only the name of the file without extension, and then it will

create a folder named with the general name inside the output folder. The second step consist in

checking whether the file is in one of the supported formats or not, if it isn’t in .pdb format it will

be converted to it.

After this pre-process of the provided input file, the program will perform different operations:

if it’s a ligand, the program will generate the ligand-protein complex; and if it’s a ligand-protein

complex, it will extract the ligand.

In case the input files contain only ligand structures, the program will first call the mut prep4pele

with the ligand to make sure it complies with the naming requisites of the PELE simulation program,

such as having unique atom names in case of a non-peptidic ligand, and makes sure the ligand chain

matches the one specified by the ligand chain option. Then the program generates the ligand-protein

complex with the receptor provided by merging the processed structures into one. In the case of

ligand-protein complexes, the program first runs the mut prep4pele for the complex, and then it

extracts the ligand from the .pdb file using the chain provided by the ligand chain option.
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On the next step, if everything has proceeded correctly the new folder created should contain

at least two files: the ligand-protein complex in .pdb format, which will be used for the PELE

simulations, and the ligand in .pdb format, that will be used to generate the ligand templates for

the PELE simulation. After this, the ligand file is converted to .mae format using the Schrödinger

converter in order to be able to launch the PlopRotTemp program and generate the PELE templates,

unless the option no templates is used, in which case the file won’t be converted and the templates

won’t be generated.

Next, the program now generates the DataLocal folder inside the new subfolder and the subfolder

structure needed by PELE. Afterwards it calls the PlopRotTemp external program in order to

generate the PELE templates needed for the simulation in a temporary folder; then these templates

are moved into the DataLocal subfolders.

Finally, if the simulation uses the OBC solvent the corresponding subfolder and templates will

be generated also in the DataLocal folder, by means of the solventOBCParamsGenerator.py script.

2.4.3 Implementation

Dependencies

The script has the following dependencies:

• The ProDy 1.8.X library to read and manipulate pdb files.

• The module mut prep4pele.py see section 2.2

• The PlopRotTemp S 2017 module

• Schrödinger Software: Maestro Academic version or private version

• The obc param generator.py script developed by the group.

Modules

This package is composed of the module sims preparation.py as the main module and other 4

auxiliary modules. It also has a dependency on the external module mut prep4pele. The module’s

relationships are depicted in Figure 2.6.

The module enviroment parameters contains all the information about the default values to use

for the program. It includes the path to the external software required by the program and the

default values of the optional arguments.

The constant values module contains the values of the internal constant variables that won’t

change unless the program is modified.
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Figure 2.6: Modules relationship for the 00 pre sim package.

The external software calls contains all the variables used to call the external programs. These

variables contain the general format of the commands to launch the external programs; they’re

completed with the system specific information by the main module.

The help descriptions contains the descriptions of each of the options in the program and it’s

used by the main module to generate the help messages.

Input and options

The program has 4 groups of arguments as input. A mandatory argument group consists on the

input files; an optional arguments group encompassing all the arguments related to the behaviour

of the program options; a PELE options group, which covers all arguments related to PELE simu-

lation characteristics; and an External Software path which involves the options used to specify the

complete paths to the external software called by the program.

Mandatory arguments

The script’s only mandatory argument is the input files, or input, which should consist in a list

of 3D structures to process. If the structures provided are protein-ligand complexes with the ligand

in the default chain to be used, it doesn’t require anything else. Otherwise, if the ligand is present

in a different chain, the user should use the ligand chain to specify the correct chain. Contrary,

if the provided structures are formed only by ligands, the user should provide a protein to form

the protein-ligand complexes using the receptor option. The program will consider all the input

complexes or single ligands depending on whether the receptor option is specified or not, and it isn’t

able to work with both types of inputs simultaneously.

Optional arguments

All the parameters in this group are optional arguments and, if the user doesn’t use them, the

program will use the default values. These parameters are used to define the type of input provided,

where the output should be written, and which steps of the process can be omitted. Summarizing,

the parameters in this group are used to set up the behaviour of the program.
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receptor takes the complete path to a 3D structure to use as the protein receptor for the protein-

ligand complex during the PELE simulations. The structure should be of proteic nature, even

though it may contain waters and/or ions, and it should be encoded in any free format such

as pdb or mol2 or in the Schrödinger’s proprietary format .mae, and it should be correctly

aligned with ligands provided as input. This option should be used only when the files given

with the input files option contain 3D structures of only ligands. Its default value is an empty

string meaning the input files will be treated as protein-ligand complexes.

subfolders path is used to specify the path where the files should be created. This path should

point to a pre-existing path or to a new folder inside a pre-existing one. Its default value is

./, which means the program will generate the folders for each input file into the execution

directory.

conf template or conf file template takes one single argument consisting in the complete path to

a PELE control file template. This template is going to be used by the program to generate

as many PELE control files as needed in order to launch one PELE simulation for each input

file. The default value should point to the template provided with the platform, and it should

be modified upon installation by changing the variable conformational template inside the

enviroment parameters.py file.

conf file suffix takes as argument a string containing any desired suffix to add to the PELE’s

control file’s names. This option is useful when the user wants to create new control files

inside folders with a previous PELE simulation without rewriting nor re-using the previous

control files and in order to reuse the templates. If this option isn’t used the control file

will be systemID solvent.conf where the systemID derives from the input file name, if it’s a

single core simulation and systemID pele adaptive sampling .conf in case of an adaptive PELE

simulation.

adaptive sampling takes the complete path to an adaptive PELE’s control file’s template as single

argument. This template will be used to generate the control file required to launch an adaptive

PELE simulation.

ligand chain takes one argument: a letter from the alphabet. This letter should specify the chain

where the ligand is (if the input consists of complexes) or should be (if the input are ligands)

in the protein-ligand complex 3D structure needed as the PELE simulations starting point.

The specified chain should contain only the ligand and unless it is from peptidic nature, it

should be formed by one single residue. The default value (specified by the ligand chain inside

enviroment parameters.py) is Z, in order to ensure that the ligand is the last molecule on

the 3D file; a requirement of external programs used in later steps.
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no templates is a flag used to tell the program not to generate the templates needed by the PELE

simulation program, which by default are generated. This option is of interest in order to save

computational time (this is the most time-consuming step of the program) when dealing with

thousands of compounds with previously generated templates.

rewrite is a flag to make the program rewrite any pre-existing file. Whenever a pre-existing folder

is used the program will search for and re-use any pre-existing file unless this option is used.

not interactive is another flag option to avoid any possible question to the user. When this option

is used the folder where the data will be generated must already exist.

log file takes the complete path to the log file generated by the program. By default, the program

will generate a file called sims prep log.txt inside the path where it has been launched.

debug is a flag to make the program print several messages at some of the program’s steps. This

option is of use only to the developers of the software.

PELE options

The arguments in this group are used to set up the fields in the PELE control file. All these

fields will be encoded by the different variables present in the control file template. The arguments

can represent values that change with the input, directly represent the value of a variable from

the template file, change depending on where the PELE software is going to be run or are values

susceptible to changes from one simulation to another.

pele folders takes the complete path to the folder containing the Data and Documents folders from

PELE.

pele license takes the complete path to the PELE license folder to use for the simulation. It’ll be

used if the PELE control file template contains the variable license.

every or fix every x atoms takes an integer. This integer is the number of residues without con-

straints and will be used only if the harmonic constraints variable is present in the control

file template. The default number of residues between constraints is 10; due to the implicit

solvent scheme, PELE typically adds a small constraint every 10 alpha carbons, to prevent the

collapse of the system while maximizing interchain contacts.

constraint or constraint strength takes a float number as its only argument. This number is used

as the constraint strength value to use when the harmonic constraints variable is present in

the PELE control file template. Its default value is 0.2 Kcal/�A
2
.

atoms2constraint takes a list of atom’s names; these names must be specified within quotes, of 4

letters length, and include the necessary blank spaces. For each of the names provided with

this option the program will generate a harmonic constraint every N (set by the option every)
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residues on the control file as long as the harmonic constraints variable is present in the PELE

control file template. The default value consists of a list containing only the “ CA ” atom

name, which is the most commonly used atom for constraints.

External Software paths

This group encompasses all the options used to specify the path for the external software required.

All the default values for these parameters are set up in the enviroment parameters.py file, and

they should be updated by the user upon installation to match their enviroment. All the calls to the

external programs are set inside the external software calls.py file and only should be modified

if the user has knowledge about the external software used.

schrodinger path takes the complete path to the folder where the Schrödinger software is installed

(the academic version is enough for this program). This folder default value is set up with

the variable schrodinger path, since this is a proprietary software it may require a license that

isn’t provided with this platform.

plop path takes the complete path to the PlopRotTemp.py script. This is a public software and can

be freely downloaded from the repository PlopRotTemp S 2017 in GitHub (https://github.

com/danielSoler93/PlopRotTemp_S_2017.git )

mutations program path takes the complete path to the mut prep4pele.py program. This ex-

ternal program was also developed during this thesis and it takes care of the structure prepa-

ration so it can be used with the PELE simulation software. It is available as open access

software at GitHub at the address: https://github.com/Jelisa/mut_prep4pele.git

obc param generator takes the complete paths to the script to generate the OBC solvent param-

eters. This external script is called solventOBCParamsGenerator.py and has been developed

by other PhD students from the group.

2.5 PELE Simulation

2.5.1 PELE

As mentioned in the introduction PELE is a simulation program to model the ligand-protein or

ligand-DNA interactions. It’s been used successfully to describe the mechanism of several enzymes

and to find the right binding modes of drug candidates. The PELE program uses a MonteCarlo

approach to explore the ligand’s conformations performing random rotations and translations of the

ligand and then adapting the sidechains of both the ligand and the protein. Finally, it performs a

minimization and accepts or rejects the changes using a Metropolis criteria.

In order to model the ligand and proteins, the program uses a Template for: each aa in the

complex, the ligand and one for each type of molecule not included on the standard aa. The

https://github.com/danielSoler93/PlopRotTemp_S_2017.git
https://github.com/danielSoler93/PlopRotTemp_S_2017.git
https://github.com/Jelisa/mut_prep4pele.git
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Template file contains the information about the aa that the program needs to model it. The

information encloses the type of bond, the length, the angle and the dihedral of the bond for each

atom in the aa; it also contains information about the radius of the atom and the different energies

of the atom.

The program also uses a RotamerLibrary file containing the possible angles the sidechains can

take for the protein and the ligand.

How to launch the simulation is quite easy, the user only has to call the appropriate version of

the PELE program he wants to use and provide it with the configuration file. Although it’s a simple

step depending on where the software has been installed to launch automatically several instances

of PELE will have to be done using different queue systems for the cluster or HPC system used.

Thus, it’s highly dependent on how the user has installed the program. This is the reason why this

step hasn’t been automatized or implemented in this platform.

2.6 Structure selection

2.6.1 Problem description

The PELE simulation generates from hundreds to thousands of structures, depending on the type of

simulation: single core, mpi or adaptive; the length of the simulation and the number of processors

used. The longer the simulation, and the more processors used, the more poses/structures will be

generated.

This program reviews the output from any kind of PELE simulations and selects structures from

the trajectory based on several criteria, such as minimum binding energy, distances, RMSD or energy

clustering, etc. Then it creates one folder for each selected structure containing a pdb file with the

structure. It also generates a file containing how many structures have been selected for each folder

in the input, a file containing the PELE energy (binding or normal) of the selected structure and if

the option is chosen it will also extract the initial PELE energy (binding or total energies).

2.6.2 Workflow

The Figure 2.7 shows the main program’s general workflow. This program processes the output files

generated by PELE.

The first step the program does is to parse the options provided to it; these options are used to

specify the type of PELE simulation previously run, and whether the program should extract the

structures or just the values.

If the program is asked to extract the poses’ structures and not only the statistics it will generate

a folder where each of the selected poses will be placed inside its own sub-folder.

Then, it iterates over all the paths provided as input until all of them have been processed. The
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Figure 2.7: structure selection.py flowchart.

first step in this iterative process is to check whether the path provided is actually a folder or not;

if the path isn’t a folder it will be skipped.

Next, the program parses the report files generated by PELE. All possible PELE runs generate

similar report files, but how many there are, and how they are structured in folders, depends on

the type of PELE simulation run. The single core PELE simulation only generates one report file

and one trajectory file inside the output folder; while the mpi simulations generate one report and

trajectory per CPU used for the simulation, and the adaptive methodology generates one folder per

epoch (see section 1.3 for more information) and inside each of these folders it generates one report

file and one trajectory per CPU used.
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Figure 2.8: Modules relationship for the 01 sims review package.

Afterwards, the program will filter the data if required to, and then it will select the best

structures according to the selected methodology, using the report information.

Finally, it will generate the output files. First, it will create a subfolder inside the general

output folder and write into it the selected poses, unless the option only statistics has been selected.

Secondly, it will generate one .csv file containing all the information present in the report files for

each of the selected poses.

2.6.3 Implementation

The script has the following dependencies:

• The pandas library

Dependencies

Modules

This package is formed by two modules: the main module called structure selection and the

auxiliary module parameters help. The parameters help module contains the description of each

of the options of the program while, the structure selection module implements the workflow

depicted in the Figure 2.7.

Input and Options

positional arguments:

minimum energy, rmsd clustering, energy clustering The different criteria to select the struc-

ture(s).

optional arguments:

-h or help show the help message and exit

-input A list containing the path to the output folders from any kind of PELE simulations to

analyse. I.E.: /path/to/pele/simulation/system 1/output obc/ (default: None)
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output folder The directory where the program will create the folders containing the selected

structures (one for each structure selected). It’s mandatory (default: )

output prefix The prefix to use for the output files containing the metrics from the report one for

the initial model and another for the selected model. The names are:

(prefix )initial models pele metrics.csv and (prefix )selected models pele metrics.csv (default:

)

ligand chain The name of the chain where the ligand can be found. The ligand should be the only

molecule in this chain. (default: Z)

only statistics This option is a flag, thus, if present the program will only compute the number of

structures selected and their energies according to the selection criteria. It won’t extract the

structures. (default: False)

total energy deviation The maximum deviation in KCal of the minimum total PELE energy

possible. This criteria is always present and is combined with any selection criteria. With

this we avoid picking unfeasible systems from the non-converged part of the simulation or the

artefacts that the adaptive protocol may create. (default: 1std)

initial energies When this option is present the script will write a file containing the PELE bind-

ing energy for the initial complex given to PELE called initial PELE binding energies.csv.

(default: False)

simulation type single core, adaptive, mpi This option specifies which kind of PELE simulation

has generated the output folder given in the input: single core refers to a PELE simulation

run with only one processor (traditional PELE), mpi refers to the mpi version of PELE and

adaptive to the adaptive script to launch PELE. (default: single core)

log file The name for the log file. (default: structures extraction.log)

2.7 Re-score procedure

2.7.1 Problem description

PELE provides us with its own energy score, and we can use it to estimate the binding energy of

compounds, but this energy is an all atom energy designed to score the poses in order to find the best

one. As such, the larger the ligand, the larger the energy (in a somehow excessive additive manner);

this energy also increases when the ligand presents charges able to interact with the protein. These

two issues make the PELE energy unsuitable to compare the ability of two compounds to bind the

protein.



CHAPTER 2. PELE VS 37

Thus, in order to rank the compounds according to their Binding Energy (BE) we want to

compute other SF designed to estimate the compounds ∆G value.

As stated in the introduction, there are several types of SF. This program is able to launch the

computation of the following SF: vina, xscore, DSX, mmgbsa and glide, which we selected aiming

for diversity of methods and to include the most used ones. It computes the selected scores for each

of the structures provided by the input using the score in-place protocol.

It also prepares the files and folder structure needed to launch the RF-score manually. This score

has to be launched one single time, unlike the other scores which need to be launched several times.

In addition, the original software requires editing of the R script in order to use new files. Thus,

we’ve decided to launch it manually from inside the Rstudio GUI. Due to the performance of this

score we decided to stop using it, so it hasn’t been fully integrated.

Finally, this program is capable of launching the program binana. This program isn’t a SF,

since it doesn’t estimate the ligand affinity, instead, it describes the ligand-protein interaction with

a series of important physical and electrostatic descriptors of the interaction, although the platform

only extracts the physical ones. We can use this descriptors in order to generate a new SF, or to

create a classification method.

2.7.2 Workflow

The Figure 2.9 depicts a graphical summary of the main module’s workflow; which is explained in

more detail in the following lines.

The program receives as inputs a list of files and several options, and the first step it does is to

parse the options provided. From the options selected by the user it extracts the scores chosen to

be computed.

If the user has chosen to compute the Glide score, the program will generate as many folders

as needed, and one control file for each of them. The number of folders needed is computed by the

formula NF /nmax rounded up, where NF is the number of files provided and nmax is the number

provided by the option glide max structures per run. The reason to break the Glide calculation into

several processes, one per folder created, is that we use the xglide script, which fails when too many

structures are provided to score in place.

If the user has selected to compute the vina score, the program will read the templatized control

file for vina and obtain all the information needed to create a system-specific control file later on.

If the user has chosen to prepare the RF-Score files, the program will try to read a file containing

the experimental ∆G values of the compounds.

Next, for each of the files provided, it performs the following steps and checks: if the file isn’t in

pdb format it will mark the system as an error and skip it; otherwise, it will check if the Glide score

has been chosen and if so it will create a symbolic link to the pdb file inside the previously prepared

folder.
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Figure 2.9: compute scoring functions.py flowchart.

Afterwards, it will extract the ligand from the file provided (1 file). It will also extract the

protein with and without the water molecules (2 files) and the water molecules (1 file). Thus, in

this step, it will generate from 2 files (if the complex doesn’t contain water molecules) to 4 files (if

it contains water molecules). In order to extract the ligand, it uses the information provided by the
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option ligand chain. If during this process anything fails, the program will mark the system as an

error and skip it.

Next, the program performs all the format conversions needed to perform the chosen scores.

Each of the scores needs the information about the protein-ligand complex in a specific manner,

which can be checked on each score’s own documentation.

Next, the program checks which scores have been chosen and launches each one of them. For

each of the following scores: DSX, Xscore, Vina, binana and mmgbsa the program checks if they’ve

been chosen, and if the conversions they require have been done correctly. If both conditions are

met each score is launched one after the other. For the RF-score the program makes the same checks

as for the other scores, but instead of launching the score, it will extract the information about the

systems needed to generate the input file for the score.

If all the files have been skipped the program will end. Otherwise, it will check once again if

Glide has been chosen, and if so, it will launch the score as many times as the number of folders

created to this end. Afterwards, it will check for the RF-score and, if chosen, it will generate the file

needed as input by this score.

2.7.3 Implementation

Dependencies

The script has the following dependencies:

• The DSX [67] software

• The X-Score [76] program

• The AutodockVina [74] program and its associated library MGLTOOLS.

• The binana script [15].

• The prime software from Schrödinger’s suite [42].

• The Glide software from Schrödinger’s suite [23] [33].

Modules

As we can see in Figure 2.10 this package is formed by 4 modules which interact among them; being

the compute scoring functions module the main one, with three auxiliary modules.

The module external software paths contains the complete paths to the external dependencies

this program has. This module should be modified upon installation of the software to match the

user’s paths to the folders. It should be noted that none of the scoring software packages is actually

provided with this software due to licensing issues.
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Figure 2.10: Modules relationship for the 02 sf comp package.

The external software calls contains the strings used to launch the external SF software.

These strings contain the general form of the commands to be used if we were calling them manually

using the command line. They are completed using the paths provided by the external software paths

and with the system specific information in the main module.

The help description module provides the description of each of the program’s options.

The main module compute scoring functions is the one that actually parses the options and

creates the help, thus using the module help description, it’s also the one that launches the scores,

thus using the other two modules.

Input and Options

h or help show the program’s help message and exits.

input files A list of pdb files containing ligand-protein complexes. (default: None)

folders path The path where the Glide score computations will be prepared and launched. (default:

./scoring functions values)

scoring functions A list containing the names of the SF to compute. The implemented ones

are:[glide, vina, xscore, dsx, mmgbsa, binana, rf score] (default: [’glide’, ’vina’, ’xscore’, ’dsx’,

’mmgbsa’, ’binana’, ’rf score’])

schrodinger host The name of the machine used to run the Glide computations, in most cases

the default value will work correctly, but it all depends on the user’s enviroment. (default:

localhost)

schrodinger cpus The number of cpus to be used in each xglide job. (default: 1)

glide max structures per run The maximum number of structures to run in one Glide job. If

the user provides more input files than this number the program will launch as many xglide

jobs as the number of input files divided by this number, rounded up. (default: 250)
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vina box distance to ligand The number of angstroms used by Vina to define the docking box.

(default: 20)

experimental deltag The path to a .csv containing the δG values for each of the input files.

(default: )

rf score output file A string containing the name of the file where the input for RF-Score should

be written. (default: -2)

debug A flag option that will print helpful messages to discover where the program is failing.

Recommended only for developers. (default: False)

ligand chain A string containing the name of the chain where the ligand is located on the input

files. (default: Z)

log file A string containing the complete path to the file where the log of the program should be

written. (default: scoring function computations log.txt)

rewrite When this option is present the program will rewrite any pre-existing file. Otherwise if a

file already exists the program will use it, instead of generating it again. (default: False)

2.8 Scores extraction

2.8.1 Problem description

This script processes the output files generated by the compute scoring functions.py script. Each

of the SF computed by the previous script generates a complex output file; which needs to be

processed in order to extract the actual value of the SF. With this module the user can select to

extract an individual score or any combination.

2.8.2 Workflow

The program’s workflow is depicted in the Figure 2.11. For each of the provided file types the

program will parse and process the corresponding files.

2.8.3 Implementation

Dependencies

The script has the following dependencies:

• Python 2.7
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Figure 2.11: extract sfs.py flowchart.
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Modules

Figure 2.12: Modules relationship for the 03 data extraction package.

This package presents only two modules: the main one called extract sfs and an auxiliary

module called extract sf help.

The main module implements the workflow depicted in Figure 2.9. It reads the options descrip-

tion from the module extract sf help.

Input and Options

h or help show this help message and exit

dsx file This option specifies the files to use for the extraction of the dsx values. (default: False)

xscore files This option specifies the files to use for the extraction of the xscore values. (default:

False)

binana file This option specifies the files to use for the extraction of the binana values. (default:

False)

mmgbsa files This option specifies the files to use for the extraction of the mmgbsa values. (default:

False)

rf as score file This option specifies the files to use for the extraction of the rf score values. (de-

fault: False)

rf descriptors file A file containing the descriptors used by RF-Score. (default: False)

vina files This option specifies the files to use for the extraction of the vina values. (default: False)

xglide files This option specifies the log file from xglide to use for the extraction of Glide values.

(default: False)

glide ranking csv file This option expects two terms. One is a .csv file generated by exporting

the spreadsheet from Maestro, which should contain the fields Title and docking score at least,

and it should have the same order as the order used when extracting the compounds to launch

the simulations. The other term is going to be used as the prefix for the simulations id, so
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it should correspond with the prefix used as base name when exporting the structures from

Maestro. (default: False)

pele file The pele file containing the scores to use (default: False)

pele mean file The pele containing the mean PELE BE score to use for all systems (default: False)

mmgbsa as sf If this option is present the program will extract the total value of prime-mmgbsa

as a scoring function, otherwise it will extract only the descriptors. (default: False)

rotable bonds file The .pdbqt files to analyse and extract the rotable bonds from. (default: False)

energies file This option specifies the file containing the experimental energies for all the systems.

(default: False)

obabel desc This option computes the descriptors: logP, MW, TPSA, using pybel, from the ligand

pdb files. (default: False)

convert or convert2deltaG This option establishes the scoring functions to convert to energy

value from pkd. (default: [’xscore’, ’nn score’])

conversion temperature or temperature The temperature value to use when converting from

pkd to energy. (default: 300K)

conversion r value or R The r value to use when converting from pkd to energy. (default:

0.002 Kcal
K∗mol )

output general name The complete path to where the output should be written plus the prefix

for the files. (default: None)

ensemble A flag to select the id for the systems: if true, the pattern ’word number number’ will

be used, otherwise the pattern used will be ’word number’. (default: False)

log file A complete filename for the log file. (default: sf extraction log.txt)

common systems list When this option is selected the program will generate a file containing

the list of the systems for which all the scoring functions and all descriptors were correctly

computed. The name will be output general name+ common systems.csv (default: False)

2.9 Conclusions

The PELE VS framework has been developed, allowing the use of PELE during VS campaigns in

an easy and quick way.
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This platform is capable of performing all the steps needed to automatically prepare and analyse

PELE simulations in a quick and easy way.

In order to prepare the simulations of 2000 compounds from scratch, that is, generating all the

Templates and Rotamer libraries (which is the most time-consuming step of the preparation), the

platform uses around 1 to 2 hours depending on the compounds properties, while doing the same

process manually can usually take 1 week of work. Thus, this platform considerably speeds up the

process.

The modular structure of the platform allows the user to use different computers for each of the

steps, and it allows for an easy addition of new steps and functions. In addition, all the code is open

source, which allows users with new systems to adapt it to their needs.

The platform can easily be adapted to work with other simulation programs as AMBER [68] or

CHARMM [9]. It can also be used just to perform a score procedure, without using any simulation

program, in order to create a personalized consensus score or to choose the best score for the user’s

system.



Chapter 3

DUD-e Study

One of the initial objectives of this thesis was to obtain a general PELE simulation protocol capable

of enriching the results of traditional VS campaigns. In order to obtain it, in this chapter we’ll study

how the introduction of PELE affects the VS process.

For this study we’ll use part of the enhanced Directory of Useful Decoys (DUD-e dataset) [66],

a standard dataset in the VS field to test whether we can use a single PELE simulation protocol to

improve the ratio of true positives in the first 50 or 100 compounds of the docking results for all the

different targets we study.

3.1 The DUD-e dataset

The DUD-e dataset is composed of 102 different targets which can be grouped into five different

categories: GPCR, kinase, NHRs, proteases and diverse. Each of these categories represents a family

of proteins, with the exception of the diverse category, which is a mix of proteins with different

functions.

For each of the categories there is a variable number of proteins or targets; all of them are relevant

proteins for the development of new drugs. For each target, there are an average of 224 ligands with

known activity, and for each ligand there are 50 decoys with similar physico-chemical properties,

but dissimilar 2-D topology based on the extended connectivity fingerprint. The physicochemical

properties kept are: molecular weight, calculated LogP, hydrogen bond (h-bond) donors, h-bond

acceptors, number of rotatable bonds and net molecular charge.

Due to the computational cost of our approach and the amount of resources needed to work

with 102 different receptors, we decided to work only with a subset of the DUD-e dataset. Initially,

we picked 3 receptors for each of the subsets provided by the DUD-e: for the GPCR coupled

receptor family we picked the proteins Androgen receptor 1 (adrb1), Androgen receptor 2 (adrb2)

and Dopamine D3 receptor (drd3); for the kinases family we selected the proteins Tyrosine-protein

46
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kinase JAK2 (jak2), Cyclin-dependent kinase 2 (cdk2) and Serine/threonine-protein kinase WEE1

(wee1); for the proteases family we selected the Trypsin 1 (try1), Thrombin (thrb) and hiv protease;

for the NHRs receptors family we initially selected the Peroxisome proliferator-activated receptor

gamma (ppar), and mcr, later (due to our collaboration with AstraZeneca) we extended this family to

include the Androgen Receptor 1 (andr1) Estrogen Receptor 1 (esr1), Glucocorticoid Receptor (gcr),

Progesterone Receptor (prgr) Retinoid X Receptor Alpha (rxra) and Thyroid Hormone Receptor

Beta-1 (thb) receptors. Most of the receptors structures we’ve used are the ones provided by the

DUD-e itself, with two exceptions: the hiv protease and the Mineralocorticoid Receptor (mcr)

proteins.

In the hiv protease case we started using the one provided by the DUD-e named hiv but some

preliminary results (not shown) led to a more careful study of the protein. During this study, we

discovered that this protein requires a water molecule in order to bind 99% of its ligands; but the

structure provided by the DUD-e pertained to the complex between the hiv protease with one of

the few ligands capable of displacing this otherwise crucial water. In order to better reproduce the

correct binding pose of most ligands, we chose to use a .pdb file corresponding to the most common

binding mode, which includes the interacting water molecule (which was kept for the simulations).

This new receptor was called HIV protease containing one water molecule, which is responsible for

the most common conformation of the binding pocket (hivw).

For the MCR receptor, we haven’t used the structure provided by the DUD-e, but two different

structures that have been used in our collaborations with AstraZeneca Sweden; which present sig-

nificant differences in the pocket, which we’ll be calling: MCR-in (PDB code 2OAX) and MCR-out

(PDB code 4UDB). The MCR-in structure presents a smaller pocket with the MET-852 pointing

towards the interior of the binding pocket, while the MCR-out presents a bigger pocket respectively

with the MET-852 pointing outside the protein.

3.2 Initial Protocol

For each of the selected systems we performed a flexible-ligand rigid-protein docking using the

docking program from Schrödinger Glide with the SP protocol [23, 33]. Out of the docked structures

we’ve selected the best 1000 compounds to perform short PELE simulations with them, but since

some of the known ligands had several protonated states or even several stereoisomers (called variant

from now on) we ended up performing more than 1000 simulations per protein. Even though the

DUD-e dataset has approximately around 2% of actives, the subset that we used had a variable

percentage of actives ranging from 2.6% to 22.3%, the specific value for each protein can be checked

in Table 3.1.

The huge variability of actives in our subset is a direct consequence of the variable performance
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of the Glide protocol over different receptors. The assessment of the reasons for this variable per-

formance, and its correction to obtain similar results over all families, is beyond the scope of this

section. With the work described in this section we tried to develop a general method to improve

the ratio of true positives for all the receptors.

The first test we performed was to run a single core short PELE simulation for the best 1000

compounds, using all their variants, over 14 selected receptors. This first simulation only had 200

steps, with steering of the ligand, a temperature value of 2000, constraints every 10 Cα (to avoid

the collapse of the protein) and the VDGBNP solvent. This simulation protocol generates from 60

to 100 poses for each compound; from all these poses we selected the best ones according to their

PELE Binding Energy (PELE BE).

Table 3.1: Selected compounds dataset characteristics

Fam-
ily

Protein # of
Com-

pounds

# of
Ac-
tives

Ac-
tives

%

# of
Inac-
tives

GPCR
Adrb1 998 93 9.3 905
adrb2 1099 121 11.0 978
Drd3 1000 47 4.7 953

KINASE
Cdk2 999 223 22.3 776
jak2 1000 80 8.0 920
wee1 1000 101 10.1 899

PROTEASE

hiv 999 222 22.2 777
hivw 952 117 12.3 835
try1 998 157 15.7 841
thrb 999 187 18.7 812

NHRs

mcrin 998 26 2.6 972
mcrout 999 38 3.8 961

ppar 999 183 18.3 816
andr1 1000 122 12.2 878
esr1 997 191 19.2 806
gcr 999 58 5.8 941
prgr 1000 165 16.5 835
rxra 999 106 10.6 893
thb 1007 64 6.4 943

DIVERSE
aces 994 41 4.1 953
hs90 999 42 4.2 957
nram 999 50 5.0 949

For each of the poses coming from the Glide docking and for those selected from the simulation

we computed the following SF: Glide [23, 33], Vina[74], DSX[67] and Xscore[76]. The Glide and

Vina scores are usually associated with a docking protocol, but in our case we just computed the

score using the structure derived from the Glide docking or the PELE simulation. The computation

of the scores before and after performing the PELE simulation allows us to study how the rankings
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of compounds change among scores, and with the IF effect.

3.3 Results

3.3.1 Enrichment Factor (EF)

To check how good a method is we use the Enrichment Factor (EF) computed by equation 3.1,

where TPs is the number of true positives in the S top compounds; S is the number of compounds

at the top positions of the ranking that we select; TPT is the number of true positives on the entire

set and N is the total number of compounds in the set. This measure gives us an idea of how well a

method behaves when compared with random selection.

This metric ranges from 0 to infinity, and it’s highly dependent on the percentage of true positives

in the sample. This lack of a closed range makes the comparison between the different receptors,

which have a variable percentage of true positives, really hard. Thus, we’ll use the %EFmax to

compare the enrichment factors (EFs) between different systems, this metric normalizes the EFs

value by dividing the EFs observed over the maximum EFs possible. The maximum EFs possible

for a receptor is the case where all the compounds in the top S positions are positives, or it includes

all the positive compounds in the first S top compounds.

EFs =
TPS

S
TPT

N

(3.1)

EFmax =
1|TPT

S
TPT

N

(3.2)

%EFmax =
EFS
EFmax

(3.3)

EFratio =
EFIF

EFdocking
(3.4)

The metric that we use to check how much does the PELE simulation affect the scoring is the

EFratio defined in equation 3.4, where the EFIF makes reference to the EFs observed at a given

threshold (the top50 compounds) for the scores computed on the structures coming from the PELE

simulation, and EFdocking makes reference to the EFs at the same threshold, but for the scores

computed on the structures coming from the initial docking process.

We’ll use Glide score as the reference to check and improve the simulation, since it is the software

most used by the industry. When we perform the same analysis for the other scores we can appreciate

similar or better results for the scores DSX, Xscore and Vina, while we see that the force-field based

scores likePELE BE get worse results .
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As we can see in Figure 3.1a only 5 out of the 14 systems present an EFratio over 1, meaning

they improve the enrichment from docking; 2 systems have an EFratio of 1 so they present the same

enrichment as the docking methodology; 6 present an EFratio below 1, meaning the enrichment over

the IF structures is lower than the enrichment of the docking, and thehivw system has no ratio

meaning that both methodologies have no true positive on the top50 compounds .

In parallel, and in order to explore our sampling potential, we tried using the other implicit

solvent model at our disposal: the OBC solvent. Thus, we tried the same simulation protocol but

with the OBC solvent instead of the VDGBNP over the same set of proteins. When comparing the

results of the simulations with this new solvent with the simulations with the VDGBNP solvent we

observe a better EFratio for 9 of the systems, the same EFratio for 2 systems and a worse EFratio

for another 2 systems, thus, we decided to use the OBC solvent for all future simulations.

We decided to extend our study to include up to 21 different receptors by adding one more

receptor to the diverse category, and 6 more receptors to the NHRs category. As stated, we prioritized

human hormone receptors due to the interest in these systems from our collaborators, AstraZeneca.

We performed the aforementioned simulation protocol with the OBC solvent for all the 21 receptors.

Table 3.2: %EF50 changes upon simulation with protocol 0

Family Protein Docking %EFmax I.F %EFmax EFratio Threshold

DIVERSE
aces 0.12 0.15 1.20 50
hs90 0.10 0.07 0.75 50
nram 0.32 0.53 1.67 50

GPCR
adrb1 0.34 0.40 1.18 50
adrb2 0.42 0.50 1.19 50
drd3 0.07 0.15 2.33 50

KINASE
cdk2 0.70 0.80 1.14 50
jak2 0.60 0.52 0.87 50
wee1 1.00 1.00 1.00 50

NHRs

andr1 0.56 0.48 0.86 50
esr1 0.98 0.46 0.47 50
gcr 0.44 0.24 0.55 50

mcrin 0.54 0.58 1.07 50
mcrout 0.51 0.43 0.84 50
ppar 0.24 0.44 1.83 50
prgr 0.76 0.50 0.66 50
rxra 0.86 0.48 0.56 50
thb 0.42 0.30 0.71 50

PROTEASE

hivw 0.86 0.78 0.91 50
thrb 0.72 0.74 1.03 50
try1 0.36 0.72 2.00 50

Table 3.2 summarizes the results for the Glide score, considering only the top50 compounds. We

now observe an improvement of the enrichment for receptors:aces, nram,adrb1, adrb2, drd3, cdk2,

mcrin, ppar, thrb and try1; a loss of EFs for receptors: hs90, jak2, andr1, esr1, gcr, mcrout, prgr,
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(a) VDGBNP solvent PELE simulation EFratio for each family

(b) VDGBNP vs OBC solvent PELE simulations EFratio for each family

Figure 3.1: EFratio results for each family
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Table 3.3: %EF100 changes upon simulation with protocol 0

Family Protein Docking %EFmax I.F %EFmax EFratio Threshold

DIVERSE
aces 0.22 0.29 1.33 100.00
hs90 0.19 0.10 0.50 100.00
nram 0.47 0.77 1.64 100.00

GPCR
adrb1 0.32 0.33 1.03 100.00
adrb2 0.34 0.43 1.26 100.00
drd3 0.09 0.30 3.50 100.00

KINASE
cdk2 0.70 0.72 1.03 100.00
jak2 0.45 0.44 0.97 100.00
wee1 0.99 0.79 0.80 100.00

NHRs

andr1 0.47 0.43 0.91 100.00
esr1 0.91 0.54 0.59 100.00
gcr 0.50 0.28 0.55 100.00

mcrin 0.58 0.73 1.27 100.00
mcrout 0.62 0.59 0.96 100.00
ppar 0.34 0.41 1.21 100.00
prgr 0.59 0.39 0.66 100.00
rxra 0.76 0.54 0.71 100.00
thb 0.42 0.33 0.78 100.00

PROTEASE

hivw 0.50 0.65 1.30 100.00
thrb 0.57 0.67 1.18 100.00
try1 0.39 0.65 1.67 100.00

rxra, thb andhivw; the receptor wee1 presents a %EFmax of 100% (meaning all the compounds in

the top50 compounds are actives) for the docking and the IF.

Table 3.3 summarizes the results for the Glide score, considering the top100 compounds. The

number of systems with an improvement of the enrichment is now 11 and 10 systems present a loss of

enrichment. The only receptors that change from category arehivw and wee1. Thehivw receptor now

presents an enrichment of the top compounds, while the receptor wee1 presents a loss of enrichment.

Now, we have a protocol that improves the docking results for half of the systems (10 systems),

but we still underperform for the other half of the systems (10 systems). We noticed that, out of

these 10 failing systems, 7 belong to the NHR family. In order to discover the reason behind this

split behaviour we studied several metrics that may explain the observed difference.

3.3.2 Accuracy

The metric the reader may be more familiar with is the accuracy. The accuracy values and the

untreated EF values, can be found in the Supplementary Information (SI) tables A.1 to A.14. In

our particular case, the accuracy metric can never become 1 for almost half of systems, because they

present less active compounds than the sample size we’re studying (50 or 100) thus, we’ve studied
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the %EFmax.

Accuracy =
TPS
S

(3.5)

The accuracy formula used for the computations is in equation 3.5 where TPS is the number

of true positives in the top S ranking and S is the number of compounds taken into account, or

threshold, (50 or 100)

As shown in Table 3.1, the systems drd3, mcrin, mcrout,aces and hs90 contain less than 50 active

compounds, and the systemsadrb1, jak2, gcr, thb and nram present less than 100 compounds. Thus,

for the first group of systems, the accuracy can never become 1 when the sample is bigger than 50;

while for the second group the accuracy and the %EFmax match at threshold 50 but no at threshold

100.

We can consider the %EFmax a normalized accuracy, both metrics present the same ratios and

tendencies.

3.4 Dataset metric’s relationships with the results

In this section we’ll study the dataset properties in order to see if the difference in the enrichment is

due to any particular characteristic of the dataset. It may be that for some families the actives are

really potent (low ∆G values), maybe it’s how exposed the cavity is or maybe the size of the pocket

is what is causing the differences on the method performance.

For each of the metrics studied we’ve generated two boxplots images. The boxplot graph rep-

resents the data distribution, showing the range of the metric and each of the quartiles. The first

image represents the metric distribution taking into account all the compounds of the protein subset;

in the images the colour of the boxes represent whether the system presents an improvement of the

EFs (in green colour), a loss of EFs (red colour) or no change (blue). The other image separates

each protein subset into the actives compounds in a yellow box, and the inactive in a purple box,

the borders of the boxes match the colours of the boxes in the first image.

The first metrics we checked are based only on the selected structure from the simulations.

Thus, they provide information on the properties of the selected structures, and some of them give

information about the morphology of the receptor. Nevertheless, they don’t provide information

about the changes introduced by the simulation.

3.4.1 Gibbs Free energy or ∆G

The Gibbs free energy (∆G) is a measure of how much energy a chemical reaction needs (positive

values) or produces (negative values). A negative ∆G means the reaction is spontaneous at room

temperature. We’re looking for compounds capable of binding the protein on their own with high
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affinity (low concentrations of compounds needed), which means that, for us the lower the ∆G value

is, the better. We can compute this value exactly from the Ki or Kd values of a compound, and we

can approximate it using IC50 values instead of Ki or Kd.

Since we have Ki, Kd or IC50 values for all the active compounds in the DUD-e dataset, we can

compute the ∆G for each of the actives using the following equation:

∆G = ln(K)RT (3.6)

Where K is the Ki, Kd or IC50 of the compound in molar units, R is the ideal gas constant

(1.98∗10−3Kcal/mol), and T is the room temperature in kelvin (298) degrees. For those compounds

with no activity we assign a value of 0.

Figure 3.2a shows the distribution of ∆G values taking into account all the compounds of each

receptor for the top50 compounds. We can appreciate that the average ∆G value between the

systems that get improved by the methodology is -6.18 Kcal (horizontal green line) and the average

for those that don’t get improved is -6.43 Kcal (horizontal red line). The difference in the ∆G

distributions between the systems with a gain of enrichment and those with a loss of enrichment is

similar to the one present within the groups.

(a) ∆G distribution for each family for all the compounds

Figure 3.2: Boxplots with the ∆G values on the Y-axis and the different receptors studied on the
X-axis.
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3.4.2 PELE B.E

The first metric from the simulation we checked was the metric used to select the pose from the

simulation: the PELE BE The PELE BE is a force-field based scoring function derived from the

PELE total energy, used by the program to estimate the likelihood of a pose. The PELE BE is

computed using the formula in equation 3.7, where T.Ecomplex is the PELE total energy of the

complex, T.Eprotein is the PELE total energy of the protein alone, and T.Eligand is the PELE total

energy of the ligand.

PELEB.E. = T.Ecomplex − T.Eprotein − T.Eligand (3.7)

In Figure 3.3a we can observe that this metric varies highly within the families, but also from one

system to another. Both the systems that improve, and those that get worse in terms of enrichment,

have similar average and distribution ofPELE BE So we cannot extract any correlation between the

systems that get improved and their PELE BE distribution.

Another explanation could be that there’s a significant difference in the distribution of thePELE

BE between actives and inactives within the same receptor; and that this difference is the responsible

of the differences observed on the EFratio .

In Figure 3.3b we can compare the distribution ofPELE BE between actives and inactives for

each of the studied systems. We observe that, for the systems hs90 , gcr, and ppar, the medians are

similar in value for the actives and inactives, and the distribution of thePELE BE is also similar.

For the first two receptors the PELE simulations produce a loss in the EF; while for the ppar system

it improves the EF. For the remaining receptors, we observed a lower median for the actives when

compared to the inactives.

Given that both groups, the one with similar median and the one with a lower median for

the actives, contain receptors with an improvement of the enrichment and receptors with a loss of

enrichment, we cannot associate this metric with the improvement or loss of enrichment.

3.4.3 Solvent Accessible Surface Area (SASA)

The next metric we checked has to do with the solvent we’re using. PELE uses implicit solvent models

and we don’t use any explicit water for the simulations, with the exception of the hiv protease. This

receptor has an essential water molecule on the binding site, so we may be introducing a bigger error

for those ligands that are more exposed to the solvent.

In order to check for the ligands exposure to the solvent, we map the distribution of the relative

(compared to the full exposition in water) Solvent Accessible Surface Area (SASA) of the ligands

inside the BP.

The mean SASA value through all the compounds is 0.09. In Figure 3.4a we can observe that for

the systems andr1, esr1, gcr, mcr (both conformations: out and in) , prgr, rxra and thb the SASA
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(a) PELE B.E distribution for each family for all the compounds

(b) PELE B.E distribution for each family for all the compounds by activity

Figure 3.3: PELE B.E. distributions
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is below 0.05 for at least 75% of the compounds. All of these systems belong to the NHRs family,

whose BP is known for having almost no exposure to the solvent. From all these systems only the

mcr-in has an improvement of the enrichment, and it’s also the only system with a percentage of

active compounds below the 3%.

In Figure 3.4b we can see that theaces, ppar and nram receptors present a significant difference

in the distribution of SASA between the actives and inactives compounds. For theaces and ppar, the

actives have an upper median than the inactive compounds, while the nrampresents a lower median

of the active compounds, but the limits of the actives are included within the limits of the inactives

compounds. The rest of receptors present similar medians for the actives and inactives.

3.4.4 General Pocket size

For each of the receptors we defined a general BP, which means we define a constant cavity through-

out the simulation as the BP without taking into account the position of the ligand. In order to

define this general BP we run the programs fpocket 3 [54] and SiteMap from Schrödinger[32, 34],

which study the cavities in a protein, producing a list of ranked pockets. Next, we select the pock-

ets that overlap with the ligand position present in the initial crystal, that is, the crystal used to

extract the protein’s structure for the initial docking step, and combine the pockets derived from

both programs in order to have the biggest cavity possible as the BP.

One estimator of the pocket size can be how many residues are involved in the general BP.

This measure doesn’t allow us to estimate the volume since even receptors with the same number

of residues in the general pocket can have different volume, depending on which are the residues

present, but it can give us an idea of how wide it is.

The average number of residues in the general pocket is 50.48 residues per pocket. Theaces

receptor has exactly 50 residues within the BP. The receptorsadrb1, adrb2, drd3, ppar, wee1, thb,

hs90, jak2, esr1, and gcr have more than 50 residues forming the general BP. While the receptors

nram, mcrin, andr1, mcrout, prgr, rxra, thb and hivw have less than 50 residues in their general BP.

3.4.5 Molecular weight

The average MW of all compounds through all receptors is 415.72. Receptors nram, mcrin, andr1,

mcrout and prgr have 75% of the compounds with molecular weights below 415.72. For receptors

ppar,thrb, andhivw we find 75% of compounds with values above 415.72. The receptors in both

groups encompass systems that present both an improvement and a loss of EF.

When comparing the distribution of the molecular weight between active and inactive compounds,

we see that, for receptorsaces and rxra the active compounds have bigger molecular weights than

the inactive. The rest of the receptors have similar distributions of molecular weight between the

active compounds and the inactive compounds.
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(a) Ligand SASA distribution for each family for all the compounds

(b) Ligand SASA distribution for each family for all the compounds by activity

Figure 3.4: Ligand SASA distributions
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Figure 3.5: Number of residues in the general pocket

3.5 Simulation influence on the results

All the metrics we’ve checked so far are somewhat intrinsic to the system we’re studying itself,

even thePELE BE, since all of them are measured taking into account only the selected point of

the simulation. In contrast, the next series of metrics we’re going to study attempt to account

for changes introduced by the simulation, since all of them are based on the Root Mean Square

Deviation (RMSD) of heavy atoms of the complex (all atoms that aren’t hydrogens).

The RMSD is computed using two structures and is the measure of the average distance between

the heavy atoms in structures that occupy the same portion of the space. The RMSD formula is

represented in equation 3.8, where N is the number of atoms used to compute the RMSD and δ is

the distance between the two positions that a given atom occupies.

RMSD =

√√√√ 1

N

N∑
i=1

δ2i (3.8)

We want to estimate how much we change the complex structure from the initial docking to the

new structure proposed (after IF). Thus, we’ll compute the RMSD between the selected model of

the protein-ligand complex and the initial one.
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(a) MW distribution for each family for all the compounds

(b) MW distribution for each family for all the compounds by activity

Figure 3.6: Molecular weight distributions
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3.5.1 Ligand RMSD

First we checked how much we’ve modified the ligand pose. To do this, we compute the RMSD

between the heavy atoms of the ligand, between the two poses (the initial and the selected). With

this metric we estimate how much the ligand has been modified in order to fit into the BP.

When we compare the average RMSD for all the ligands of a given receptor (Figure 3.7a) we can

appreciate that average RMSD of the systems with a loss of enrichment is 2.85 while the average

RMSD of the systems with an improvement is 4.04, a significant difference that points to a “necessity”

to correct the initial docking poses. However we observe a median value below 4 for the receptors:

drd3, ppar, wee1, andr1, esr1, gcr, mcrout, prgr, rxra, and thb; From this list of receptors only drd3

and ppar have an improvement on the EF, while wee1 has the same EF. All the other systems show

a loss of EF, but not all the systems with a loss of EFs are present in this list, thus, we cannot derive

any explanation from these results.

In order to further explore this metric, we studied if there’s an activity specific change on the

RMSD of the ligand. With the exception of the ppar receptor all the other receptors present a

median for the actives RMSD below the inactives median RMSD (Figure 3.7b). In receptors nram,

mcrout, prgr and rxra, the median RMSD of the active ligands is below the RMSD value of the

3rd quartile of the inactives RMSD, which means that 75% of the inactives present in each of these

receptors have a bigger RMSD than half of the actives in these systems; for the esr1 system the

median of the actives’ RMSD is slightly higher than the 3rd Quartile of the inactives, meaning it’s

a close case to the previous one. For the receptorsaces, jak2 and thb the medians are almost the

same.

Figure 3.7 is a boxplot representation of the ligand heavy-atoms RMSD (Y-axis) for each of

the receptors (X-axis). A) All ligands RMSD distribution coloured by the improvement (blue), no-

change (green), or loss (yellow) of EF. B) Distribution of ligand RMSD coloured by activity, the

inactives ligands in blue, and the actives in yellow.

Given the low number of actives in some of the systems, we may think this is the cause for the

observed differences. The percentage of actives for the ppar receptor is 18.3% and for the nram,

mcrout, prgr, rxra and esr1 are 5.0%, 3.8%, 18.3%, 10.6% and 19.2%, respectively, while for theaces

and jak2 receptors the percentages are 4.1% and 22.3%. As we can see all these groups have a

heterogeneous percentage of actives, meaning this isn’t the cause behind the behaviour we observe.

The only explanation left is that these changes are introduced by the simulation, which causes

bigger changes into the conformation of most of the inactives compounds when compared to the

changes introduced into the active compounds for all the systems but the ppar system.

3.5.2 General Pocket RMSD

Then we computed the RMSD of the residues present in this general pocket (the same as in subsec-

tion 3.4.4), for all of the compounds of each receptor.
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(a) Ligand RMSD distribution for each family for all the compounds

(b) Ligand RMSD distribution for each family for all the compounds by activity

Figure 3.7: Ligand RMSD distributions
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(a) General pocket RMSD distribution for each family for all the compounds

(b) General pocket RMSD distribution for each family for all the compounds by activity

Figure 3.8: General pocket RMSD distributions
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The average RMSD through all the receptors general pocket is 1.07 . From all receptors only

nramhas an RMSD below 1.07 for all the compounds, for the receptors drd3, try1, andr1, mcrout

andhivw have a median below 1.07A, receptors mcrin and hs90 are almost equal to 1.07, and for the

other receptors the mean is over 1.07 but below 1.5. The RMSD distribution for the systems that

get improved overlaps with those that don’t improve. If we now study the differences between the

general pocket RMSD distribution of actives and inactives for each receptor, it presents a similar

median for all systems with the exception ofthrb and rxra, which present a median for the active

compounds below the 3rd quartile of the inactive compounds. This result can be expected since

the simulation protocol we’re using is focused on optimizing the ligand pose while allowing for some

rearrangement on the protein structure, but it isn’t an extended exploratory protocol.

3.5.3 Ligand specific pocket

Next we studied the change of the ligand specific BP. To define this new BP we selected the residues

with any heavy-atom within a distance of 4 of any heavy atom of the ligand from the initial structure

in the simulation. We also perform the same selection of residues with the selected structure from the

simulation, and we use the residues present in any of the selections as the BP. Finally, we compute

the RMSD of the heavy-atoms of the selected residues.

The average RMSD for the ligand specific pocket through all the receptors is 1.28. The difference

in the average RMSD between the receptors with an improvement in the enrichment and those with

a loss is just 0.12. Receptorsnram, drd3, mcrin, andr1, mcrout and ppar have a RMSD below, or

almost equal to, 1.28 for 75% of the compounds . Thehivw receptor has a RMSD above the 2.0 for

all the compounds, while the rest of the receptors present a similar spread of the RMSD values for

all compounds (Figure 3.9).

Next, we studied the distribution of ligand specific pocket RMSD distinguishing between active

and inactive compounds for each of the receptors. We observe that receptorsaces, drd3, cdk2, ppar

and hs90 present a similar median between actives and inactives. For receptors nram,adrb1, adrb2,

mcrin, try1, andr1, esr1, gcr, mcrout, prgr, thb andhivw we observe a lower median for the active

compounds. Only the jak2 receptor presents a higher median for the active compounds.

Another metric to study this ligand specific pocket is to check how many residues are present

in both selections. That is, how many residues are within 4�A of the two poses of the ligand: the

docking pose and the I.F. pose. This metric gives us an idea of how much the environment of the

ligand has changed during the simulation

3.5.4 Glide change

The difference in Glide score [23, 33] (∆Glide) metric is the difference between the Glide score of

the pose coming from the docking and the Glide score of the pose selected from the simulation

(Equation 3.9). A value of 0 means there’s been no-change in the score; a positive number means
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(a) Ligand specific pocket RMSD distribution for each family for all the compounds

(b) Ligand specific pocket RMSD distribution for each family for all the compounds by activity

Figure 3.9: Ligand specific pocket RMSD distributions
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(a) number of residues in the ligand specific pocket union distribution for each family for all the compounds

(b) number of residues in the ligand specific pocket union distribution for each family for all the compounds by activity

Figure 3.10: Ligand specific pocket number of residues in the union distributions
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(a) number of residues in the ligand specific pocket intersection distribution for each family for all the compounds

(b) number of residues in the ligand specific pocket intersection distribution for each family for all the compounds by
activity

Figure 3.11: Ligand specific pocket number of residues in the intersection distributions
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(a) ∆Glide distribution for each family for all the compounds

(b) ∆Glide distribution for each family for all the compounds by activity

Figure 3.12: ∆Glide distributions
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that the compound has a worse score, and a negative number means the selected structure has a

better score.

∆Glide = GlideIF −Glidedocking (3.9)

As shown in figure 3.2 the average Glide difference through all the receptors is -0.59 . If we

consider all the compounds of each receptor at the same time, only the receptors mcrin, andr1, gcr,

mcrout, prgr rxra and thb have a ∆Glide below -0.59 for 75% of the compounds.

For the receptors with an improvement on the EFs, the median ∆Glide of the active compounds

is smaller than, or equal to, the third quartile of the inactive compounds, with the exception ofadrb1

and ppar. for whom the median values are similar.

The fact that none of the systems present a loss of Glide score means that we’re improving the

poses in all the cases. But, for those systems with a loss of EFs, we’re introducing noise, because

we’re adapting the protein to inactive compounds.

3.5.5 Conclusions

We cannot pinpoint a single metric that explains why the receptorsaces, nram,adrb1, adrb2, drd3,

cdk2, mcrin, ppar and try1 present an improvement of the EFs while the receptors hs90, andr1, esr1,

gcrr, mcrout, prgr rxra thb andhivw present a loss of the EFs on the top50 compounds. The fact

that the receptor wee1 doesn’t lose EFs values is the best possible scenario since the original EFs is

already the maximum EFs that can be achieved.

When looking at the family relationships of the systems with a loss of EF we observe that most of

them belong to the NHRs family, 7 out of 10, independently of the threshold. This elevated number

suggests that the loss of EF is related to the characteristics of this family pocket. The NHRs has

a completely enclosed pocket, as we can observe on the ligand’s SASA distribution on Figure 3.4a.

This means that the exploration of the pocket is very restricted and in consequence the protein may

end up deformed during the simulation, in order to accommodate the ligand.

This made us think that our simulation protocol wasn’t adequate to this kind of receptor, and

we proceeded to try new simulation protocols.

3.6 Simulations fine tuning

The reason behind the loss of enrichment in half of the systems could be that the simulation protocol

we’re using wasn’t the right one. In order to assess this option, we tried two more PELE simulations

protocols. Due to the amount of computational resources needed to perform the same analysis we

decided to use fewer systems.

The selected systems are: cdk2, jak2, ppar, mcrin and gcr. The first two systems belong to the
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kinase family, while the other three belong to the NHRs family. The receptors jak2 and gcr present

a loss of enrichment, while receptors cdk2, mcrin and ppar present an improvement. The selection

of systems answers the need to make sure we not only improve the systems that go wrong, but that

we also keep improving the systems we already improve.

Table 3.4: Table containing a summary of the PELE simulation parameters used for the different
protocols

Protocol
General parameters

Epochs
perturbation

Type # of
processors

Tempera-
ture

# of pele
Steps

spaw-
ning

stee-
ring

0 Single
core

1 2000 200 n.a. n.a. 2

1 Single
core

1 1500 200 n.a. n.a. none

2 Adaptive 16 1500 8 15 inv prop ran-
dom

3.6.1 Protocols summary

The two protocols we tried are described in the table 3.4. Since we observe an elevated RMSD value

of the pocket for both the actives and inactive compounds, we decided to try a PELE simulation

reducing the “steering” of the simulation to reduce the protein adaptation, named protocol 1. The

other protocol tried, protocol 2, uses the adaptive methodology and the reduced steering protocol

in order to improve the sampling. As commented in the introduction, the adaptive methodology

is used to improve the sampling of the ligand avoiding the meta-states and easing the transition

between minima.

3.6.2 Results Protocol 1

Table 3.5: %EF changes upon simulation with protocol 1

Family Protein Docking %EFmax I.F %EFmax EFratio Threshold

KINASE
cdk2 0.70 0.84 1.20 50
jak2 0.60 0.42 0.70 50

NHRs
gcr 0.44 0.18 0.41 50

mcrin 0.53 0.5 0.93 50
ppar 0.24 0.56 2.33 50

KINASE
cdk2 0.70 0.72 1.03 100
jak2 0.45 0.39 0.86 100

NHRs
gcr 0.50 0.24 0.48 100

mcrin 0.58 0.65 1.13 100
ppar 0.33 0.46 1.39 100
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As we can observe in Table 3.5 the protocol 1 affects the different proteins in different ways. The

proteins cdk2 and ppar improve their EF at the top50 compounds and the top100 compounds while

the proteins jak2 and gcr suffer a loss of EF for both thresholds, and the mcrin protein loses EF at

the top50 compounds, but it improves the EFs at the top100 compounds. We also observe that the

accuracy presents the same trends as the EF regarding the methodology influence.

Given the differences in accuracy of the docking methodology depending on the family, as men-

tioned in the section 3.3.2, we could argue that it is easier to obtain an improvement for the NHRs

family than for the kinase family. Nevertheless, we have observed that most of the systems with a

loss of EFs are from the NHRs family.

The metric that can help us to better understand this contradictory behaviour is the ∆Glide.

We observe that the average ∆Glide is the same for the systems with an improvement of the EF on

the top50 structures and the ones with a loss. But, what we can observe, is that for the systems with

a loss of EF, the average ∆Glide for the active and inactive compounds is either almost equal (the

gcr protein) or the inactive compounds present a better improvement than the active compounds

on the lowest quartile, while for all the systems with an improvement of the EF the averages of the

active compounds is lower.

The differences between active and inactive compounds are similar to the ones observed for this

metric when using protocol 0, and it indicates that the simulation not only improves the poses of the

actives compounds, but it also overfits the protein in order to accommodate the inactive compounds.

3.6.3 Results Protocol 2

Table 3.6: %EF changes upon simulation with protocol 2

Family Protein Docking %EFmax I.F %EFmax EFratio Threshold

KINASE
cdk2 0.70 0.68 0.97 50
jak2 0.60 0.60 1.00 50

NHRs
gcr 0.42 0.10 0.24 50

mcrin 0.54 0.50 0.93 50
ppar 0.28 0.44 1.57 50

KINASE
cdk2 0.69 0.60 0.87 100
jak2 0.45 0.51 1.14 100

NHRs
gcr 0.50 0.22 0.45 100

mcrin 0.58 0.65 1.13 100
ppar 0.33 0.36 1.09 100

As we can observe in Table 3.6 protocol 2 affects the proteins in a different way than protocols

0 or 1. With this protocol, only three of the five proteins present the same trend for both the top50

and top100 compounds: the ppar is the only one that presents an improvement of the EF, while

cdk2 and gcr present a loss. The jak2 protein presents the same EF as the initial docking in the

top50 compounds, and an improvement on the top100, while the protein mcrin presents a loss of
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(a) ∆Glide distribution for each family for all the compounds

(b) ∆Glide distribution for each family for all the compounds by activity

Figure 3.13: ∆Glide distributions for protocol 1



CHAPTER 3. DUD-E STUDY 73

EF on the top50 and an improvement on the top100 compounds. The accuracy presents the same

trends as the EF regarding the methodology influence, just like with the other protocols.

When we observe how the ∆Glide metric changes we can observe in Figure 3.14a that the average

value of the systems with a loss of EF is lower than that of the systems with an improvement of, or

the same, EF. We can also observe that the systems with a loss present a lower range of ∆Glide ,

or a similar average, while the ppar and jak2 proteins present a lower average and a lower minimum

of ∆Glide for the active compounds. The cdk2 protein presents a behaviour similar to jak2 and

ppar, despite its general loss of EF; when looking closely at the accuracy value, we can see that this

behaviour is normal, since the loss is that of one single compound.

3.6.4 protocol comparison

Table 3.7: EFratio changes upon simulation with different protocols

Family Protein Protocol 0 Protocol 1 Protocol 2 Threshold

KINASE
cdk2 1.14 1.2 0.97 50
jak2 0.87 0.7 1.00 50

NHRs
gcr 0.55 0.41 0.24 50

mcrin 1.07 0.86 0.93 50
ppar 1.83 2.33 1.57 50

KINASE
cdk2 1.03 1.03 0.87 100
jak2 0.97 0.86 1.14 100

NHRs
gcr 0.55 0.48 0.45 100

mcrin 1.27 1.13 1.13 100
ppar 1.21 1.39 1.09 100

An easy way to compare the influence of the protocol used for the simulation is to compare the

EFratio of the different protocols for the same protein, since the EFratio tells us the how much have

the EF and accuracy changed upon simulation. Table 3.7 summarizes the EFratio of the different

protocols tried.

We see that the protocol 1 doesn’t really change the EF tendency from protocol 0, with the

exception of the mcrin protein all the other 4 proteins maintain the EF tendency on the top50

compounds and all 5 of them when looking at the top100 compounds. We observe a bigger loss of

enrichment for the jak2 and gcr systems; while the cdk2 keeps the improvement previously observed,

and the ppar system gets a slight improvement of the EF. The only system that presents a change

of tendency is the mcrin at the top50 compounds, where it goes from an improvement of 7% to a

loss of the 14% of active compounds.

The protocol 2 seems to introduce more changes on the EF tendency. For the top50 compounds

this protocol is able to change the tendency for 3 of the 5 systems, and for the top100 compounds

it inverts the tendency of the two kinases.
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(a) ∆Glide distribution for each family for all the compounds

(b) ∆Glide distribution for each family for all the compounds by activity

Figure 3.14: ∆Glide distributions for protocol 2
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For the kinase family we can see that the EF change is almost reversed by protocol 2: the

cdk2 loses EF for the top50 and top100 compounds while the jak2 maintains its EF on the top50

compounds, and improves it on the top100 compounds.

For the NHRs family, protocol 2 only changes the EF tendency from improvement to loss for

the mcrin on the top50 compounds, while maintaining the improvement for the top100. It isn’t

able to change the tendency of the gcr nor the ppar proteins which retain their loss of EF and its

improvement respectively.

3.7 Conclusions

Our first conclusion concerns the solvent to be used to perform the simulations. Even though the

VDGBNP implicit solvent model should theoretically provide us with more accurate simulations than

the OBC, which is a simpler model, we’ve consistently observed better results for the OBC solvent.

The reason for this behaviour probably lays on the fact that VDGBNP has been parametrized to

match the experimental values of a training set while the OBC hasn’t; which makes it a more general

solvent model.

In second place we have observed a split of the system regarding whether or not we can improve

the results of the docking protocols using one simulation over all the systems. Upon performing the

simulation half of the systems improve their rankings while the other half see it worsened or equal.

In third place, after reviewing the characteristics of the systems studied, we observe that the

systems for which the simulation introduces error present: (i) really low Solvent Accessible Surface

(SASA) values and (ii) most of them belong to the NHRs receptor, family that presents an almost

completely occluded pocket.

In fourth place, changing the simulation protocol affects in different ways the improvements of

EF observed, even to proteins belonging to the same family.

In fifth place, upon studying the changes in Glide score introduced by the PELE simulations, we

observe that in all the cases this score is lowered. When this increase in the Glide score is separated

by active and inactive compounds, we observe that in the systems with a loss of EF the inactive

compounds improve their Glide score the same or even more than the active compounds. This trends

in the Glide score means we’re introducing noise with the PELE simulations. We’re obtaining better

poses for both the active and inactive compounds, making them harder to differentiate by their score.

Due to all these specific conclusions we can make the following general conclusions:

• The reason behind the improvement of EF for only half of the systems are related to the

structural characteristics of the pockets.

• Finding a general protocol capable of improving the sampling for all the possible proteins is an

extremely difficult task, due to the big differences on the proteins structure from one family

to another.
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• We see, for example, that increasing the RMSD to the initial Glide docking pose introduces

significant enrichment. This, however, is quite difficult to obtain in very tight systems, with

fully occluded active sites, like the NHRs. In these systems, we observe too many false pos-

itives as a result of enforcing the induced fit. While these cases should be filtered out when

considering the total energy, all our attempts to do so did no work, as a result of inaccuracies

in such a large number like the total energy.

• The many differentiating characteristics of the proteins obliges us to use a protein-specific

protocol in order to improve the Glide docking results. With more detailed studies and a

better understanding of which proteins have closely related pockets, we may be able to get to

a pocket-type-specific protocol.



Chapter 4

Retos project: SilicoDerm

4.1 Introduction

This chapter presents the results from our collaborative retos project with Almirall, known as Silico-

derm. The time scope comprehended is from the beginning of 2018 until October 2018. It constitutes

one of the main goals of this PhD thesis: the application of our techniques to a real drug discovery

campaign. The results shown in this chapter describe the application of the workflow developed,

which has been previously explained, during this thesis to a real case of drug discovery.

The overall aim is to increase the number of true actives at the top position of the ranking

in a VSs campaign. Most of the current docking technologies consider proteins as rigid entities,

which means they generate one single pose for the protein-ligand complex (pink point in Figure

4.1). We account for the protein’s flexibility and generate thousands of poses by performing a PELE

simulation. Hopefully, the poses with a lower energy (circle in Figure 4.1) will be near-native poses.

Due to the confidentiality of this particular project we cannot reveal the real name of the protein,

crystals or molecules studied. In this project we’ll be focusing on the study of a kinase implied in

dermatologic diseases as our target. We started the study with 6 public crystals named from A to

F; later on, we got 1 in-house crystal, crystal G, from Almirall.

Performing all the work explained in this chapter has taken approximately 6 months of com-

putations and implied the extensive use of the Marenostrum supercomputer and the purchase of

three new computers in the group, of 20 cores each (to perform thousands of Glides’ re-scoring

calculations).

77
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Figure 4.1: Visual summary of how our procedure aims at.

4.2 Simulations set up

4.2.1 Crystals preliminary study

Given our findings on the DUD-e dataset, we decided to study the simulation’s behaviour on the

6 public crystals we had at the beginning of the project, developing a system specific simulation

protocol. The first step was to prepare the crystal structures using the prepwizard program [69] from

Schrödinger, to fill missing side chains, loops, and to optimize the hydrogen’s positions; both with

waters and ions present during the process, generating the WAT set, and without them, generating

the NO WAT set. The table 4.1 summarizes the basic characteristics of each crystal.

Table 4.1: Crystal’s structures main characteristics.

Crystal Receptor Ligand Waters in the crystal Ions inside the BP Public
crystal A receptor A ligand A yes no yes
crystal B receptor B ligand B no no yes
crystal C receptor C ligand C yes yes yes
crystal D receptor D ligand D yes no yes
crystal E receptor E ligand E yes yes yes
crystal F receptor F ligand F yes no yes
crystal G receptor G ligand G yes no no

While preparing the crystals we noticed that crystal C presents a metal ion inside the BP. Since

we know it isn’t involved in the binding process, and that it is a crystallographic artefact, we cannot

consider the ligand pose as the right one; thus, we’re unable to ascertain whether or not we’re
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predicting the right pose with the simulation for this crystal. This led us to discard crystal C from

our data set.

We also noticed that the number of water molecules present in each crystal is variable. It varies

so much that crystal B doesn’t present any water molecules, so it hasn’t been included on the WAT

set.

Next, we run PELE simulations for the two previously prepared sets of crystals: the WAT and the

NO WAT sets, using the adaptive protocol tested on the DUD-e dataset, protocol 0 in this chapter,

which introduces no restraints, nor biases on the simulation. We expect different behaviours on

the ALL WAT and the NO WAT sets for any simulation protocol we try. On one hand, we expect

that any protocol applied to the crystals without waters or ions (NO WAT set) will allow for an

extensive exploration of the BP by the ligand; on the other hand, we expect that, when the protocols

are applied to the WAT set, they will perform a more restricted exploration of the BP due to the

presence of the less mobile waters.

We use the energy profiles to study the simulation’s behaviour. The energy profiles depict the

PELE BE on the y-axis, and the ligand RMSD on the x-axis, which is the heavy atoms RMSD

between the simulation pose and the crystal pose. With this figure we can estimate how much

conformational space does the ligand explore, and if it’s exploring the desired region or not. In this

type of profile, we would like to see a lot of points at the 1-2�A region; which we consider the true

positive’s region, since we use the crystal pose as the right pose.

All the energy profiles shown in this chapter and its corresponding SI follow the colouring schema:

blue means the WAT systems, cyan means the NO WAT systems and teal means the STR WAT

systems (explained later on). The initial point of the simulation is coloured red in all cases; when it

isn’t present it means the initial structure has a positive PELE BE.

The origin of the ligand-protein complexes used in the simulations, the initial point of the simu-

lations, and which protocol has been applied to each dataset is summarized on Table 4.2.

The energy profiles generated by protocol 0 (Figure 4.2) show significant differences between the

WAT set and the NO WAT set. It also shows a poor exploration of near native binding poses, as

most poses present a RMSD over 3�A in all simulations.

On the WAT simulations (panels from (a) to (d) in Figure 4.2) the poses with the best PELE

BE do represent the binding pose for crystals with the exception of crystal E, which doesn’t present

a well defined minimum, instead the poses with the lowest PELE BE are spread within the 4�A to

6�A region.

On the NO WAT simulations, panels from (e) to (i) in Figure 4.2, we can observe that the poses

with the best PELE BE do not represent the binding pose with the exception of crystal A and

crystal F. Crystal A presents one clear minimum on the 1�A region, while crystal F presents two

minimums: a small one at the 1�A region and another similarly small minimum at the 5.5�A region.

While for the crystals B and D the pose with the best PELE BE doesn’t match that of the crystal,
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(a) ALL WAT crystal A protocol 0 (b) ALL WAT crystal D protocol 0

(c) ALL WAT crystal E protocol 0 (d) ALL WAT crystal F protocol 0

(e) NO WAT crystal A protocol 0 (f) NO WAT crystal B protocol 0 (g) NO WAT crystal D protocol 0

(h) NO WAT crystal E protocol 0 (i) NO WAT crystal F protocol 0

Figure 4.2: Energy profiles for the simulations using the protocol 0 over the crystals with all the
water molecules but no ions (a to d) and the crystals with no waters nor ions (e to i)
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Table 4.2: This table shows which is the origin of the structures in each set, which is the initial
structure used for the simulations

set structure generation simulation initial pose Protocols tried
ALL WAT crystal crystal pose 0-9
NO WAT crystal crystal pose 0-9,11,12
STR WAT crystal crystal pose 8,9,12

crossdocking crystal’s crossdocking docking pose 9-12

they present an RMSD over 4�A to the crystal pose, the overall profile is good, unlike crystal E.

All the energy profiles in 4.2 show a poor exploration of the region where we can find poses

similar to the binding pose of the crystal. None of the WAT simulations has more than 50 points at

the 1-2�A region; the NO WAT simulations present less than 50 points for crystals D and E, and less

than 100 for crystals A and F, as shown in Figure 4.3. Thus, we needed to improve our simulation

protocol in order to explore more this region.

We proceeded to try 7 different simulation protocols where we tried to improve the sampling by

changing the simulation parameters without introducing any kind of bias just changing the duration,

the number of processors, the number of epochs, and all their possible combinations. A summary of

the characteristics of every protocol tried can be found at Table B.1.

The energy profiles, which can be checked on the supplementary data, show a bit more sampling

in the 1-2�A region but they still present significantly more sampling on other regions. We observe

that the WAT models energy profiles barely change with independence of the simulation protocol,

they’re more or less populated but the general shape is kept; and they present better minimum than

the no WAT simulations.

A summary of how well each protocol explores the 1-2�A region is shown in Figure 4.3. Each of

the plots show how many points are generated in the 1-2�A region by each protocol over the different

crystals sets.

When studying the reason for the better profiles for the ALL WAT set we discovered that the

presence of all the water molecules in the crystal significantly diminishes the sampling space of the

ligands. From the crystals structures we know that some of these water molecules play an important

role on the binding of ligands, so they should be kept in order to obtain the right binding pose. In

order to take into account these key water molecules while removing the rest of waters we define the

concept of structural waters.

We define a structural water as any water that has its oxygen atom within 3.25�A of 3 or more

N or O atoms from the protein, or at least 1 N or O atom within 2�A and another within 3.2-5�A.

We selected the waters automatically for each of the crystals using our own python script, and we

prepared the resulting structures with prepwizard[69], to optimize the hydrogens’ positions, creating

a new set of models with only the structural waters present (STR WAT).

In addition, upon further study of the profiles, we saw that the profiles of crystal E present a
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(a) ALL WAT set (b) NO WAT set

(c) STR WAT set

Figure 4.3: These bar-plots summarize how well each protocol explores the 1-2�A region for each
of crystals. The x-axis shows the protocol, the y-axis shows the number of points inside the 1-2�A
region and the colours represent the crystals.
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spread population, with no clear minimum and almost no exploration of the 1-2�A region, so we

decided to study the characteristics of this compound further. The compound in this crystal is

an ATP analog, which means that it is a long flexible compound with three phosphorus atoms;

originally, it also presents a SO4 molecule on the other side of the BP, which was removed upon the

protein preparation. All these characteristics make this compound really hard to assess, because it

will be highly difficult to dock, and any force-field used during the simulation will overestimate the

energy due to the high charges; plus, none of these characteristics are desired in prospective drugs.

Therefore crystal E was eliminated from the simulation calibration.

Using Spawning: adding mechanistic information

So far we haven’t used any information about the binding mechanism of these compounds, but we

do know how they bind, and which interactions are important. This kind of information is used

when performing the traditional methodologies such as docking or pharmacophores, and it’ll be used

later on when we apply these methods to the compounds pre-screening.

Thus, we decided to use the information about the key interaction that’ll be used later on,

which is the presence of an h-bond between the protein and the ligands, also present in all crystal

structures. So, we now perform protocol 8 on the three sets; this protocol uses the epsilon parameter

of adaptive PELE to steer the simulation toward sampling poses with a low distance between the

atoms implied in the key h-bond, incorporating the aforementioned information.

We can see the resulting energy profiles of protocol 8 on Figure 4.4. Thanks to the introduction

of the bias we’ve obtained a protocol capable of sampling the 1-2�A region quite well, but which still

generates minimums in regions with higher RMSD values (false positives).

Up to this point we performed 85 different simulations and their analysis in order to obtain a

protocol able to explore the 1-2�A region properly, although it also samples other undesired mini-

mums. This amount of computations was performed in 2.5 months thanks to the computational

resources of the supercomputer Marenostrum IV, and to the PELE VS platform (developed during

the first years of this thesis) which automatizes the whole procedure, allowing us to prepare, launch

and analyse the simulations in a simple and quick way.

4.2.2 Cross-docking study

Once we start to work on the real VSs campaign we won’t have crystals of the compounds to study,

instead, we’ll be working with structures derived from a docking process. Thus, we decided to

apply the simulations to structures derived from a docking process and finish the refinement of the

simulation protocol taking into account only this type of structure. The best way to generate this

kind of structure while knowing the right binding pose, is to perform a cross-docking of all the

crystals, that means, docking the compounds from each crystal against all the receptors we have.



CHAPTER 4. RETOS PROJECT: SILICODERM 84

(a) ALL WAT crystal A protocol 8 (b) ALL WAT crystal D protocol 8

(c) ALL WAT crystal E protocol 8 (d) ALL WAT crystal F protocol 8

(e) NO WAT crystal A protocol 8 (f) NO WAT crystal B protocol 8 (g) NO WAT crystal D protocol 8

(h) NO WAT crystal E protocol 8 (i) NO WAT crystal F protocol 8 (j) NO WAT crystal G protocol 8

Figure 4.4: Energy profiles resulting from PELE simulations using protocol 8.
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(k) STR WAT crystal A protocol 8 (l) STR WAT crystal B protocol 8 (m) STR WAT crystal D protocol 8

(n) STR WAT crystal F protocol 8 (o) STR WAT crystal G protocol 8

Figure 4.4: Continuation. Energy profiles resulting from PELE simulations using protocol 8.

In order to generate this new set of data, we opted for using only the proteins from each selected

crystal as receptors. We took each crystal and eliminated the waters, ions and ligands leaving only

one chain of protein, and prepared them again using prepwizard [69]. Then we prepared the grids

and performed the docking process with the Glide [34, 23] software from Schrödinger suite-2018-

1. For the docking we used the default parameters and allowed the program to place the ligand

wherever it wanted on the BP, without taking into account the key h-bond.

We used all the receptors from all the crystals except receptor C and receptor E, and we per-

formed the docking with the compounds from crystals: A, B, D, F and G. This combination of

receptors and compounds generated 25 protein-ligand complexes.

When studying the structures derived from the docking we observe that the characteristics of

each compound vary depending on which receptor is used for the docking. The main characteristics

to consider are the RMSD of the heavy atoms between the docked and crystal poses, and the distance

between the two atoms involved in the key hbond. With these two metrics we can estimate how good

a pose is. We also use the PELE BE as a characteristic, because it allows us to see how energetically

favourable a pose is in our force-field. All this information is summarized in Table 4.3.

We observe a better performance of the docking program when performing a self-docking ex-

periment instead of a cross-docking. The self-docking means we dock the ligand into the protein

obtained from the same crystal; while the cross-docking means we dock the ligands derived from the

other crystals into the protein of one crystal.
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Table 4.3: Crossdocking simulations starting structures’ characteristics.

receptor ligand ligand RMSD hbond distance PELE BE
receptor A ligand A 1.168360 0.79191 -50.3046
receptor A ligand B 8.880020 0.44060 -30.6264
receptor A ligand D 1.662200 0.21904 -24.7331
receptor A ligand F 6.924620 0.29330 -49.9489
receptor A ligand G 9.783690 0.20260 -32.2795
receptor B ligand A 4.342870 0.78690 -33.1025
receptor B ligand B 1.652870 0.97630 -41.4464
receptor B ligand D 1.168550 0.96797 -24.8259
receptor B ligand F 6.268810 0.65270 -35.7882
receptor B ligand G 6.365760 0.93745 -22.6156
receptor D ligand A 4.463980 0.22848 -38.3735
receptor D ligand B 8.105680 0.75090 -37.6212
receptor D ligand D 0.693984 0.16734 -39.3428
receptor D ligand F 5.159510 0.18619 -36.8987
receptor D ligand G 9.961790 0.53930 -32.6344
receptor F ligand A 3.867120 0.83828 -34.3218
receptor F ligand B 1.556140 0.94498 -43.5171
receptor F ligand D 1.003210 0.17095 -13.7769
receptor F ligand F 0.291288 0.01015 -41.6651
receptor F ligand G 3.551170 0.59664 -44.4961
receptor G ligand A 3.883020 0.95563 -35.6181
receptor G ligand B 1.500830 0.02597 -45.6654
receptor G ligand D 6.224360 0.65126 -27.4961
receptor G ligand F 2.635000 0.80769 -35.7909
receptor G ligand G 1.080900 0.05426 -55.2329

In order to avoid adding mechanistic information to the simulation, which is compound-specific,

we decided to try first on this new dataset protocol 9. Protocol 9 is identical to protocol 8 with the

only difference on the bias introduced. Protocol 9 s biased towards the structures with lower PELE

BE instead of the ones with lower h-bond distance, as in protocol 8. With this, we hope to obtain

an equally good exploration of the 1-2�A region without having to add the mechanistic information.

The reason behind trying to avoid adding mechanistic information is that, while we know how

the crystals in the compounds bind to the protein, we won’t have this information for the VSs

campaign. We know there will be, at least, one h-bond with a key hydrogen of the protein, but we

can only guess which atom of the compound will be participating.

We also decided to try this same protocol on the crystal structures in order to compare protocol

9 with protocol 8. The reason we need to make this comparison is that, even for the self-docked

structures, those where the ligand and the receptor are from the same crystal and which are the

closest to the crystal structures, we observe that the starting pose presents an RMSD over 1 for

all of them, with exception of ligand D docked to receptor D and ligand F docked to receptor F.
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Given our findings about the presence of all waters we tried this protocol only on the NO WAT and

STR WAT sets without crystal E.

The profiles obtained from protocol 9 present a better exploration of the 1-2�A region on the

STR WAT set than the NO WAT set, with the exception of crystal D, which presents a better

exploration for the NO WAT set. However, this protocol doesn’t only improve the sampling on the

desired region, but it also samples more the minimums in the 4-6�A region, exaggerating what we

know are incorrect minimums. Thus, by applying this protocol on the crystal’s sets we enhance the

sampling of low BE poses, whether they are true or false positives.

When studying the energy profiles of the crossdocking set we notice different outcomes for the

same compound, depending on which receptor was used for the docking procedure, in a similar

fashion to what happens when performing the initial docking. Only ligand A (the ligand derived from

crystal A) presents a good exploration of the 1-2�A region on almost all possible receptors, with the

only exception of crystal B as receptor, where it shows a poor exploration. All the other compounds

present a good exploration of the 1-2�A region when the initial docking procedure generates a pose

with an RMSD value lower than 2�A; otherwise, simulations get trapped in other local regions.

As we can see in Figure 4.5f, we observe a good exploration of the 1-2�A region (more than 100

points) for compound A, and some of the other compounds just for one or two receptors. Thus,

we decided to refine more the simulation protocol by: (i) changing the epsilon constraint from the

PELE BE back to the distance between the two atoms forming the key hbond, (ii) reducing the

perturbation radius, and (iii) by steering all the compounds towards the average center of mass from

all the crystalline ligands poses).

With the first change we force that a 33% of the processors explore the poses with the lowest

h-bond distance found along the simulation more; with the second and third changes we tried

to minimize the exploration in other regions far away from the 1-2�A region. Overall, with this

protocol 10, we introduce system specific mechanistic experimental information that, we expect,

should improve the exploration near-native poses.

When checking the new protocol 10, we observe that in most of the cases the profiles have

changed; we noticed how the minimums outside the 1-2�A region now present a smaller number of

points and are not so deep as with protocol 9. We also observe a general improvement on the 1-2�A
region exploration. As we can see in Figure 4.5g, the number of compounds with more than 100

points in this region is still low, but now more compounds present points in this area.

In light of the changes observed, we decided to refine the protocol a bit more by (i) increasing

the epsilon constraint, in order to increase to 75% the number of processors to explore the lower

h-bond distance poses, and (ii) allowing the simulation to make bigger movements 20% of the time,

as long as the ligand doesn’t form the hbond. We’ve called this new simulation protocol: protocol

11.

We observe an improvement on the sampling at the 1-2�A region for almost all of the 25 studied
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(f) Protocol 9 (g) Protocol 10

(h)
leg-
end

(i) Protocol 11 (j) Protocol 12

Figure 4.5: These plots show how many poses in the 1-2�A RMSD region to the crystal pose are
generated with the PELE simulation using the protocols 9 in figure 4.5f, 10 in figure 4.5g, 11 in
figure 4.5i and 12 in figure 4.5j. The y-axis shows the number of points on the 1-2�A region, the x
axis shows the RMSD of the initial docking pose, the colour represents the receptor used during the
docking process and the symbol the ligand. Pleas Note the change in scale in the different panels.
The panels do not share the same scale.
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structures; we also observe the apparition of other minima in other regions of the RMSD axis.

Though the improvement of sampling is constant for all the structures the introduction of new

minima aren’t, it is highly dependant on the ligand-protein complex generated by the docking. I.E.:

ligand A presents a secondary minimum or not depending on which receptor is used for the docking,

while ligand G generates better profiles, with only one minimum in the desired region, no matter

which receptor we use.

Even though the secondary minima isn’t constant it is a general tendency. In order to avoid these

other minima, we tried to apply the protocol 11 on the structures derived from the docking process

using the protein receptor plus the structural waters. As mentioned before, the presence of water

molecules is needed by some of the compounds in order to bind the protein, they also represent a

steric constraint that can help to avoid the apparition of the second minima.

The profiles of the simulations with waters present less minima, or at least less exploration of the

undesired minima, without the h-bond formed, and in the case of ligand A docked to receptor A the

waters presence avoids the formation of a second minimum with the h-bond formed. Nevertheless,

insertion of water molecules could significantly hinder the initial docking of general compounds, as

well as the sampling of compounds capable of displacing water molecules; due to the water’s reduced

mobility.

(a) crystal A protocol 11 (b) crystal B protocol 11 (c) crystal D protocol 11

(d) crystal F protocol 11 (e) crystal G protocol 11

Figure 4.6: Energy profiles for the PELE simulations using protocol 11 on the NO WAT set. In
these images the colour represents the distance between the atoms involved in the key h-bond.

In order to make sure we have a good protocol; we performed the simulations with protocol 11
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on the crystal structures without waters. The new protocols are biased towards structures with

lower distances between the atoms involved in the key hbond, thus, we’ve decided to colour the plot

using this metric in order to better study the simulation behaviour. In figure 4.6 we can observe the

energy profiles derived from the simulation with protocol 11 on the NO WAT set. These profiles

present the secondary minima observed on the cross-docking simulations, in most of the cases the

minima present short h-bond distances, which can mean we’re introducing too much bias.

To reduce the secondary minima we decided to lower the epsilon parameter to 0.5, generating

protocol 12, and applied it to the crossdocking set, where we observed that, even though the number

of points in the 1-2�A region has decreased considerably when compared to protocol 11, this protocol

still provides a good exploration for most of the systems, with only 12 systems with an exploration

below 100 points in the desired region, and 9 systems with more than 200 points. When looking at

the profiles (Figures B.12 to B.14), with the exception of a couple systems, all the energy profiles

have one clear minimum with the right h-bond distance and the secondary minima present a broken

hbond, that is, the distance between the atoms is over 2.55�A.

Given the good results we decided to try protocol 12 on the NO WAT set. The results show

clearer profiles. In most cases, the profiles only present one minima, located in the 1-2�A region, and

any remaining secondary minima are less populated and present a bad h-bond distance, that is, a

distance over 2.5�A, as we can see at Figure 4.7 left column.

We also tried protocol 12 on the STR WAT to check whether the inclusion of water molecules

could help eliminate the secondary minima or not. We observe that the inclusion of the structural

water molecules helps to highly improve the energetic profile of crystal D, but they don’t significantly

improve the profiles of the other crystals. Thus, with protocol 12, we’ve accomplished a protocol

capable of good sampling with no need for water molecules.

In summary, we have a simulation protocol capable of sampling sufficiently the 1-2�A RMSD

region, where the right binding pose and near-native poses are found. However, this protocol gen-

erates false positive minima in PELE BE, at regions with more than 3�A RMSD away, which are

not similar to the right binding pose. Importantly, we observe that most of the false minima do not

present the key h-bond for binding, thus this could be a possible filter. Still, however, there are few

false minima that present the key h-bond rendering this filter less useful.

4.3 Simulations re-scoring

Given our incapability to avoid the formation of secondary minima when using the PELE BE to

score the poses, and the good performance of Glide score on the kinase family: an average recall

over 30%, we decided to re-score the whole simulation with the Glide scoring function.

In order to perform the re-score, we extracted each of the structures generated during the simu-

lation and computed the Glide in place score. With this protocol, we use the poses from PELE, but
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(a) STR WAT crystal A protocol 12 (b) STR WAT crystal D protocol 12

(c) STR WAT crystal F protocol 12 (d) STR WAT crystal G protocol 12

(e) NO WAT crystal A protocol 12 (f) NO WAT crystal B protocol 12 (g) NO WAT crystal D protocol 12

(h) NO WAT crystal F protocol 12 (i) NO WAT crystal G protocol 12

Figure 4.7: Energy profiles for the STR WAT (panels from (a) to (d)) and NO WAT (panels from
(e) to (i) sets PELE simulations using protocol 12.

the binding energy estimation of Glide to generate the profiles.

The first set where we applied this new methodology was the crystals with structural waters and
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protocol 9 simulation, which was the last simulation performed at that time. When comparing the

energy profiles generated by PELE BE and Glide score, Figure 4.8, we observe that the minima

present outside the 1-2�A region have either disappeared or been reduced to secondary minima with

higher scores than the ones in the desired region. Thus, the false positives have been removed from

the selected poses.

Performing this re-score took us almost 2 weeks, while performing the simulations only took a

couple of days, thus, we could try thrice the amount of simulation protocols than perform their

re-score. The combination of the time needed to perform all the re-scores and the quick pace this

project presents made us decide to use the re-score on the VSs data directly.

At this point we have a protocol that ensures a good sampling of near-native poses, while gen-

erating barely any secondary minima and the Glide re-score procedure that allows us to eliminate

any possible secondary minima.

4.4 Application to VS data.

In this section we’ll present the preliminary results of applying the procedure to a dataset forming

part of a VS campaign. We’ll work with 2.000 compounds, of which we know nothing about their

activity or binding mode. This dataset, from now on the VS set, is formed by compounds derived

from a docking campaign previously performed by Almirall, who used different crystals as receptors

and different water molecules depending on the receptor.

They provided us with the best 2.000 compounds based on their docking score plus their fitness

to interact with the kinase, eliminating some false positives thanks to the group’s know-how.

Even though the compounds derived from a docking procedure, we were provided only with the

prepared 3D structure of the ligands, but no information on which was the receptor used to obtain

them. Since PELE needs the structure of the protein-ligand complex we needed to perform a new

docking with one of the receptors from the crystals. Due to the results of the cross-docking we chose

the receptor G as the receptor to use.

4.4.1 Compounds docking and study

We proceeded to perform the docking of all the 2.000 compounds to the receptor G using the Glide

SP from Schrödinger and used the Glide score to initially rank the compounds. We called this initial

ranking the docking ranking. The docking protocol was set up to only write the best pose according

to their score, which later on will be used to start the PELE simulation, and to generate poses with

an h-bond with a specific hydrogen atom from the BP. With this set up. Glide will try to generate

several poses for each compound, but it will only write the best one according to its internal score.

For each compound, it will search for any atom capable of being an h-bond acceptor, and will try

to place the compound with this atom within h-bond distance of the specified hydrogen from the
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(a) crystal A PELE BE (b) crystal A Glide Score

(c) crystal B PELE BE (d) crystal B Glide Score

(e) crystal D PELE BE (f) crystal D Glide Score

Figure 4.8: This figure shows the differences between the Glide score and the PELE BE. All the
images show the structure derived of the PELE simulations using protocol 9, and x-axis shows the
ligand RMSD to the crystal pose, and the colour indicates the h-bond distance. The y-axis shows
the PELE BE for the images on the left column, and the Glide score for the images on the right
column.
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(g) crystal F PELE BE (h) crystal F Glide Score

(i) crystal G PELE BE (j) crystal G Glide Score

Figure 4.8: This figure shows the differences between the Glide score and the PELE BE. All the
images show the structure derived of the PELE simulations using protocol 9, and x-axis shows the
ligand RMSD to the crystal pose, and the colour indicates the h-bond distance. The y-axis shows
the PELE BE for the images on the left column, and the Glide score for the images on the right
column. Cont.
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BP inside the protein, but without modifying the receptor G at all. If by any chance the program

isn’t capable of placing the compound with an h-bond acceptor within the right distance of the key

hydrogen, it will generate no pose for the given compound. We’ll call this the constrained docking

from now on.

When we performed the docking, Glide was able to generate a pose with the h-bond formed for

most of the compounds, but there were 206 compounds for which Glide was unable to generate any

pose mainly due to steric clashes with the receptor. It is important to note that the use of different

docking programs (VINA, Glide or Rdock among many) will result in different poses and scores, and

that even when using the same program Glide, the use of different precisions SP, XP or high-through

put (which translates into different internal protocols) will generate different poses and/or scores,

and even when using the same program and precision Glide SP, if the version is different (2018-1 or

2018-4), the pose may be the same but the score will change. It is due to this variability in score and

pose generation, mixed with the difference in the receptor used, that even though all the compounds

were derived from a docking campaign using Glide SP with the h-bond constraint, we were unable

to dock part of the compounds. For the compounds we couldn’t dock with the constrained docking,

we performed exactly the same docking, but without the constraint (the non-constrained docking

from now on), and we were able to obtain poses for these compounds.

Once we obtained the poses generated by glide, we started to prepare the PELE simulations

with protocol 12. Since protocol 12 biases the simulation towards the poses with the lowest h-

bond distance we need to specify the two atoms involved in the h-bond. The key hydrogen from

the receptor G remains constant for all the ligand-protein complexes, while the h-bond acceptor

from the compound or ligand is specific and has to be extracted manually. In order to obtain this

atom and check the fitness of the atom chosen by glide, we revised manually, one by one, the 2.000

compounds. While doing so we observed two interesting facts.

The first one was that the constrained docking sometimes picked atoms that couldn’t be the

right ones, due to how the known active compounds interact with the kinases; in this case we chose

another h-bond acceptor from the compound as the interacting atom, and biased the simulation

towards those poses with the atom closer to the key hydrogen. The second one was that, for the

poses generated by the non-constrained docking, the program was able to place the compounds

inside the cavity but far away from the region of interest, due to the big size of the BP. In both

cases the problem lied in the incapability of Glide to generate poses with the right h-bond due to

steric clashes with the receptor.

4.4.2 PELE simulations

Once we have the compound pose inside the protein complex and we have all the information needed

to prepare the simulations, we automatically prepared all the simulations using the pose obtained by

the constrained-docking as the starting pose. But we suspected that protocol 12 would not be able
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to move the compounds with the initial pose obtained from the non-constrained docking towards

the catalytic region, where the key h-bond is. To test this hypothesis, we performed a couple of

simulations with different compounds and the result was positive. Protocol 12 starting from the

non-constrained-docking didn’t sample the catalytic region.

The reason why protocol 12 is unable to sample the desired region of the BP is that the compounds

is placed far away from it, and protocol 12 has been designed as a local exploration simulation; which

means it will move the compound inside a 4�A box centered on the average center of mass of the

crystals compounds. To solve this problem, and to sample the catalytic region of the receptor with

the simulation, we decided to perform a short simulation before applying protocol 12; this simulation

is set so it can bring the compounds towards the catalytic site. The protocol used for this simulation

was called the equilibration step, because we will use the pose with the lowest energy from this

simulation as the starting point of the PELE simulation with protocol 12. This new approach

appears in table B.1 as the protocol 13.

All the preparatory steps to perform the PELE simulations were done using the VS platform

developed in this thesis, which, together with the computational resources of Marenostrum IV,

allowed us to prepare, launch and analyse all the simulations (over 2.200) within one month and a

half.

When studying the energy profiles of all the 2.000 simulations (data not shown), we observed

that some profiles presented multiple minima with good h-bond distances. Since the re-score of

the poses with glide, performing a score in place, had given us good results when applied to the

energy profiles of protocol 9 on the NO WAT set we decided to apply this methodology to the 2.000

compounds.

4.4.3 Glide Re-score

Since we’re performing the score-in-place protocol, computing the Glide score implies creating one

grid for each pose we re-score, because each of the poses generated by PELE not only presents a

different pose of the ligand, it also presents a different receptor structure. If we were to re-score all

the poses for all the compounds we would be re-scoring over 2.000.000 poses.

Given the computational cost involved in computing the Glide score in place for all the poses

and compounds, we decided to reduce the number of structures to re-score for each compound. This

reduction was done by clustering the poses generated by PELE by the RMSD among them. We

expect that with this approach the number of poses to score is significantly reduced, without loosing

any pose that may be of interest.

Since we don’t know whether the compounds present activity or not, some compounds present

more than one h-bond acceptor, and we don’t know how they bind, we decided not to filter the poses

by their h-bond distance.

In order to perform this re-score, the group bought 3 new machines of 20 cores each, that were
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used intensively for 3 months. All the process was automatized, and 70% of the time was used in

creating the receptors-grids.

4.4.4 Preliminary Results

Since only a few hundred of compounds can be tested we now have to select the compounds with

the highest probability to be active. This is the step where our methodology can influence the most.

So far we have the docking ranking derived from our initial docking, but now we want to create a

new ranking with more true binders.

With all the procedure we have done, we now have from 300 to 1000 poses for each compound.

For each of these poses we know their PELE BE and their Glide score. In order to create the new

ranking, we need to: (i) select one pose per compound and (ii) rank the compounds; both steps can

be done according to either their Glide score or their PELE BE for the selected pose.

Pose selection

We have two different energy profiles for each of the 2000 compounds, the one generated by the

PELE BE and the one generated by the Glide re-score. The decision now is whether to pick as

the pose to study the one with the best PELE BE or the one with the best Glide score. From our

previous studies about the re-score process we expect both methodologies will select the same pose

in most cases. But we observed that sometimes the methodologies select different poses, like in

Figures 4.8h and 4.8g where the pose with the minimum PELE BE and the pose with the minimum

Glide score don’t match. So, we decided to study how does the pose selection affect each of these

metrics (Figure 4.9).

(a) PELE BE distribution (b) Glide score distribution

Figure 4.9: Scoring methods distributions. Each image shows the score distribution (PELE BE
in (a) and Glide score in (b)) for each possible selection method. The bluish curves represent the
score distribution generated by the poses selected according to Glide re-score and the greenish one
represent the distribution generated when the pose is selected according to the PELE BE .
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We’ve plotted the two scores distributions for each of the selected poses in 4.9, and even though

the distributions overlap partially for the two scores (panels a and b), we see some differences in the

distributions. In Figure 4.9a we can observe how the Glide score distribution changes depending on

which score has been used to select the pose. We see that the poses selected by Glide have a higher

PELE BE (blue curve) and they present a wider spread than the poses selected by the PELE BE

(green curve). In Figure 4.9b we observe how the Glide score is affected by the pose selection. We

see that the poses selected by the Glide score (bluish colour) present a narrower distribution, with

lower Glide scores than the poses selected by the PELE BE (greenish colour).

The reader should be aware that, even though one may think the overlapping area is indicative of

the number of compounds for which both selections render the same pose, it isn’t. If we look carefully

at the size of the overlapping area, we’ll see that it changes depending on the score. When we check

the number of compounds with the same pose for both selections, we discover that both selection

methods (min glide and min PELE BE ) select the same pose only for 10% of the compounds, while

the overlapping areas on 4.9 seem to cover almost 50% of the compounds.

In Figure 4.10 we can observe the PELE BEs energy profile (panel (a)) and the Glide score profile

(panel (b)) for the compound comp 1092, one of the many compounds that present two different

best poses, depending on which score we use to do the selection of the pose.

(a) PELE BE distribution (b) Glide score distribution

Figure 4.10: The image shows the PELE BE profile in (a) and the Glide profile in (b). These profiles
differ from the previous ones due to the clustering applied to them. The purple dot indicates the
pose with the minimum Glide score and the golden dot indicates the pose with the minimum PELE
BE

Ranking changes

Given our two ranking scores (Glide and PELE BE ), and the differences in their distribution

caused by which one we use to select the pose to analyse (the one with the minimum score), for
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each compound we obtain four new rankings. Figure 4.11 shows the five possible rankings (the

four previously mentioned plus the initial one) we have: the docking ranking, which derives from our

initial docking procedure; the glide (glide selection), ranking derived from ranking by Glide score the

poses selected according to their Glide score; the glide (PELE BE selection), ranking derived from

ranking by Glide score the poses selected by PELE BE ; the PELE BE (glide selection), ranking

derived from ranking the compounds according to their PELE BE using the pose selected by the

Glide re-score process; and the PELE BE (PELE BE selection) ranking, which derives from ranking

the compounds by their PELE BE computed on the best pose according to PELE BE.

Given the selection procedure the glide (PELE BE selection) and PELE BE (PELE BE selection)

rankings score the poses selected by their PELE BE (golden points in Figure 4.10) according to their

Glide score and PELE BE respectively generating two different rankings. On the other side, glide

(glide selection) and PELE BE (glide selection) score the best poses selected by their Glide score

(purple points in Figure 4.10) using the Glide and PELE BE respectively.

Figure 4.11 represents the changes of each ranking regarding the initial ranking. The x axis is

divided in five parts, one for each possible ranking, while the position of the ranking is shown on

the y-axis, and the position of the compounds on the initial ranking are represented by the colour

scale. In this graphic, we can appreciate that each of the rankings are quite different among them

and to the initial docking. It also shows that there’s no correlation among the rankings since the

colouration of the positions doesn’t match from one ranking to another.

The influence of the pose selection and the score used to create the ranking is such that only

13 compounds share the same ranking according to any of these values. Only 6 compounds are not

influenced by the pose selection and share the same position in the ranking generated by either the

Glide or PELE BE scores, while only 7 compounds share the same ranking position independently

of which score is used to generate the ranking.

We should note that, for 20% of the compounds the pose selected by PELE BE and Glide score

is the same, but we’re seeing that not even 10% of the compounds share the same ranking position,

which indicates that not only the scores sample different conformational minima but they also differ

greatly upon scoring the same poses.

Next, we’ll study in more detail how does the top 2% of each ranking change, that means, we’ll

look at the top 40 compounds from each ranking, and their change regarding the initial docking.

The compounds initial docking position for the best 40 compounds of each ranking are written in

Table 4.4, the differences on the numbers give us an idea of how much the ranking has changed after

the induced fit procedure. We’re plotting the initial ranking position, as identifier, instead of the

compounds name, due to confidentiality reasons, which means that if two rankings show the same

number the same compound occupies that position in both rankings.

The most curious thing is that some of the compounds occupying the top positions in most of

the rankings present a high initial docking position, over 1000, which means that if we only used
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the traditional docking methodology we would not have studied those compounds. Upon careful

examination, we’ve seen that some of those compounds are good candidates to become a drug,

which indicates a certain degree of enrichment on the ranking.

Table 4.4: Ranking changes depending on the score used to select the pose and the score used to
generate the ranking. The cell values indicate the ranking on the docking ranking.

glide (glide
selection)

glide (PELE BE
selection)

PELE BE (glide
selection)

PELE BE (PELE BE
selection)

1897 1897 1803 1965
1710 1710 155 1181
555 303 1659 458
303 909 303 320
8 1659 909 205

149 1188 320 1803
95 47 1000 155

1400 1295 205 1659
909 1181 458 555
458 860 1897 303
545 8 95 950
1504 245 971 909
1181 100 1181 106
1659 522 552 757
637 552 142 1897
935 870 1965 911
1188 156 391 1885
70 74 911 8
47 149 234 6
89 395 867 1873

As mentioned before (it can be observed in detail in table 4.4 and Figure 4.11) there’s almost

no consensus among the rankings, which makes the selection of compounds to experimentally test

really hard. In light of all this it was decided that the methodology should be tested in a validation

set. This new set will be composed of compounds for which we won’t know their binding mode, that

is, we don’t have a crystal with the compound, but we’ll have their activity value, we know they are

active and present an effect on the protein.

4.5 Validation Set

In this section we’ll study how our methodology affects the ranking of approximately 60 compounds

with known activity. The main objective of this study is to set a selection criteria to later on apply

onto the VS set. Again, due to the confidentiality of this project we cannot disclose the names or

formulas of the compounds used to this study.
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4.5.1 Data preparation and PELE simulations

The first step in the process is to dock the compounds using the Glide program from Schrödinger,

using the SP protocol set to generate one single pose for each compound, and form an h-bond with

the key hydrogen from the protein. We performed the docking against the receptor G, and, as

happened with the VS set, the program was unable to dock some compounds with the constraint

on; for these compounds we performed an unconstrained docking.

The docking procedure provides us with a Glide score for each compound, and we use this score

to generate a ranking of the compounds. We’ll call this ranking the initial glide, and whenever a

value of this ranking is plotted or used it will be a reference to the Glide score of the compound,

not its position in the ranking.

Then, the protocol 12 was applied to the compounds docked by the constrained docking and pro-

tocol 13 to those that underwent the unconstrained docking. The trajectories where then clustered

according to the RMSD between the poses and the pose with the lowest PELE BE for each cluster

was selected to be re-scored by glide.

From this new profiles two poses where selected for each compound: the best pose according to

their PELE BE , min PELE, and the best one according to their Glide scores, min GLIDE. When

all the combinations possible are taken into account, we end up with four different rankings, the

same four types as in the VSs screening. According to which score is used to select the compound,

we obtain two possible poses: the minGLIDE and the minPELE, where they are selected by their

Glide score and their PELE BE respectively.

The most intuitive rankings are the ones where the selection of the compound and the ranking

are made with the same score, where we would use the Glide score to rank the minGLIDE ranking

and the PELE BE . When we look at these rankings and the initial glide one way to see how

much accuracy we gain with our methodology is to check their correlation with their experimental

activity. A standard metric to measure the correlation between two variables is r2; we’ll use it here to

measure the correlation between the experimental value pIC50 and the different scores: initial glide,

glide minGLIDE and BE minPELE.

The initial glide has an r2 value of 0.09 and, as we can see in Figure 4.12a, this means there’s

barely any correlation between the variables. When we look at the r2 of the rankings we observe it

has decreased even more, 0.07 for the glide minGLIDE and 0.05 for the be minPELE, which means

that even though our simulations have been set up to obtain near-native poses to the crystals, the

scores we are using are incapable of correctly sorting the compounds according to their real binding

activity.

A first approach to solve this issue is to do some consensus between the scores we have, in this

direction we have observed that when we try to correlate the PELE BE with the initial glide score

we can observe an improvement on the quality of the selected compounds. In Figure 4.13 we can

see that, if we apply a combined criteria on the initial glide and the PELE BE, we can avoid the
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selection of compounds with low activity values.

4.6 Conclusions

The implementation of the technology into a real pharmacological development project has confirmed

the conclusion that were obtained in the DUDE section: we need to use a specific simulation protocol

tailored for the receptor. After a few calibration steps, we do obtain a protocol with PELE that is

capable of sampling the bound species, correcting in many cases the wrong Glide rigid docking pose.

The scoring functions, however, still fail to have a strong correlation with the activity. While we

do not know yet the results of the in vitro validation of our 2000 compound refinement (and, in fact,

we might never know them due to confidentiality issues), the validation test set has raised significant

doubts about each specific scoring function. Interestingly, however, applying a consensus ranking

procedure seems to provide the best number of high active compounds. This has been the criteria

that was finally used by the industrial partner to choose few compounds for lead optimization (as

said, results are kept confidential).
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Figure 4.11: This image shows how much does each of the rankings generated after all the procedure
change when compared to the initial docking. The x axis divides the space into the five ranking
generated, the y-axis shows the position of the ranking and the colour represents the position of the
compound in the initial ranking.
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(a) pIC50 vs initial glide (b) pIC50 vs glide minGLIDE

(c) pIC50 vs BE minPELE

Figure 4.12: All three images show on the y-axis the pIC50 (the experimentally obtained activity
value) and the x-axis shows one of the following scoring functions values: initial glide (a), the Glide
score from the best pose according to Glide (b) and the PELE BE from the best pose according to
PELE BE (c).

(a) BE minPELE vs initial glide

Figure 4.13: This figure shows in the y-axis the PELE BE of the poses selected by their PELE BE
and in the x-axis it shows the Glide score from the docking pose of each compound. The colour
represents the range of the compounds’ activity.



Chapter 5

Conclusions

From the chapter 2 we have obtained the following conclusions:

• A platform that allows the use of PELE within VS campaigns have been developed.

• This platform reduces the time used to prepare, perform, analyse and re-score thousands of

simulations from half a year to a couple of months.

• The platform design allows the user to use it not only to perform simulations but to use just

re-score simulations.

From the chapter 3 the main conclusions are:

• The reason behind the improvement of EF for only half of the systems is related to the

structural characteristics of the pockets.

• Finding a general protocol capable of improving the sampling for all the possible proteins is an

extremely difficult task, due to the big differences on the proteins structure from one family

to another.

• The many differentiating characteristics of the proteins obliges us to use a protein-specific

protocol in order to improve the Glide docking results. With more detailed studies and a

better understanding of which proteins have highly similar pockets we may be able to get to

a pocket-type-specific protocol.

From the chapter 4 the main conclusions are:

• The implementation of the technology into a real pharmacological development project has

confirmed the conclusions that were obtained in the 3: we need to use a specific simulation

protocol tailored for the receptor. After a few calibration steps, we do obtain a protocol with

PELE that is capable of sampling the bound species, correcting in many cases the wrong Glide

rigid docking pose.
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• The scoring functions, however, still fail to have a strong correlation with the activity. While

we do not know yet the results of the in vitro validation of our 2000 compound refinement

(and, in fact, we might never know them due to confidentiality issues), the validation test

set has raised significant doubts about each specific scoring function. Interestingly, however,

applying a consensus ranking procedure seems to provide the best number of high active

compounds. This has been the criteria that was finally used by the industrial partner to

choose few compounds for lead optimization (as said, results are kept confidential).

As an overall conclusion, we can summarise that the technology to perform an extensive sampling

that reproduces the IF effect is ready, and with the proper automatization, by scripting platforms

as the one developed in this thesis, it can be applied to VS campaigns as a final step, by refining a

large number of compounds. However, the SFs do not seem to be mature enough to largely correlate

with experimental biding affinities, thus, providing only qualitative filtering results.
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Table A.1: Diverse Family results for the top50 compounds of each receptor.

Protein Score
EF Accuracy %EFmax Ratio Threshold

Doc-
king

I.F. maxi-
mum

Doc-
king

I.F. Doc-
king

I.F.

aces

dsx 91.79 81.59 418.16 0.18 0.16 0.22 0.20 0.89 50
Glide 51.00 61.19 418.16 0.10 0.12 0.12 0.15 1.20 50

mmgbsa 183.58 132.59 418.16 0.36 0.26 0.44 0.32 0.72 50
pele 81.59 51.00 418.16 0.16 0.10 0.20 0.12 0.63 50
vina 40.80 51.00 418.16 0.08 0.10 0.10 0.12 1.25 50

Xscore-
Average

81.59 91.79 418.16 0.16 0.18 0.20 0.22 1.13 50

Xscore-
HMScore

71.39 81.59 418.16 0.14 0.16 0.17 0.20 1.14 50

Xscore-
HPScore

112.19 101.99 418.16 0.22 0.20 0.27 0.24 0.91 50

Xscore-
HSScore

101.99 101.99 418.16 0.20 0.20 0.24 0.24 1.00 50

hs90a

dsx 0.00 9.96 418.16 0.00 0.02 0.00 0.02 ∞ 50
Glide 39.82 29.87 418.16 0.08 0.06 0.10 0.07 0.75 50

mmgbsa 189.17 29.87 418.16 0.38 0.06 0.45 0.07 0.16 50
pele 159.30 39.82 418.16 0.32 0.08 0.38 0.10 0.25 50
vina 0.00 0.00 418.16 0.00 0.00 0.00 0.00 n.a. 50

Xscore-
Average

0.00 0.00 418.16 0.00 0.00 0.00 0.00 n.a. 50

Xscore-
HMScore

9.96 9.96 418.16 0.02 0.02 0.02 0.02 1.00 50

Xscore-
HPScore

0.00 9.96 418.16 0.00 0.02 0.00 0.02 ∞ 50

Xscore-
HSScore

0.00 0.00 418.16 0.00 0.00 0.00 0.00 n.a. 50

nram

dsx 97.87 186.84 418.16 0.22 0.42 0.23 0.45 1.91 50
Glide 133.46 222.43 418.16 0.30 0.50 0.32 0.53 1.67 50

mmgbsa 240.22 204.63 418.16 0.54 0.46 0.57 0.49 0.85 50
pele 284.70 258.01 418.16 0.64 0.58 0.68 0.62 0.91 50
vina 80.07 62.28 418.16 0.18 0.14 0.19 0.15 0.78 50

Xscore-
Average

106.76 222.43 418.16 0.24 0.50 0.26 0.53 2.08 50

Xscore-
HMScore

71.18 195.73 418.16 0.16 0.44 0.17 0.47 2.75 50

Xscore-
HPScore

80.07 204.63 418.16 0.18 0.46 0.19 0.49 2.56 50

Xscore-
HSScore

133.46 240.22 418.16 0.30 0.54 0.32 0.57 1.80 50
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Table A.2: GPCR Family results for the top50 compounds of each receptor.

Protein Score
EF Accuracy %EFmax Ratio Threshold

Doc-
king

I.F. maxi-
mum

Doc-
king

I.F. Doc-
king

I.F.

adrb1

dsx 80.93 71.94 224.82 0.36 0.32 0.36 0.32 0.89 50
Glide 76.44 89.93 224.82 0.34 0.40 0.34 0.40 1.18 50

mmgbsa 22.48 22.48 224.82 0.10 0.10 0.10 0.10 1.00 50
pele 157.37 67.45 224.82 0.70 0.30 0.70 0.30 0.43 50
vina 13.49 17.99 224.82 0.06 0.08 0.06 0.08 1.33 50

Xscore-
Average

17.99 44.96 224.82 0.08 0.20 0.08 0.20 2.50 50

Xscore-
HMScore

8.99 53.96 224.82 0.04 0.24 0.04 0.24 6.00 50

Xscore-
HPScore

26.98 49.46 224.82 0.12 0.22 0.12 0.22 1.83 50

Xscore-
HSScore

17.99 31.47 224.82 0.08 0.14 0.08 0.14 1.75 50

adrb2

dsx 108.93 98.39 175.70 0.62 0.56 0.62 0.56 0.90 50
Glide 73.79 87.85 175.70 0.42 0.50 0.42 0.50 1.19 50

mmgbsa 24.60 24.60 175.70 0.14 0.14 0.14 0.14 1.00 50
pele 91.36 105.42 175.70 0.52 0.60 0.52 0.60 1.15 50
vina 14.06 17.57 175.70 0.08 0.10 0.08 0.10 1.25 50

Xscore-
Average

52.71 77.31 175.70 0.30 0.44 0.30 0.44 1.47 50

Xscore-
HMScore

38.65 63.25 175.70 0.22 0.36 0.22 0.36 1.64 50

Xscore-
HPScore

70.28 84.33 175.70 0.40 0.48 0.40 0.48 1.20 50

Xscore-
HSScore

49.20 49.20 175.70 0.28 0.28 0.28 0.28 1.00 50

drd3

dsx 45.45 109.09 418.16 0.10 0.24 0.11 0.26 2.40 50
Glide 27.27 63.63 418.16 0.06 0.14 0.07 0.15 2.33 50

mmgbsa 18.18 36.36 418.16 0.04 0.08 0.04 0.09 2.00 50
pele 9.09 45.45 418.16 0.02 0.10 0.02 0.11 5.00 50
vina 36.36 54.54 418.16 0.08 0.12 0.09 0.13 1.50 50

Xscore-
Average

18.18 45.45 418.16 0.04 0.10 0.04 0.11 2.50 50

Xscore-
HMScore

27.27 36.36 418.16 0.06 0.08 0.07 0.09 1.33 50

Xscore-
HPScore

18.18 54.54 418.16 0.04 0.12 0.04 0.13 3.00 50

Xscore-
HSScore

9.09 18.18 418.16 0.02 0.04 0.02 0.04 2.00 50
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Table A.3: kinase Family results for the top50 compounds of each receptor.

Protein Score
EF Accuracy %EFmax Ratio Threshold

Doc-
king

I.F. maxi-
mum

Doc-
king

I.F. Doc-
king

I.F.

cdk2

dsx 28.77 46.04 95.91 0.30 0.48 0.30 0.48 1.60 50
Glide 67.14 76.73 95.91 0.70 0.80 0.70 0.80 1.14 50

mmgbsa 47.95 38.36 95.91 0.50 0.40 0.50 0.40 0.80 50
pele 38.36 32.61 95.91 0.40 0.34 0.40 0.34 0.85 50
vina 53.71 55.63 95.91 0.56 0.58 0.56 0.58 1.04 50

Xscore-
Average

36.45 40.28 95.91 0.38 0.42 0.38 0.42 1.11 50

Xscore-
HMScore

40.28 47.95 95.91 0.42 0.50 0.42 0.50 1.19 50

Xscore-
HPScore

34.53 46.04 95.91 0.36 0.48 0.36 0.48 1.33 50

Xscore-
HSScore

24.94 24.94 95.91 0.26 0.26 0.26 0.26 1.00 50

jak2

dsx 67.95 88.86 261.35 0.26 0.34 0.26 0.34 1.31 50
Glide 156.81 135.90 261.35 0.60 0.52 0.60 0.52 0.87 50

mmgbsa 73.18 62.72 261.35 0.28 0.24 0.28 0.24 0.86 50
pele 109.77 67.95 261.35 0.42 0.26 0.42 0.26 0.62 50
vina 62.72 67.95 261.35 0.24 0.26 0.24 0.26 1.08 50

Xscore-
Average

62.72 94.09 261.35 0.24 0.36 0.24 0.36 1.50 50

Xscore-
HMScore

109.77 120.22 261.35 0.42 0.46 0.42 0.46 1.10 50

Xscore-
HPScore

78.41 94.09 261.35 0.30 0.36 0.30 0.36 1.20 50

Xscore-
HSScore

15.68 41.82 261.35 0.06 0.16 0.06 0.16 2.67 50

wee1

dsx 140.77 82.80 207.01 0.68 0.40 0.68 0.40 0.59 50
Glide 207.01 207.01 207.01 1.00 1.00 1.00 1.00 1.00 50

mmgbsa 207.01 136.63 207.01 1.00 0.66 1.00 0.66 0.66 50
pele 194.59 103.50 207.01 0.94 0.50 0.94 0.50 0.53 50
vina 202.87 149.05 207.01 0.98 0.72 0.98 0.72 0.73 50

Xscore-
Average

144.91 124.21 207.01 0.70 0.60 0.70 0.60 0.86 50

Xscore-
HMScore

149.05 144.91 207.01 0.72 0.70 0.72 0.70 0.97 50

Xscore-
HPScore

186.31 136.63 207.01 0.90 0.66 0.90 0.66 0.73 50

Xscore-
HSScore

33.12 37.26 207.01 0.16 0.18 0.16 0.18 1.13 50
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Table A.4: NHRs Family results for the top50 compounds of each receptor. Part I

Protein Score
EF Accuracy %EFmax Ratio Threshold

Doc-king I.F. maxi-
mum

Doc-
king

I.F. Doc-
king

I.F.

andr

dsx 110.79 107.22 178.70 0.62 0.60 0.62 0.60 0.97 50
Glide 100.07 85.78 178.70 0.56 0.48 0.56 0.48 0.86 50

mmgbsa 75.05 75.05 178.70 0.42 0.42 0.42 0.42 1.00 50
pele 57.18 53.61 178.70 0.32 0.30 0.32 0.30 0.94 50
vina 103.65 117.94 178.70 0.58 0.66 0.58 0.66 1.14 50

Xscore-
Average

71.48 75.05 178.70 0.40 0.42 0.40 0.42 1.05 50

Xscore-
HMScore

53.61 57.18 178.70 0.30 0.32 0.30 0.32 1.07 50

Xscore-
HPScore

78.63 92.92 178.70 0.44 0.52 0.44 0.52 1.18 50

Xscore-
HSScore

75.05 78.63 178.70 0.42 0.44 0.42 0.44 1.05 50

esr1

dsx 44.49 64.50 111.21 0.40 0.58 0.40 0.58 1.45 50
Glide 108.99 51.16 111.21 0.98 0.46 0.98 0.46 0.47 50

mmgbsa 111.21 68.95 111.21 1.00 0.62 1.00 0.62 0.62 50
pele 93.42 51.16 111.21 0.84 0.46 0.84 0.46 0.55 50
vina 55.61 42.26 111.21 0.50 0.38 0.50 0.38 0.76 50

Xscore-
Average

57.83 73.40 111.21 0.52 0.66 0.52 0.66 1.27 50

Xscore-
HMScore

71.18 77.85 111.21 0.64 0.70 0.64 0.70 1.09 50

Xscore-
HPScore

60.05 75.62 111.21 0.54 0.68 0.54 0.68 1.26 50

Xscore-
HSScore

31.14 44.49 111.21 0.28 0.40 0.28 0.40 1.43 50

gcr

dsx 115.35 36.05 360.48 0.32 0.10 0.32 0.10 0.31 50
Glide 158.61 86.52 360.48 0.44 0.24 0.44 0.24 0.55 50

mmgbsa 136.98 43.26 360.48 0.38 0.12 0.38 0.12 0.32 50
pele 158.61 28.84 360.48 0.44 0.08 0.44 0.08 0.18 50
vina 122.56 43.26 360.48 0.34 0.12 0.34 0.12 0.35 50

Xscore-
Average

36.05 14.42 360.48 0.10 0.04 0.10 0.04 0.40 50

Xscore-
HMScore

36.05 36.05 360.48 0.10 0.10 0.10 0.10 1.00 50

Xscore-
HPScore

72.10 36.05 360.48 0.20 0.10 0.20 0.10 0.50 50

Xscore-
HSScore

7.21 0.00 360.48 0.02 0.00 0.02 0.00 0.00 50



APPENDIX A. DUD-E SUPPLEMENTARY INFORMATION 121

Table A.5: NHRs Family results for the top50 compounds of each receptor, part II

Protein Score
EF Accuracy %EFmax Ratio Threshold

Doc-king I.F. maxi-
mum

Doc-
king

I.F. Doc-
king

I.F.

mcrin

dsx 225.16 241.25 418.16 0.28 0.30 0.54 0.58 1.07 50
Glide 225.16 241.25 418.16 0.28 0.30 0.54 0.58 1.07 50

mmgbsa 144.75 176.91 418.16 0.18 0.22 0.35 0.42 1.22 50
pele 32.17 112.58 418.16 0.04 0.14 0.08 0.27 3.50 50
vina 112.58 225.16 418.16 0.14 0.28 0.27 0.54 2.00 50

Xscore-
Average

160.83 209.08 418.16 0.20 0.26 0.38 0.50 1.30 50

Xscore-
HMScore

112.58 144.75 418.16 0.14 0.18 0.27 0.35 1.29 50

Xscore-
HPScore

225.16 273.41 418.16 0.28 0.34 0.54 0.65 1.21 50

Xscore-
HSScore

160.83 176.91 418.16 0.20 0.22 0.38 0.42 1.10 50

mcrout

dsx 124.32 113.02 418.16 0.22 0.20 0.30 0.27 0.91 50
Glide 214.73 180.83 418.16 0.38 0.32 0.51 0.43 0.84 50

mmgbsa 124.32 113.02 418.16 0.22 0.20 0.30 0.27 0.91 50
pele 67.81 79.11 418.16 0.12 0.14 0.16 0.19 1.17 50
vina 169.52 214.73 418.16 0.30 0.38 0.41 0.51 1.27 50

Xscore-
Average

67.81 101.71 418.16 0.12 0.18 0.16 0.24 1.50 50

Xscore-
HMScore

79.11 79.11 418.16 0.14 0.14 0.19 0.19 1.00 50

Xscore-
HPScore

101.71 101.71 418.16 0.18 0.18 0.24 0.24 1.00 50

Xscore-
HSScore

101.71 90.41 418.16 0.18 0.16 0.24 0.22 0.89 50

ppar

dsx 79.87 65.78 117.46 0.68 0.56 0.68 0.56 0.82 50
Glide 28.19 51.68 117.46 0.24 0.44 0.24 0.44 1.83 50

mmgbsa 42.29 37.59 117.46 0.36 0.32 0.36 0.32 0.89 50
pele 23.49 18.79 117.46 0.20 0.16 0.20 0.16 0.80 50
vina 23.49 25.84 117.46 0.20 0.22 0.20 0.22 1.10 50

Xscore-
Average

32.89 49.33 117.46 0.28 0.42 0.28 0.42 1.50 50

Xscore-
HMScore

35.24 37.59 117.46 0.30 0.32 0.30 0.32 1.07 50

Xscore-
HPScore

32.89 51.68 117.46 0.28 0.44 0.28 0.44 1.57 50

Xscore-
HSScore

42.29 49.33 117.46 0.36 0.42 0.36 0.42 1.17 50
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Table A.6: NHRs Family results for the top50 compounds of each receptor. Part III

Protein Score
EF Accuracy %EFmax Ratio Threshold

Doc-king I.F. maxi-
mum

Doc-
king

I.F. Doc-
king

I.F.

prgr

dsx 23.38 23.38 129.86 0.18 0.18 0.18 0.18 1.00 50
Glide 98.70 64.93 129.86 0.76 0.50 0.76 0.50 0.66 50

mmgbsa 49.35 20.78 129.86 0.38 0.16 0.38 0.16 0.42 50
pele 88.31 25.97 129.86 0.68 0.20 0.68 0.20 0.29 50
vina 49.35 51.95 129.86 0.38 0.40 0.38 0.40 1.05 50

Xscore-
Average

20.78 20.78 129.86 0.16 0.16 0.16 0.16 1.00 50

Xscore-
HMScore

23.38 25.97 129.86 0.18 0.20 0.18 0.20 1.11 50

Xscore-
HPScore

12.99 18.18 129.86 0.10 0.14 0.10 0.14 1.40 50

Xscore-
HSScore

15.58 15.58 129.86 0.12 0.12 0.12 0.12 1.00 50

rxra

dsx 148.77 116.60 201.04 0.74 0.58 0.74 0.58 0.78 50
Glide 172.89 96.50 201.04 0.86 0.48 0.86 0.48 0.56 50

mmgbsa 193.00 164.85 201.04 0.96 0.82 0.96 0.82 0.85 50
pele 112.58 124.64 201.04 0.56 0.62 0.56 0.62 1.11 50
vina 168.87 60.31 201.04 0.84 0.30 0.84 0.30 0.36 50

Xscore-
Average

136.71 144.75 201.04 0.68 0.72 0.68 0.72 1.06 50

Xscore-
HMScore

120.62 132.69 201.04 0.60 0.66 0.60 0.66 1.10 50

Xscore-
HPScore

124.64 136.71 201.04 0.62 0.68 0.62 0.68 1.10 50

Xscore-
HSScore

156.81 156.81 201.04 0.78 0.78 0.78 0.78 1.00 50

thb

dsx 26.14 45.74 326.69 0.08 0.14 0.08 0.14 1.75 50
Glide 137.21 98.01 326.69 0.42 0.30 0.42 0.30 0.71 50

mmgbsa 98.01 71.87 326.69 0.30 0.22 0.30 0.22 0.73 50
pele 58.80 71.87 326.69 0.18 0.22 0.18 0.22 1.22 50
vina 91.47 58.80 326.69 0.28 0.18 0.28 0.18 0.64 50

Xscore-
Average

39.20 65.34 326.69 0.12 0.20 0.12 0.20 1.67 50

Xscore-
HMScore

65.34 71.87 326.69 0.20 0.22 0.20 0.22 1.10 50

Xscore-
HPScore

39.20 78.41 326.69 0.12 0.24 0.12 0.24 2.00 50

Xscore-
HSScore

45.74 39.20 326.69 0.14 0.12 0.14 0.12 0.86 50
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Table A.7: Protease Family results for the top50 compounds of each receptor.

Protein Score
EF Accuracy %EFmax Ratio Threshold

Doc-
king

I.F. maxi-
mum

Doc-
king

I.F. Doc-
king

I.F.

hivw

dsx 138.21 152.38 177.19 0.78 0.86 0.78 0.86 1.10 50
Glide 148.84 138.21 177.19 0.84 0.78 0.84 0.78 0.93 50

mmgbsa 145.29 163.01 177.19 0.82 0.92 0.82 0.92 1.12 50
pele 63.79 148.84 177.19 0.36 0.84 0.36 0.84 2.33 50
vina 24.81 31.89 177.19 0.14 0.18 0.14 0.18 1.29 50

Xscore-
Average

124.03 116.94 177.19 0.70 0.66 0.70 0.66 0.94 50

Xscore-
HMScore

127.57 127.57 177.19 0.72 0.72 0.72 0.72 1.00 50

Xscore-
HPScore

124.03 127.57 177.19 0.70 0.72 0.70 0.72 1.03 50

Xscore-
HSScore

120.49 113.40 177.19 0.68 0.64 0.68 0.64 0.94 50

thrb

dsx 73.12 70.84 114.25 0.64 0.62 0.64 0.62 0.97 50
Glide 82.26 82.26 114.25 0.72 0.72 0.72 0.72 1.00 50

mmgbsa 45.70 52.56 114.25 0.40 0.46 0.40 0.46 1.15 50
pele 114.25 36.56 114.25 1.00 0.32 1.00 0.32 0.32 50
vina 18.28 34.28 114.25 0.16 0.30 0.16 0.30 1.88 50

Xscore-
Average

45.70 52.56 114.25 0.40 0.46 0.40 0.46 1.15 50

Xscore-
HMScore

57.13 50.27 114.25 0.50 0.44 0.50 0.44 0.88 50

Xscore-
HPScore

52.56 54.84 114.25 0.46 0.48 0.46 0.48 1.04 50

Xscore-
HSScore

31.99 43.42 114.25 0.28 0.38 0.28 0.38 1.36 50

try1

dsx 30.26 57.77 137.55 0.22 0.42 0.22 0.42 1.91 50
Glide 49.52 99.04 137.55 0.36 0.72 0.36 0.72 2.00 50

mmgbsa 24.76 44.02 137.55 0.18 0.32 0.18 0.32 1.78 50
pele 132.05 115.54 137.55 0.96 0.84 0.96 0.84 0.88 50
vina 24.76 30.26 137.55 0.18 0.22 0.18 0.22 1.22 50

Xscore-
Average

22.01 57.77 137.55 0.16 0.42 0.16 0.42 2.63 50

Xscore-
HMScore

44.02 77.03 137.55 0.32 0.56 0.32 0.56 1.75 50

Xscore-
HPScore

22.01 49.52 137.55 0.16 0.36 0.16 0.36 2.25 50

Xscore-
HSScore

11.00 38.51 137.55 0.08 0.28 0.08 0.28 3.50 50
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Table A.8: Diverse Family results for the top100 compounds of each receptor.

Protein Score
EF Accuracy %EFmax Ratio Threshold

Doc-
king

I.F. maxi-
mum

Doc-
king

I.F. Doc-
king

I.F.

aces

dsx 76.49 71.39 209.08 0.15 0.14 0.37 0.34 0.93 100
Glide 45.90 61.19 209.08 0.09 0.12 0.22 0.29 1.33 100

mmgbsa 101.99 112.19 209.08 0.20 0.22 0.49 0.54 1.10 100
pele 56.09 45.90 209.08 0.11 0.09 0.27 0.22 0.82 100
vina 35.70 45.90 209.08 0.07 0.09 0.17 0.22 1.29 100

Xscore-
Average

51.00 61.19 209.08 0.10 0.12 0.24 0.29 1.20 100

Xscore-
HMScore

45.90 56.09 209.08 0.09 0.11 0.22 0.27 1.22 100

Xscore-
HPScore

61.19 81.59 209.08 0.12 0.16 0.29 0.39 1.33 100

Xscore-
HSScore

56.09 61.19 209.08 0.11 0.12 0.27 0.29 1.09 100

hs90a

dsx 0.00 14.93 209.08 0.00 0.03 0.00 0.07 ∞ 100
Glide 39.82 19.91 209.08 0.08 0.04 0.19 0.10 0.50 100

mmgbsa 109.52 34.85 209.08 0.22 0.07 0.52 0.17 0.32 100
pele 94.58 24.89 209.08 0.19 0.05 0.45 0.12 0.26 100
vina 4.98 0.00 209.08 0.01 0.00 0.02 0.00 0.00 100

Xscore-
Average

0.00 4.98 209.08 0.00 0.01 0.00 0.02 ∞ 100

Xscore-
HMScore

9.96 9.96 209.08 0.02 0.02 0.05 0.05 1.00 100

Xscore-
HPScore

0.00 4.98 209.08 0.00 0.01 0.00 0.02 ∞ 100

Xscore-
HSScore

0.00 0.00 209.08 0.00 0.00 0.00 0.00 100

nram

dsx 66.73 137.90 209.08 0.15 0.31 0.32 0.66 2.07 100
Glide 97.87 160.15 209.08 0.22 0.36 0.47 0.77 1.64 100

mmgbsa 169.04 169.04 209.08 0.38 0.38 0.81 0.81 1.00 100
pele 164.59 177.94 209.08 0.37 0.40 0.79 0.85 1.08 100
vina 75.62 62.28 209.08 0.17 0.14 0.36 0.30 0.82 100

Xscore-
Average

80.07 151.25 209.08 0.18 0.34 0.38 0.72 1.89 100

Xscore-
HMScore

71.18 137.90 209.08 0.16 0.31 0.34 0.66 1.94 100

Xscore-
HPScore

71.18 137.90 209.08 0.16 0.31 0.34 0.66 1.94 100

Xscore-
HSScore

106.76 155.70 209.08 0.24 0.35 0.51 0.74 1.46 100
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Table A.9: GPCR Family results for the top100 compounds of each receptor.

Protein Score
EF Accuracy %EFmax Ratio Threshold

Doc-
king

I.F. maxi-
mum

Doc-
king

I.F. Doc-
king

I.F.

adrb1

dsx 53.96 42.72 209.08 0.24 0.19 0.26 0.20 0.79 100
Glide 67.45 69.69 209.08 0.30 0.31 0.32 0.33 1.03 100

mmgbsa 24.73 29.23 209.08 0.11 0.13 0.12 0.14 1.18 100
pele 103.42 56.20 209.08 0.46 0.25 0.49 0.27 0.54 100
vina 15.74 15.74 209.08 0.07 0.07 0.08 0.08 1.00 100

Xscore-
Average

20.23 31.47 209.08 0.09 0.14 0.10 0.15 1.56 100

Xscore-
HMScore

22.48 35.97 209.08 0.10 0.16 0.11 0.17 1.60 100

Xscore-
HPScore

31.47 33.72 209.08 0.14 0.15 0.15 0.16 1.07 100

Xscore-
HSScore

17.99 31.47 209.08 0.08 0.14 0.09 0.15 1.75 100

adrb2

dsx 75.55 77.31 175.70 0.43 0.44 0.43 0.44 1.02 100
Glide 59.74 75.55 175.70 0.34 0.43 0.34 0.43 1.26 100

mmgbsa 26.35 38.65 175.70 0.15 0.22 0.15 0.22 1.47 100
pele 68.52 77.31 175.70 0.39 0.44 0.39 0.44 1.13 100
vina 12.30 22.84 175.70 0.07 0.13 0.07 0.13 1.86 100

Xscore-
Average

43.92 54.47 175.70 0.25 0.31 0.25 0.31 1.24 100

Xscore-
HMScore

42.17 50.95 175.70 0.24 0.29 0.24 0.29 1.21 100

Xscore-
HPScore

50.95 66.77 175.70 0.29 0.38 0.29 0.38 1.31 100

Xscore-
HSScore

38.65 47.44 175.70 0.22 0.27 0.22 0.27 1.23 100

drd3

dsx 45.45 81.81 209.08 0.10 0.18 0.22 0.39 1.80 100
Glide 18.18 63.63 209.08 0.04 0.14 0.09 0.30 3.50 100

mmgbsa 18.18 45.45 209.08 0.04 0.10 0.09 0.22 2.50 100
pele 13.64 36.36 209.08 0.03 0.08 0.07 0.17 2.67 100
vina 27.27 36.36 209.08 0.06 0.08 0.13 0.17 1.33 100

Xscore-
Average

31.82 50.00 209.08 0.07 0.11 0.15 0.24 1.57 100

Xscore-
HMScore

31.82 40.91 209.08 0.07 0.09 0.15 0.20 1.29 100

Xscore-
HPScore

31.82 63.63 209.08 0.07 0.14 0.15 0.30 2.00 100

Xscore-
HSScore

13.64 45.45 209.08 0.03 0.10 0.07 0.22 3.33 100
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Table A.10: Kinase Family results for the top100 compounds of each receptor.

Protein Score
EF Accuracy %EFmax Ratio Threshold

Doc-
king

I.F. maxi-
mum

Doc-
king

I.F. Doc-
king

I.F.

cdk2

dsx 27.81 35.49 95.91 0.29 0.37 0.29 0.37 1.28 100
Glide 67.14 69.05 95.91 0.70 0.72 0.70 0.72 1.03 100

mmgbsa 35.49 36.45 95.91 0.37 0.38 0.37 0.38 1.03 100
pele 43.16 34.53 95.91 0.45 0.36 0.45 0.36 0.80 100
vina 46.04 46.04 95.91 0.48 0.48 0.48 0.48 1.00 100

Xscore-
Average

26.85 38.36 95.91 0.28 0.40 0.28 0.40 1.43 100

Xscore-
HMScore

36.45 44.12 95.91 0.38 0.46 0.38 0.46 1.21 100

Xscore-
HPScore

30.69 41.24 95.91 0.32 0.43 0.32 0.43 1.34 100

Xscore-
HSScore

23.02 32.61 95.91 0.24 0.34 0.24 0.34 1.42 100

jak2

dsx 52.27 67.95 209.08 0.20 0.26 0.25 0.33 1.30 100
Glide 94.09 91.47 209.08 0.36 0.35 0.45 0.44 0.97 100

mmgbsa 49.66 57.50 209.08 0.19 0.22 0.24 0.28 1.16 100
pele 99.31 70.56 209.08 0.38 0.27 0.48 0.34 0.71 100
vina 57.50 60.11 209.08 0.22 0.23 0.28 0.29 1.05 100

Xscore-
Average

54.88 67.95 209.08 0.21 0.26 0.26 0.33 1.24 100

Xscore-
HMScore

70.56 62.72 209.08 0.27 0.24 0.34 0.30 0.89 100

Xscore-
HPScore

60.11 62.72 209.08 0.23 0.24 0.29 0.30 1.04 100

Xscore-
HSScore

18.29 41.82 209.08 0.07 0.16 0.09 0.20 2.29 100

wee1

dsx 120.07 86.94 207.01 0.58 0.42 0.58 0.42 0.72 100
Glide 204.94 163.54 207.01 0.99 0.79 0.99 0.79 0.80 100

mmgbsa 159.40 118.00 207.01 0.77 0.57 0.77 0.57 0.74 100
pele 159.40 76.59 207.01 0.77 0.37 0.77 0.37 0.48 100
vina 159.40 109.72 207.01 0.77 0.53 0.77 0.53 0.69 100

Xscore-
Average

124.21 109.72 207.01 0.60 0.53 0.60 0.53 0.88 100

Xscore-
HMScore

136.63 120.07 207.01 0.66 0.58 0.66 0.58 0.88 100

Xscore-
HPScore

142.84 120.07 207.01 0.69 0.58 0.69 0.58 0.84 100

Xscore-
HSScore

45.54 49.68 207.01 0.22 0.24 0.22 0.24 1.09 100
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Table A.11: NHRs Family results for the top100 compounds of each receptor. Part I

Protein Score
EF Accuracy %EFmax Ratio Threshold

Doc-
king

I.F. maxi-
mum

Doc-
king

I.F. Doc-
king

I.F.

andr

dsx 85.78 87.56 178.70 0.48 0.49 0.48 0.49 1.02 100
Glide 83.99 76.84 178.70 0.47 0.43 0.47 0.43 0.91 100

mmgbsa 53.61 55.40 178.70 0.30 0.31 0.30 0.31 1.03 100
pele 39.31 57.18 178.70 0.22 0.32 0.22 0.32 1.45 100
vina 75.05 80.42 178.70 0.42 0.45 0.42 0.45 1.07 100

Xscore-
Average

60.76 57.18 178.70 0.34 0.32 0.34 0.32 0.94 100

Xscore-
HMScore

53.61 53.61 178.70 0.30 0.30 0.30 0.30 1.00 100

Xscore-
HPScore

64.33 60.76 178.70 0.36 0.34 0.36 0.34 0.94 100

Xscore-
HSScore

64.33 60.76 178.70 0.36 0.34 0.36 0.34 0.94 100

esr1

dsx 48.93 57.83 111.21 0.44 0.52 0.44 0.52 1.18 100
Glide 101.20 60.05 111.21 0.91 0.54 0.91 0.54 0.59 100

mmgbsa 91.19 57.83 111.21 0.82 0.52 0.82 0.52 0.63 100
pele 77.85 53.38 111.21 0.70 0.48 0.70 0.48 0.69 100
vina 52.27 46.71 111.21 0.47 0.42 0.47 0.42 0.89 100

Xscore-
Average

52.27 62.28 111.21 0.47 0.56 0.47 0.56 1.19 100

Xscore-
HMScore

60.05 64.50 111.21 0.54 0.58 0.54 0.58 1.07 100

Xscore-
HPScore

53.38 67.84 111.21 0.48 0.61 0.48 0.61 1.27 100

Xscore-
HSScore

28.92 43.37 111.21 0.26 0.39 0.26 0.39 1.50 100

gcr

dsx 82.91 50.47 209.08 0.23 0.14 0.40 0.24 0.61 100
Glide 104.54 57.68 209.08 0.29 0.16 0.50 0.28 0.55 100

mmgbsa 75.70 43.26 209.08 0.21 0.12 0.36 0.21 0.57 100
pele 86.52 32.44 209.08 0.24 0.09 0.41 0.16 0.38 100
vina 86.52 43.26 209.08 0.24 0.12 0.41 0.21 0.50 100

Xscore-
Average

36.05 28.84 209.08 0.10 0.08 0.17 0.14 0.80 100

Xscore-
HMScore

21.63 21.63 209.08 0.06 0.06 0.10 0.10 1.00 100

Xscore-
HPScore

61.28 46.86 209.08 0.17 0.13 0.29 0.22 0.76 100

Xscore-
HSScore

14.42 14.42 209.08 0.04 0.04 0.07 0.07 1.00 100
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Table A.12: NHRs Family results for the top100 compounds of each receptor. Part II

Protein Score
EF Accuracy %EFmax Ratio Threshold

Doc-
king

I.F. maxi-
mum

Doc-
king

I.F. Doc-
king

I.F.

mcrin

dsx 152.79 160.83 209.08 0.19 0.20 0.73 0.77 1.05 100
Glide 120.62 152.79 209.08 0.15 0.19 0.58 0.73 1.27 100

mmgbsa 72.37 160.83 209.08 0.09 0.20 0.35 0.77 2.22 100
pele 24.12 128.66 209.08 0.03 0.16 0.12 0.62 5.33 100
vina 80.42 144.75 209.08 0.10 0.18 0.38 0.69 1.80 100

Xscore-
Average

144.75 136.71 209.08 0.18 0.17 0.69 0.65 0.94 100

Xscore-
HMScore

96.50 104.54 209.08 0.12 0.13 0.46 0.50 1.08 100

Xscore-
HPScore

144.75 152.79 209.08 0.18 0.19 0.69 0.73 1.06 100

Xscore-
HSScore

112.58 128.66 209.08 0.14 0.16 0.54 0.62 1.14 100

mcrout

dsx 101.71 90.41 209.08 0.18 0.16 0.49 0.43 0.89 100
Glide 129.97 124.32 209.08 0.23 0.22 0.62 0.59 0.96 100

mmgbsa 73.46 84.76 209.08 0.13 0.15 0.35 0.41 1.15 100
pele 39.56 67.81 209.08 0.07 0.12 0.19 0.32 1.71 100
vina 96.06 118.67 209.08 0.17 0.21 0.46 0.57 1.24 100

Xscore-
Average

73.46 90.41 209.08 0.13 0.16 0.35 0.43 1.23 100

Xscore-
HMScore

67.81 79.11 209.08 0.12 0.14 0.32 0.38 1.17 100

Xscore-
HPScore

56.51 90.41 209.08 0.10 0.16 0.27 0.43 1.60 100

Xscore-
HSScore

62.16 90.41 209.08 0.11 0.16 0.30 0.43 1.45 100

ppar

dsx 69.30 52.86 117.46 0.59 0.45 0.59 0.45 0.76 100
Glide 39.94 48.16 117.46 0.34 0.41 0.34 0.41 1.21 100

mmgbsa 38.76 35.24 117.46 0.33 0.30 0.33 0.30 0.91 100
pele 34.06 18.79 117.46 0.29 0.16 0.29 0.16 0.55 100
vina 30.54 25.84 117.46 0.26 0.22 0.26 0.22 0.85 100

Xscore-
Average

34.06 37.59 117.46 0.29 0.32 0.29 0.32 1.10 100

Xscore-
HMScore

29.37 29.37 117.46 0.25 0.25 0.25 0.25 1.00 100

Xscore-
HPScore

41.11 38.76 117.46 0.35 0.33 0.35 0.33 0.94 100

Xscore-
HSScore

41.11 38.76 117.46 0.35 0.33 0.35 0.33 0.94 100
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Table A.13: NHRs Family results for the top100 compounds of each receptor. Part III

Protein Score
EF Accuracy %EFmax Ratio Threshold

Doc-
king

I.F. maxi-
mum

Doc-
king

I.F. Doc-
king

I.F.

prgr

dsx 22.08 25.97 129.86 0.17 0.20 0.17 0.20 1.18 100
Glide 76.62 50.65 129.86 0.59 0.39 0.59 0.39 0.66 100

mmgbsa 36.36 20.78 129.86 0.28 0.16 0.28 0.16 0.57 100
pele 68.83 28.57 129.86 0.53 0.22 0.53 0.22 0.42 100
vina 41.56 48.05 129.86 0.32 0.37 0.32 0.37 1.16 100

Xscore-
Average

18.18 18.18 129.86 0.14 0.14 0.14 0.14 1.00 100

Xscore-
HMScore

23.38 23.38 129.86 0.18 0.18 0.18 0.18 1.00 100

Xscore-
HPScore

12.99 18.18 129.86 0.10 0.14 0.10 0.14 1.40 100

Xscore-
HSScore

15.58 14.28 129.86 0.12 0.11 0.12 0.11 0.92 100

rxra

dsx 124.64 104.54 201.04 0.62 0.52 0.62 0.52 0.84 100
Glide 152.79 108.56 201.04 0.76 0.54 0.76 0.54 0.71 100

mmgbsa 148.77 134.70 201.04 0.74 0.67 0.74 0.67 0.91 100
pele 88.46 104.54 201.04 0.44 0.52 0.44 0.52 1.18 100
vina 122.63 60.31 201.04 0.61 0.30 0.61 0.30 0.49 100

Xscore-
Average

112.58 122.63 201.04 0.56 0.61 0.56 0.61 1.09 100

Xscore-
HMScore

96.50 114.59 201.04 0.48 0.57 0.48 0.57 1.19 100

Xscore-
HPScore

104.54 110.57 201.04 0.52 0.55 0.52 0.55 1.06 100

Xscore-
HSScore

120.62 132.69 201.04 0.60 0.66 0.60 0.66 1.10 100

thb

dsx 35.94 39.20 209.08 0.11 0.12 0.17 0.19 1.09 100
Glide 88.21 68.60 209.08 0.27 0.21 0.42 0.33 0.78 100

mmgbsa 65.34 49.00 209.08 0.20 0.15 0.31 0.23 0.75 100
pele 45.74 49.00 209.08 0.14 0.15 0.22 0.23 1.07 100
vina 68.60 49.00 209.08 0.21 0.15 0.33 0.23 0.71 100

Xscore-
Average

58.80 62.07 209.08 0.18 0.19 0.28 0.30 1.06 100

Xscore-
HMScore

68.60 75.14 209.08 0.21 0.23 0.33 0.36 1.10 100

Xscore-
HPScore

58.80 65.34 209.08 0.18 0.20 0.28 0.31 1.11 100

Xscore-
HSScore

45.74 45.74 209.08 0.14 0.14 0.22 0.22 1.00 100
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Table A.14: Protease Family results for the top100 compounds of each receptor.

Protein Score
EF Accuracy %EFmax Ratio Threshold

Doc-
king

I.F. maxi-
mum

Doc-
king

I.F. Doc-
king

I.F.

hivw

dsx 106.31 116.94 177.19 0.60 0.66 0.60 0.66 1.10 100
Glide 88.59 115.17 177.19 0.50 0.65 0.50 0.65 1.30 100

mmgbsa 99.22 132.89 177.19 0.56 0.75 0.56 0.75 1.34 100
pele 42.52 113.40 177.19 0.24 0.64 0.24 0.64 2.67 100
vina 21.26 42.52 177.19 0.12 0.24 0.12 0.24 2.00 100

Xscore-
Average

118.71 108.08 177.19 0.67 0.61 0.67 0.61 0.91 100

Xscore-
HMScore

106.31 109.86 177.19 0.60 0.62 0.60 0.62 1.03 100

Xscore-
HPScore

111.63 104.54 177.19 0.63 0.59 0.63 0.59 0.94 100

Xscore-
HSScore

113.40 102.77 177.19 0.64 0.58 0.64 0.58 0.91 100

thrb

dsx 77.69 59.41 114.25 0.68 0.52 0.68 0.52 0.76 100
Glide 65.12 76.55 114.25 0.57 0.67 0.57 0.67 1.18 100

mmgbsa 38.85 52.56 114.25 0.34 0.46 0.34 0.46 1.35 100
pele 102.83 42.27 114.25 0.90 0.37 0.90 0.37 0.41 100
vina 20.57 35.42 114.25 0.18 0.31 0.18 0.31 1.72 100

Xscore-
Average

42.27 55.98 114.25 0.37 0.49 0.37 0.49 1.32 100

Xscore-
HMScore

51.41 52.56 114.25 0.45 0.46 0.45 0.46 1.02 100

Xscore-
HPScore

42.27 52.56 114.25 0.37 0.46 0.37 0.46 1.24 100

Xscore-
HSScore

31.99 44.56 114.25 0.28 0.39 0.28 0.39 1.39 100

try1

dsx 26.14 53.65 137.55 0.19 0.39 0.19 0.39 2.05 100
Glide 53.65 89.41 137.55 0.39 0.65 0.39 0.65 1.67 100

mmgbsa 28.89 48.14 137.55 0.21 0.35 0.21 0.35 1.67 100
pele 119.67 110.04 137.55 0.87 0.80 0.87 0.80 0.92 100
vina 24.76 28.89 137.55 0.18 0.21 0.18 0.21 1.17 100

Xscore-
Average

24.76 55.02 137.55 0.18 0.40 0.18 0.40 2.22 100

Xscore-
HMScore

39.89 72.90 137.55 0.29 0.53 0.29 0.53 1.83 100

Xscore-
HPScore

28.89 46.77 137.55 0.21 0.34 0.21 0.34 1.62 100

Xscore-
HSScore

16.51 39.89 137.55 0.12 0.29 0.12 0.29 2.42 100
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Table A.15: %EF changes upon simulation with protocol 1

Family Protein
EF Accuracy %EFmax Ratio Threshold

Doc-
king

I.F. maxi-
mum

Doc-
king

I.F. Doc-
king

I.F.

KINASE
cdk2 15.96 19.15 22.80 0.70 0.70 0.84 1.20 0.84 50
jak2 36.93 25.85 61.55 0.60 0.42 0.60 0.42 0.70 50

NHR
gcr 37.35 15.28 84.90 0.44 0.18 0.44 0.18 0.41 50

mcrin 53.03 45.45 98.48 0.28 0.24 0.54 0.46 0.86 50
ppar 6.60 15.40 27.51 0.24 0.56 0.24 0.56 2.33 50

KINASE
cdk2 15.96 16.41 22.80 0.70 0.72 0.70 0.72 1.03 100
jak2 22.16 19.08 49.24 0.36 0.31 0.45 0.39 0.86 100

NHR
gcr 24.62 11.89 49.24 0.29 0.14 0.50 0.24 0.48 100

mcrin 28.41 32.20 49.24 0.15 0.17 0.58 0.65 1.13 100
ppar 9.08 12.65 27.51 0.33 0.46 0.33 0.46 1.39 100

Table A.16: %EF changes upon simulation with protocol 2

Family Protein
EF Accuracy %EFmax Ratio Threshold

Doc-
king

I.F. maxi-
mum

Doc-
king

I.F. Doc-
king

I.F.

KINASE
cdk2 15.40 14.96 22.00 0.70 0.68 0.70 0.68 0.97 50
jak2 36.79 36.79 61.32 0.60 0.60 0.60 0.60 1.00 50

NHR
gcr 35.53 8.46 84.59 0.42 0.42 0.10 0.24 0.10 50

mcrin 52.83 49.06 98.12 0.28 0.26 0.54 0.50 0.93 50
ppar 7.85 12.34 28.03 0.28 0.44 0.28 0.44 1.57 50

KINASE
cdk2 15.18 13.20 22.00 0.69 0.60 0.69 0.60 0.87 100
jak2 22.08 25.14 49.06 0.36 0.41 0.45 0.51 1.14 100

NHR
gcr 24.53 11.00 49.06 0.29 0.13 0.50 0.22 0.45 100

mcrin 28.30 32.08 49.06 0.15 0.17 0.58 0.65 1.13 100
ppar 9.25 10.09 28.03 0.33 0.36 0.33 e 0.36 1.09 100
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(a) crystal A ALL WAT protocol 0 (b) crystal C ALL WAT protocol 0 (c) crystal D ALL WAT protocol 0

(d) crystal E ALL WAT protocol 0 (e) crystal F ALL WAT protocol 0

(f) crystal A NO WAT protocol 0 (g) crystal C NO WAT protocol 0 (h) crystal D NO WAT protocol 0

(i) crystal E NO WAT protocol 0 (j) crystal F NO WAT protocol 0
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(a) crystal A protocol 1 (b) crystal C protocol 1 (c) crystal D protocol 1

(d) crystal E protocol 1 (e) crystal F protocol 1

(f) crystal A NO WAT protocol 1 (g) crystal C NO WAT protocol 1 (h) crystal D NO WAT protocol 1

(i) crystal E NO WAT protocol 1 (j) crystal F NO WAT protocol 1

Figure B.1: Energy profiles for the simulations using the protocol 1 over the crystal structures with
and without water
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(a) crystal A protocol 2 (b) crystal C protocol 2 (c) crystal D protocol 2

(d) crystal E protocol 2 (e) crystal F protocol 2

(f) crystal A NO WAT protocol 2 (g) crystal C NO WAT protocol 2 (h) crystal D NO WAT protocol 2

(i) crystal E NO WAT protocol 2 (j) crystal F NO WAT protocol 2

Figure B.2: Energy profiles for the simulations using the protocol 2 over the crystal structures with
and without water
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(a) crystal A protocol 3 (b) crystal C protocol 3 (c) crystal D protocol 3

(d) crystal E protocol 3 (e) crystal F protocol 3

(f) crystal A NO WAT protocol 3 (g) crystal C NO WAT protocol 3 (h) crystal D NO WAT protocol 3

(i) crystal E NO WAT protocol 3 (j) crystal F NO WAT protocol 3

Figure B.3: Energy profiles for the simulations using the protocol 3 over the crystal structures with
and without water
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(a) crystal A protocol 4 (b) crystal C protocol 4 (c) crystal D protocol 4

(d) crystal E protocol 4 (e) crystal F protocol 4

(f) crystal A NO WAT protocol 4 (g) crystal C NO WAT protocol 4 (h) crystal D NO WAT protocol 4

(i) crystal E NO WAT protocol 4 (j) crystal F NO WAT protocol 4

Figure B.4: Energy profiles for the simulations using the protocol 4 over the crystal structures with
and without water
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(a) crystal A protocol 5 (b) crystal C protocol 5 (c) crystal D protocol 5

(d) crystal E protocol 5 (e) crystal F protocol 5

(f) crystal A NO WAT protocol 5 (g) crystal C NO WAT protocol 5 (h) crystal D NO WAT protocol 5

(i) crystal E NO WAT protocol 5 (j) crystal F NO WAT protocol 5

Figure B.5: Energy profiles for the simulations using the protocol 5 over the crystal structures with
and without water
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(a) crystal A protocol 6 (b) crystal C protocol 6 (c) crystal D protocol 6

(d) crystal E protocol 6 (e) crystal F protocol 6

(f) crystal A NO WAT protocol 6 (g) crystal C NO WAT protocol 6 (h) crystal D NO WAT protocol 6

(i) crystal E NO WAT protocol 6 (j) crystal F NO WAT protocol 6

Figure B.6: Energy profiles for the simulations using the protocol 6 over the crystal structures with
and without water
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(a) crystal A protocol 7 (b) crystal C protocol 7 (c) crystal D protocol 7

(d) crystal E protocol 7 (e) crystal F protocol 7

(f) crystal A NO WAT protocol 7 (g) crystal C NO WAT protocol 7 (h) crystal D NO WAT protocol 7

(i) crystal E NO WAT protocol 7 (j) crystal F NO WAT protocol 7

Figure B.7: Energy profiles for the simulations using the protocol 7 over the crystal structures with
and without water
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(a) crystal A protocol 8 (b) crystal C protocol 8 (c) crystal D protocol 8

(d) crystal E protocol 8 (e) crystal F protocol 8

(f) crystal A NO WAT protocol 8 (g) crystal C NO WAT protocol 8 (h) crystal D NO WAT protocol 8

(i) crystal E NO WAT protocol 8 (j) crystal F NO WAT protocol 8

Figure B.8: Energy profiles for the simulations using the protocol 8 over the crystal structures with
and without water
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(k) crystal A STR WAT protocol 8 (l) crystal C STR WAT protocol 8

(m) crystal D STR WAT protocol 8 (n) crystal F STR WAT protocol 8

Figure B.8: Continuation. Energy profiles for the simulations using the protocol 8 over the crystal
structures with and without water

(a) crystal A NO WAT protocol 9 (b) crystal D NO WAT protocol 9

(c) crystal E NO WAT protocol 9 (d) crystal F NO WAT protocol 9

Figure B.9: Energy profiles for the simulations using the protocol 9 over the crystal structures with
and without water
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(e) crystal A STR WAT protocol 9 (f) crystal C STR WAT protocol 9

(g) crystal D STR WAT protocol 9 (h) crystal F STR WAT protocol 9

Figure B.9: Continuation. Energy profiles for the simulations using the protocol 9 over the crystal
structures with and without water

(a) crystal A NO WAT protocol 11 (b) crystal D NO WAT protocol 11

(c) crystal E NO WAT protocol 11 (d) crystal F NO WAT protocol 11

Figure B.10: Energy profiles for the simulations using the protocol 11 over the crystal structures
with and without water
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(a) crystal A NO WAT protocol 12 (b) crystal D NO WAT protocol 12

(c) crystal E NO WAT protocol 12 (d) crystal F NO WAT protocol 12

Figure B.11: Energy profiles for the simulations using the protocol 12 over the crystal structures
with and without water

(e) crystal A STR WAT protocol 12 (f) crystal C STR WAT protocol 12

(g) crystal D STR WAT protocol 12 (h) crystal F STR WAT protocol 12

Figure B.11: Continuation. Energy profiles for the simulations using the protocol 12 over the crystal
structures with and without water
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(a) crossdocking ligand A to recep-
tor A protocol 12

(b) crossdocking ligand B to recep-
tor A protocol 12

(c) crossdocking ligand D to recep-
tor A protocol 12

(d) crossdocking ligand F to recep-
tor A protocol 12

(e) crossdocking ligand G to recep-
tor A protocol 12

(f) crossdocking ligand A to recep-
tor B protocol 12

(g) crossdocking ligand B to recep-
tor B protocol 12

(h) crossdocking ligand D to recep-
tor B protocol 12

(i) crossdocking ligand F to recep-
tor B protocol 12

(j) crossdocking ligand G to recep-
tor B protocol 12

Figure B.12: Energy profiles for the simulations using the protocol 12 over the crossdocking struc-
tures with no water
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(a) crossdocking ligand A to recep-
tor D protocol 12

(b) crossdocking ligand B to recep-
tor D protocol 12

(c) crossdocking ligand D to recep-
tor D protocol 12

(d) crossdocking ligand F to recep-
tor D protocol 12

(e) crossdocking ligand G to recep-
tor D protocol 12

(f) crossdocking ligand A to recep-
tor F protocol 12

(g) crossdocking ligand B to recep-
tor F protocol 12

(h) crossdocking ligand D to recep-
tor F protocol 12

(i) crossdocking ligand F to recep-
tor F protocol 12

(j) crossdocking ligand G to recep-
tor F protocol 12

Figure B.13: Energy profiles for the simulations using the protocol 12 over the crossdocking struc-
tures with no water
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(a) crossdocking ligand A to recep-
tor G protocol 12

(b) crossdocking ligand B to recep-
tor G protocol 12

(c) crossdocking ligand D to recep-
tor G protocol 12

(d) crossdocking ligand F to recep-
tor G protocol 12

(e) crossdocking ligand G to recep-
tor G protocol 12

Figure B.14: Energy profiles for the simulations using the protocol 12 over the crossdocking struc-
tures with no water
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