
Numerical modeling of strain, strain rate hardening, and viscous effects on viscoplastic behavior of metallic ma-
terials

XIV International Conference on Computational Plasticity. Fundamentals and Applications
COMPLAS XIV
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Abstract. The main goal of the present work is to provide a finite strain elastic-
viscoplastic framework to numerically account for strain, strain rate hardening, and vis-
cous effects in cold deformation of metallic materials. The aim is to provide a simple and
robust numerical framework capable of modeling the main macroscopic behavior associ-
ated with high strain rate plastic deformation of metals. In order to account for strain rate
hardening effects at finite strains, the hardening rule involves a rate dependent saturation
hardening, and it accounts for linear hardening prevailing at latter deformation stages.
The numerical formulation, finite element implementation, and constitutive modeling ca-
pabilities are assessed by means of decremental strain rate testing and constant strain
rate loading followed by stress relaxation. The numerical results have demonstrated the
overall framework can be an efficient numerical tool for simulation of plastic deformation
processes where strain rate history effects have to be accounted for.
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1 Introduction

High strain rates and large strains are present in several engineering applications of
polycrystalline metallic materials, such as manufacturing (e.g. high speed forming and
machining of metals), machine tools design, analysis of structural crashworthiness in the
automotive and aerospace industries, terminal ballistics research for safety and military
activities, among several others. Modeling of these applications requires large scale sim-
ulations and adequate constitutive predictions.

To properly predict high strain rate straining of metals, a constitutive framework should
account for deformation and loading history effects. For example, the hardening response
of FCC metals is strongly rate-dependent at high velocity conditions [1, 2, 3, 4, 5]. In
summary, a high strain rate model has to comply with adequate constitutive features ac-
counting for the main plastic effects on the flow stress and material hardening responses.
However, while incorporating suitable constitutive capabilities, a constitutive model to be
employed in large scale engineering computations has to be simple enough to be experi-
mentally and numerically “attractive”. From a constitutive point of view, physically-based
models employing macroscopic [6, 7, 8, 9] or microscopic frameworks [10, 11, 12] allow
for a detailed description of both material behavior and its current state, thus provid-
ing an appropriate framework for capturing loading-history effects. However, in contrast
physically-based models require complex optimization algorithms and large computational
efforts to find associated model constants, see for instance comments provided in refer-
ences [8, 13]. In addition, due to formulation complexity, physically-based approaches are
less numerically efficient than phenomenological procedures, thus requiring more compu-
tational time and efforts in numerical simulation of large scale problems. Concerning the
formulation simplicity, the lower number of material parameters and of experiments to
identify them, many researchers [14, 15, 16, 17] have proposed semi-physical constitu-
tive models, once a detailed physical description increase the model complexity and the
number of constants to be adjusted.

In large scale simulations, accurate, efficient, and robust numerical tools are manda-
tory in order to guarantee appropriate predictions and to save computational time. In a
global standpoint, the finite element (FE) method has proved to be a suitable tool in solv-
ing nonlinear initial boundary value problems [18, 19]. The whole numerical framework
must integrate the set of nonlinear constitutive equations into a FE context, requiring
the fulfillment of two main tasks at the material level: (i) the update of stress and state
variables from a given strain increment, and (ii) the calculation of consistent tangent
modulus to be used in the global implicit FE scheme, thus preserving quadratic conver-
gence rate of Newton-type solution algorithms [18, 19]. Aiming at accomplishing these
tasks and improving the computational efficiency, several viscoplastic implicit integration
algorithms for large strain problems have been proposed [20, 21, 22, 23]. Mostly of the
large strain formulations are based on the well-known multiplicative decomposition of the
deformation gradient [24, 25], and generally associated algorithmic formulations preserves
material objectivity.

Aiming at contributing to the constant search for models combining both constitu-
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tive adequacy and computational efficiency, the present work has the goal of providing
a simple and efficient numerical framework capable of modeling the main macroscopic
behavior associated with high strain rate plastic deformation of metals at room tempera-
ture. The work concerns numerical formulation and simulations where advantage is taken
of a constitutive model previously presented [26], which proved to be suitable for this
task. Adopting a simplified semi-physical approach allows to maintain the corresponding
computational efficiency associated with phenomenological models [27, 28, 29, 30] while
incorporating adequate constitutive capabilities, such as strain rate history effects, in
simulations where high velocity plastic features have to be taken into account.

The present constitutive formulation adopts a von Mises plasticity employing a strain-
rate-history-dependent isotropic hardening, whose evolution equations follow the vis-
coplastic framework of Perzyna [31, 27], in which the inelastic evolution is given in terms
of an overstress function. Specifically, the isotropic hardening is taken into account by
a single scalar internal variable, which can be interpreted as an effective microstructural
feature [15, 26]. The stress hardening variable is composed by two main contributions,
namely A1 and A2. The first is associated with dislocations storage, and its evolution is
based on physical aspects as dislocation generation and annihilation mechanisms. The
second contribution, A2, is linked to geometric hardening mechanisms associated with de-
formation Stage IV, in which the hardening is mainly induced by granular misorientations.
It is worth mentioning that a formulation following an overstress description needs an ex-
plicit definition of the strain rate, and it presents some constitutive differences compared
to other viscoplastic contexts as the consistency model [32, 33]. For example, concerning
the overstress description, plastic deformation increase during unloading while overstress
function has a nonzero value [22, 13]. However, within the present approach this constitu-
tive distinction is not so relevant once it is intended to monotonic loading, thus justifying
the employment of an overstress formulation, as well as a pure isotropic hardening. From
an overall point of view, the elastic-viscoplastic model presented in [26] is embedded into
a finite strain framework, which adopts a total Lagrangian description and employ the
classical multiplicative decomposition of the deformation gradient into its viscoplastic and
elastic parts. An isotropic material is considered, whose constitutive formulation is given
in terms of the logarithmic deformation measure and the rotated Kirchhoff stress. The
elastic response is assumed to be linear and given by the Hencky hyperelastic model. The
numerical approach follows ideas presented in references [34, 21], where a standard elastic
predictor-plastic corrector algorithm is employed. However, to incorporate rate depen-
dent hardening features, additional incremental equations arise within the return mapping
step. Seeking for computational efficiency, an analytical consistent tangent operator is
obtained from linearization of the return mapping equations.

The work is organized as follows. Section 2 presents an overview of the constitutive
model adopted [26]. In this section, the global boundary value problem in its strong
and weak form is stated. From linearization of weak formulation the continuum material
tangent modulus is identified. Section 4 outlines the local incremental constitutive for-
mulation, recalling the well-known elastic predictor-plastic corrector algorithm. Also, the
consistent tangent modulus is given in a closed-form. In the sequel, with the aim of show-
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ing the model constitutive capabilities, and highlighting the main macroscopic material
behavior associated with loading history effects, a numerical decremental strain rate test
and a constant strain rate loading followed by stress relaxation testing are performed in
Sec. 5, employing the model parameters obtained in [26] for an annealed OFHC copper.
Numerical results are compared with experimental data available in the literature [3, 35].
Furthermore, as a non-homogeneous deformation example, a billet upsetting is simulated.
Convergence analyzes, considering both frictionless and frictional billet upsetting cases,
are also performed. Our conclusions and comments are given in Sec. 6. Tangent terms re-
quired into return mapping algorithm are given in A and the analytical consistent tangent
modulus is derived in B.

2 Overview of constitutive model

We adopt the classical multiplicative1 decomposition of the deformation gradient [24,
36]

F = F eF vp, (1)

where F = ∂ϕ(X,t)
∂X

, ϕ being the displacement function which maps an initial pointX ∈ Ω0

onto a current one x ∈ Ω at time t, such that x = ϕ (X, t). Terms F e and F vp are the
elastic and viscoplastic part of F . By adopting decomposition (1), the specific Helmholtz
free-energy can be split [37],

ψ = ψe (Ee) + ψvp (α) , (2)

into its elastic ψe and inelastic ψvp parts. Tensor Ee = ln (U e) is the Hencky elastic

strain with U e2 = (F e)T F e and F e = FF vp−1

. A single internal variable α is assumed
to describe irreversible material behavior (see for instance references [38, 39, 40, 37]). In
this work we assume standard quadratic forms

ψe =
1

2
Ee : De : Ee and ψvp =

1

2
Hα2, (3)

where De is a symmetric positive-definite forth-order elastic tensor and H ≥ 0 is the
hardening modulus. Furthermore, isotropic elasticity is considered in subsequent analysis:

De = 2µI+
(
κ− 2

3
µ

)
I ⊗ I, (4)

where I, I, µ and κ are the fourth-order and the second-order identity tensors, the shear
and bulk modulus, respectively. Components of I are Iijkl =

1
2
(δikδjl + δilδjk) with δij

denoting the Kronecker ’s symbol.
Thermodynamic forces must obey the constitutive relations

τ̄ = ρ0
∂ψe

∂Ee = De : Ee and A = ρ0
∂ψvp

∂α
= Hα, (5)

1Along this work single contractions between second-order tensors are omitted, i.e., S · T = ST , in
components (ST )ij = SikTkj .
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where τ̄ is the rotated Kirchhoff stress [34]. The latter is related to the Kirchhoff stress
tensor τ by means of the right rotation tensor R = FU−1 with U 2 = F TF , such that
τ̄ = RTτR. It is recalled that τ and the Cauchy stress tensor σ are related through
τ = Jσ with J = det (F ). Parameter A stands for the isotropic hardening associated
with α. For sake of simplicity, in what follows we adopt a von Mises yield criterion
together with an isotropic hardening A

f (τ̄ , A) =
∥∥τ̄D

∥∥−
√

2

3
(σy + A) , (6)

where
∥∥τ̄D

∥∥ =
√

τ̄Dij τ̄
D
ij , τ̄

D = τ̄ − 1
3
tr (τ̄ ) I is the deviatoric part of τ̄ and σy is the initial

yield stress.

2.1 Evolution equations

The viscoplastic strain rate D̄
vp

= sym
(
Ḟ

vp
F vp−1

)
is given by the evolution equation2

D̄
vp

= λ̇
∂f

∂τ̄
(7)

where the viscoplastic multiplier λ̇ expresses as [31, 27]

λ̇ =
1

ϑ
Θ(〈f〉 , A) . (8)

In the above equality, operator 〈x〉 ≡ 1
2
(x+ |x|) denotes the Macaulay brackets, ϑ ≥ 0

is the material viscosity parameter and Θ ≥ 0 is the overstress function which should be
convex with relation to both f and A. Hardening variable A is given by

A = A1 + cA∞ε, (9)

where c ≥ 0 is a material parameter, A∞ is the saturation work hardening, A1 is associated
with hardening induced by dislocation storage and its arrangement in dislocation cells, and
term cA∞ε is related to geometric hardening due to cellular and granular misorientations.
Evolution of first term is given by

Ȧ1 = H1

(
1− A1

A∞

)
ε̇, (10)

where H1 is the hardening rate and

ε̇ =

√
2

3

∥∥D̄vp∥∥ ≥ 0 (11)

2Under the hypothesis of inelastic isotropy, without loss in generality, a irrotational viscoplastic flow

may be assumed [21, 41]: W̄
vp

= skew
(
Ḟ

vp
F vp−1

)
= 0.
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is the accumulated viscoplastic strain rate. Assuming constant value for ε̇ , evolution
equation (10) is directly integrated leading to a Voce hardening law [42],

A1 − A∞

A1i − A∞
= exp [−δ (ε− εi)] . (12)

Parameters A1i and εi stand for the initial values of A1 and ε, respectively, and δ = H1

A∞
. In

the present formulation we assume the ratio δ = H1

A∞
as constant, and a rate dependence

will be assigned to A∞. Combination of Eqs. (9) and (12) yields

A = Ai + A∞c (ε− εi) + [A∞ (1 + cεi)− Ai] {1− exp [−δ (ε− εi)]} , (13)

where Ai is the initial value of A. Considering that Ai = εi = 0, Eq. (13) reduces to

A = A∞ [1 + cε− exp (−δε)] , (14)

which is a modified Voce hardening law. Hardening equation (13), obtained based upon
the assumption of constant rate ε̇, is usefull to be employed within numerical algorithms
in which inelastic strain rate is assumed within each increment. Now, Eq. (14) is intended
to monotonic loading applications starting from a non-deformed state.

The following a priori rate-dependent form is postulated for A∞, see reference [26]:

A∞ = [1− β (ε̇)]Alwr
∞ + β (ε̇)Aup

∞ , (15)

where Alwr
∞ is the quasi -static value of A∞ measured at a lower reference rate ε̇lwr � 1

and Aup
∞ is the value associated with upper reference strain rate ε̇up � 1. Function β is

given by

β (ε̇) =

(
ε̇− ε̇lwr

ε̇up − ε̇lwr

)ξ

, (16)

which obviously satisfies β (ε̇lwr) = 0 and β (ε̇up) = 1, scalar ξ > 0 is a material constant.
In the present work, a viscoplastic constitutive function Θ (〈f〉 , A) based on that pro-

posed in [28] is adopted,

ϑλ̇ = Θ(〈f〉 , A) =
(
〈f〉+R

R

)m

− 1. (17)

For f ≥ 0, the inverse of Θ with respect to λ̇ and f reads

f = Θ−1
(
λ̇, A

)
= R

[(
1 + ϑλ̇

) 1
m − 1

]
, (18)

where 1
m

is the rate sensitivity parameter and R (A) is a characteristic size of the yield
locus, which is expressed as

R (A) =

√
2

3
(σy + A) (19)

in the case of von Mises yield criterion (6).
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3 Incremental formulation and finite element implementation

Let Ω0 be the initial configuration of a body with boundary ∂Ω0 and particles labeled
X ∈ Ω0. An ordinary loading is defined by a prescribed body force b̄ in Ω0, a prescribed
surface traction t̄ acting on Γt

0 and a displacement ū prescribed on Γu
0 , with ∂Ω0 = Γt

0∪Γu
0

and Γt
0∩Γu

0 = ∅. Deformed body is defined by the current configuration Ω with boundary
∂Ω and particles x ∈ Ω, being the displacement field given by u = x−X. The mechanical
problem in its strong form, disregarding inertia effects, can be stated as follows: Find u
such that 




divP + b̄ = 0 on Ω0

Pm = t̄ on Γt
0

u = ū on Γu
0

, (20)

where P = τF−T is the first Piola-Kirchhoff stress tensor and m is the unit outward nor-
mal vector at X ∈ ∂Ω0. Based on strong form given by Eqs. (20), the weak formulation,
employing the virtual work principle, consists of finding u satisfying

R (u, û) =

∫

Ω0

P (u) : ∇XûdV −
∫

Ω0

ρ0b̄ · ûdV −
∫

Γt
0

t̄ · ûdA = 0, (21)

∀û ∈ W 1
p (Ω0), where ∇X (·) denotes the material derivative of field (·) and û is the

virtual displacement vector field.

3.1 Linearized incremental Boundary Value Problem

The incremental strategy adopted herein consists of subdividing the whole time interval

of interest I into N > 0 subintervals (tn, tn+1]: I =
N
∪

n=1
(tn, tn+1]. Adopting an implicit

solution scheme, for a time subinterval (tn, tn+1] Eq. (21) have to be satisfied at tn+1, and
the increment associated with a given quantity (·) is given by ∆ (·) := (·)n+1 − (·)n, being
(·)n+1 and (·)n the values at instants tn+1 and tn, respectively. Following this incremental
strategy, the internal variables αn (X), the displacement un (X), as well as the stress
P n (X) fields are assumed to be known at the initial time instant tn and to comply
with Eq. (21). The incremental equilibrium problem corresponding to a time subinterval
(tn, tn+1] consists therefore of finding the current displacement field un+1 (X) ∈ Kn+1,
satisfying

R (un+1, û) =

∫

Ω0

P n+1 : ∇XûdV −
∫

Ω0

ρ0b̄n+1 ·ûdV −
∫

Γt
0

t̄n+1 ·ûdA = 0, ∀û ∈ W 1
p (Ω0) ,

(22)
where Kn+1 is the set of kinematically admissible displacements at tn+1. Within the
present numerical framework, the local integration algorithm provides an incremental
stress function P̄ given in terms of F n+1 and αn [19]: P n+1 = P̄ (F n+1,αn) .

Solving Eq. (22) by means of an iterative procedure, such as the Newton-Raphson
method, at iteration k+1 one has to determine a displacement increment ∆uk+1

n+1 satisfying
condition

R
(
uk+1

n+1, û
)
= R

(
uk

n+1 +∆uk+1
n+1, û

)
= 0, ∀û ∈ W 1

p (Ω0) , (23)
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where uk+1
n+1 = uk

n+1+∆uk+1
n+1 is the approximated iterative solution. Expanding R

(
uk+1

n+1, û
)

according to a Taylor series around uk
n+1, keeping only the first-order term, yields

DR
(
uk

n+1, û
) [

∆uk+1
n+1

]
= −R

(
uk

n+1, û
)
, ∀û ∈ W 1

p (Ω0) . (24)

Term DR
(
uk

n+1, û
) [

∆uk+1
n+1

]
stands for the directional derivative of R at uk

n+1 in the di-

rection of increment ∆uk+1
n+1. The formal definition of this derivative is: DR (u, û) [∆u] =

d
dε

R (u+ ε∆u, û)
∣∣
ε=0

[43, 19, 18]. Accordingly, the linearized virtual work equation at
an instant tn+1 and iteration k + 1 becomes [19]:

∫

Ω0

Mk
n+1 : ∇X

(
∆uk+1

n+1

)
: ∇XûdV = −R

(
uk

n+1, û
)
, ∀û ∈ W 1

p (Ω0) . (25)

where term

Mk
n+1 :=

dP

dF

∣∣∣∣
uk
n+1

(26)

is the consistent tangent modulus calculated in terms of displacement uk
n+1. An explicit

expression for Mn+1 is going to be derived latter. Equation (25) has to be solved in
terms of increment ∆uk

n+1, which then provides the next iterative displacement uk+1
n+1 ←

uk
n+1 + ∆uk+1

n+1. Knowing the new incremental displacement, a new residual R
(
uk+1

n+1, û
)

is therefore computed and compared with a tolerance etol. The iterative procedure is
repeated until condition R

(
uk+1

n+1, û
)
< etol is satisfied.

3.2 Finite element discretization

Using the finite element method to solve Eq. (25), continuum domain Ω0 is then

approximately represented by a finite number ne > 0 of non-overlapping elements Ω
(e)
0

connected by their boundary nodes: Ω0 ≈ hΩ0 =
ne∪
e=1

Ω
(e)
0 . Furthermore, both displacement

u and virtual displacement û fields are approximated by their finite element counterparts:

∆huk
n+1 (X) = Ng (X)∆uk

n+1 and hû (X) = Ng (X) û, (27)

where Ng is the global interpolation matrix, uk
n+1 and û are the nodal displacement

and virtual displacement global vectors, respectively. Gradients are approximate by:
∇Xu (X) ≈ Gg (X)u, where is the appropriate gradient of interpolation matrix Ng.
The stress tensor P is also replaced by a corresponding stress vector field P. Accordingly,
finite element counterpart of Eq. (25) is

(KT )
k
n+1 ∆uk

n+1 = −R
(
uk
n+1

)
, (28)

in which R
(
uk
n+1

)
= (fint)

k
n+1 − (fext)n+1 is the residual at iteration k. Then, the nodal

displacement increment at an iteration k + 1 and instant t+ 1 is computed by

∆uk+1
n+1 = −

[
(KT )

k
n+1

]−1 [
(fint)

k
n+1 − (fext)n+1

]
. (29)
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Internal fint and external fext global force vectors at tn+1 for an iteration k + 1 are given
respectively as:

(fint)
k
n+1 =

∫
hΩ0

(Gg)T Pk
n+1dV, (30)

(fext)n+1 =

∫
hΩ0

(Ng)T b̄n+1dV +

∫
hΓt

0

(Ng)T t̄n+1dA. (31)

Furthermore, the global stiffness tangent matrixKT at tn+1 and iteration k+1 is computed
according to

(KT )
k
n+1 =

∫
hΩ0

(Gg)T Mk
n+1G

gdV, (32)

where Mk
n+1 is the matrix counterpart of the tangent modulus Mk

n+1 defined in Eq. (26).

4 Local integration and consistent tangent modulus computation

To update the stress field P = P (F (u)) at each iterative step and to compute the
consistent tangent modulusM, local constitutive equations have to be integrated. For this
purpose we first start by recalling the basic elements of elastic predictor-plastic corrector
algorithm.

4.1 Elastic prediction and plastic correction

In the elastic prediction step, the elastic formal condition

Ḟ
vp

= 0 and α̇ = 0 (33)

and its incremental counterpart

F vptrial

n+1 = F vp
n and αtrial

n+1 = αn (34)

hold. From these conditions, the trial elastic state is defined in terms of elastic deformation
gradient and elastic logarithmic strain measure,

F etrial

n+1 = F n+1

(
F vptrial

n+1

)−1

→ Eetrial

n+1 =
1

2
ln
(
Cetrial

n+1

)
, (35)

with Cetrial

n+1 =
(
F etrial

n+1

)T

F etrial

n+1 . Tensor Eetrial

n+1 being given, the trial-rotated Kirchhoff

stress tensor is computed using Eq. (4): τ̄ trial
n+1 = τ̄ trial

n+1

(
Eetrial

n+1

)
.

The plastic correction is required when f
(
τ̄ trial
n+1 , A

trial
n+1

)
> 0. The procedure adopted to

perform the plastic correction refers to the return mapping algorithms, which is exten-
sively explored in the literature. In this work, an exponential mapping is employed (see
references [34, 21]). The discretization of the plastic flow Ḟ

vp
= D̄

vp
F vp, together with

its approximation based on a backward exponential mapping, leads to

F vp
n+1 = exp

(
∆λN τ̄n+1

)
F vp

n . (36)

9
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where N τ̄n+1 =
∂fn+1

∂τ̄n+1
=

τ̄D
n+1

‖τ̄D
n+1‖

. Moreover, after some manipulations Eq. (36) reduces to

[34, 21]

Ee
n+1 = Eetrial

n+1 −∆λN τ̄n+1 . (37)

When the constitutive formulation is restricted to elastic and inelastic isotropy, equiva-
lence of Eqs. (36) and (37) is exact. Otherwise, that passage is an approximation based on
moderately small elastic deformation with a second-order error on elastic strains. These
conditions are needed in order to obtain the relation Re

n+1 = Retrial

n+1 , where Re = F eU e−1

is the elastic right rotation tensor with U e2 = F eTF e [34, 21].
The evolution of the accumulated viscoplastic strain ε, introduced in Eq. (11), is

approximated based on a backward Euler method

εn+1 = εn +

√
2

3
∆λ, (38)

in which the incremental viscoplastic multiplier ∆λ must satisfy

f (τ̄ n+1, An+1) = Θ̄−1 (∆λ,An+1) , (39)

where Θ̄−1 is the inverse function of Θ̄ in terms of fn+1 and ∆λ. Function Θ̄ is the
algorithmic version of Θ given in Eq. (17).

To compute the evolution of hardening variable A from Eq. (10) together with Eq.
(9), we assume that the rate ε̇ ≈ εn+1−εn

∆t
is constant within time step (tn, tn+1]. Then, Eq.

(13) can be used considering tn as the initial state and tn+1 as the current state, leading
to

An+1 = An + A∞n+1c (εn+1 − εn) +
[
A∞n+1 (1 + cεn)− An

]
{1− exp [−δ (εn+1 − εn)]} ,

(40)
where by virtue of Eq. (15)

A∞n+1 = (1− βn+1)A
lwr
∞ + βn+1A

up
∞ , (41)

with (see Eq. (16))

βn+1 =

[
1

∆t

(
εn+1 − εn −∆tε̇lwr

ε̇up − ε̇lwr

)]ξ
. (42)

The return mapping algorithm consists therefore in determining the solution to non-
linear system of equations (37)-(42) with respect to the set of unknowns

{
Ee

n+1, εn+1,
∆λ,An+1,A∞n+1 ,βn+1}. However, equality N τ̄n+1 = N τ̄ trial

n+1
can be established in the con-

text of von Mises criterion stated in Eq. (6). Equations (37)-(38) thus reduce to the
single scalar equation:

∥∥∥τ̄Dtrial

n+1

∥∥∥−∆λ2µ−
√

2

3
(σy + An+1) = Θ̄−1 (∆λ,An+1) , (43)
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with unknowns ∆λ and An+1. Furthermore, inserting Eq. (38) into Eq. (40) yields

An+1 = An + A∞n+1c

√
2

3
∆λ+

[
A∞n+1 (1 + cεn)− An

]
[
1− exp

(
−δ

√
2

3
∆λ

)]
, (44)

while substituting Eqs. (38) and (42) into Eq. (41) gives

A∞n+1 = Alwr
∞ +


 1

∆t



√

2
3
∆λ−∆tε̇lwr

ε̇up − ε̇lwr






ξ

(
Aup

∞ − Alwr
∞

)
. (45)

Then, the reduced return mapping algorithm consists in solving Eqs. (43)-(45) with
respect to ∆λ, An+1 and A∞n+1 . Derivatives of Eqs. (43)-(45) with respect to unknowns{
∆λ,An+1, A∞n+1

}
, required into nonlinear problem solution, are given in A.

4.2 Consistent tangent modulus

Consistent tangent modulus introduced in Eq. (26) can be given in components ac-
cording to

Mijkln+1 =

(
∂τip
∂Fkl

F−1
jp − τipF

−1
jk F−1

lp

)

n+1

. (46)

Computation of Mn+1 requires the derivative calculation of τ with respect to F at tn+1.
However, expressing τ as a function of the rotated Kirchhoff stress tensor τ̄ provides an
alternative way to compute this derivative,

D̃n+1 =
∂τ̄ n+1

∂F n+1

= Dn+1 : Pn+1 : Qn+1, (47)

since τ̄ n+1 is a function of input variables Eetrial

n+1 and αn. In the above equation, Dn+1 =

∂τ̄n+1

∂Eetrial
n+1

, Pn+1 =
∂Eetrial

n+1

∂Cetrial
n+1

and Qn+1 =
∂Cetrial

n+1

∂Fn+1
. Observing that Cetrial

n+1 =
(
F etrial

n+1

)T

F etrial

n+1 ,

the components of the fourth-order tensor Qn+1 read

Qijkln+1 = F vp−1

lin
F etrial

kjn+1
+ F etrial

kin+1
F vp−1

ljn
. (48)

The fourth-order tensor Pn+1 is computed as

Pn+1 =
∂

∂Cetrial

n+1

ln
(
U etrial

n+1

)
=

1

2

∂

∂Cetrial

n+1

ln
(
Cetrial

n+1

)
. (49)

The terms Pn+1 and Qn+1 are geometrical quantities related to finite strains while the
tangent operator Dn+1 is the unique term of D̃n+1 that depends on material response.
In the elastic range, Dn+1 turns to be coincident with the elastic stiffness De, while it
becomes the elastic-viscoplastic tangent operator

Dvp
n+1 =

∂τ̄ n+1

∂Eetrial

n+1

(50)
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in the inelastic range. Evaluation of Dvp
n+1 is obtained from linearization of Eqs. (37),

(39), (45) and (44), what yields (see B)

Dvp
n+1 =

∂τ̄ n+1

∂Eetrial

n+1

=

(
De−1

+∆λ
∂N τ̄n+1

∂τ̄ n+1

+
1

χ
N τ̄n+1 ⊗N τ̄n+1

)−1

, (51)

where

NAn+1 =
∂fn+1

∂An+1

, (52)

χ =

[
∂Θ̄−1

∂∆λ
+

(
∂Θ̄−1

∂An+1

−NAn+1

)
Λ

]
, (53)

Λ =

[
(1 + cεn) (1− ϕ) + c

√
2

3
∆λ

]
ω + . . .

. . .+

√
2

3

{
δ
[
A∞n+1 (1 + cεn)− An

]
ϕ+ A∞n+1c

}
, (54)

ω =

√
2

3

ξ

∆t

(
Aup

∞ − Alwr
∞

ε̇up − ε̇lwr

)
 1

∆t



√

2
3
∆λ−∆tε̇lwr

ε̇up − ε̇lwr






ξ−1

, (55)

ϕ = exp

(
−δ

√
2

3
∆λ

)
. (56)

5 Numerical results and discussion

Aiming to assess the capabilities of the present constitutive model in accounting for
strain hardening, strain rate hardening and viscous effects, the numerical procedure de-
scribed in Section 4 is first applied to analyze the local material response subjected to
uniaxial tension/compression loading. The latter is described by prescribing the value of
axial strain E11 and associated strain rate D̄11. The material is elastic-viscoplastic and
the corresponding material parameters to be used are given in Tab. 1. These parame-
ters were obtained in a previous work [26] considering experimental data for an annealed
OFHC copper available in the literature [3, 7, 35]. Classical relationships relate the Young
modulus E and Poisson ratio ν appearing in Tab. 1 with elastic coefficients µ and κ of
Eq. (4) through µ = E

2(1+ν)
and κ = E

3(1−2ν)
. We emphasize that the elastic part of strain

is expected to be infinitesimal since the ratio σy+A

E
is very small when compared to unity.

Furthermore, it should be kept in mind that the Perić viscoplastic function is considered
throughout the paper, see Eqs. (17)-(19).

12

416



Tiago dos Santos, Pedro A. R. Rosa, Samir Maghous and Rodrigo Rossi

Table 1: Material properties and model parameters associated with annealed OFHC copper [26].

E ν σy δ c Alwr
∞ Aup

∞ ε̇lwr ε̇up ξ ϑ m
[GPa] [−] [MPa] [−] [−] [MPa] [MPa] [s−1] [s−1] [−] [s] [−]
112 0.33 35 6.46 0.42 233 420 10−4 104 3.16 1.2× 103 105

5.1 Decremental strain rate test

Strain rate hardening (or strain rate history) effects can be demonstrated from decre-
mental strain rate testing. In this case, the material is subjected to a monotonic loading
with a given initial strain rate D̄111 which is then abruptly decreased to a value D̄112 . The
phenomenon is evidenced when the decremental response is compared to those obtained
during a monotonic loading under a constant strain rate D̄11 = D̄112 during overall de-
formation process. For this purpose the present analysis will include two load conditions
(employed in experiments of [3]):

• Q.S.: quasi -static test. Material is subjected to a total strain equal to 92% imposed
very slowly with D̄11 = 4× 10−4 s−1;

• D.T.: decremental strain rate test. Material is subjected to at a high strain rate of
D̄111 = 6 × 103 s−1 until a partial strain of 32% is reached, then the strain rate is
abruptly changed to a lower value D̄112 = 4× 10−4 s−1 while strain reaches 79%.
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Figure 1: Decremental strain rate test results: (a) Model-predicted stress-strain curves compared with
experimental data of [3]; (b) Stress hardening vs. accumulated viscoplastic strain curves.

Numerical analyzes were performed considering a local convergence tolerance equal to
10−6, 92 time steps3 for Q.S. simulation and 78 for D.T. case. The numerical results
are depicted in Figs. 1(a) and (b) showing the effects of strain rate history on the ma-
terial response. Figure 1(a) shows the stress-strain curves for Q.S. and D.T. results are

3Numbers of time steps are equal to number of experimental points.
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compared with experiments of [3], where a good agreement between predicted and exper-
imental data is observed. When the strain rate changes abruptly from D̄111 = 6× 103 s−1

to D̄112 = 4 × 10−4 s−1, an abrupt change in flow stress is observed. It is due to instan-
taneous strain rate sensitivity related to viscous mechanisms, while no jump is observed
in hardening response as illustrated by Fig. 1(b). This behavior feature could be ex-
pected, since parameter A is related to current microstructural configuration, which does
not undergo an instantaneous change by abruptly shifting strain rate (see reference [1]).
Moreover, Q.S. curves should only be recovered asymptotically by both stress and hard-
ening responses of D.T. simulation. This is attributed to the fact that the flow stress does
not depend only on instantaneous values of strain rate, but also on strain rate history. In
other words, a higher previous strain rate induces a larger hardening when compared to a
lower strain rate imposed during the whole deformation process, what can be physically
related to the rate-dependence of dislocation storage [1, 2, 44, 45]. This rate-sensitivity
is captured by the present model through the rate dependence attributed to saturation
hardening A∞ (see Eq. (15)).

5.2 Rate-dependence and stress relaxation

The current material strength induced by previous deformation history can also be
characterized from stress relaxation testing, where the obtained equilibrium state reflects
the current microstructural configuration. Thereby, the strain rate history effects on ma-
terial state can be evaluated by varying the loading strain rate preceding stress relaxation,
and thus observing the associated equilibrium stress states that are reached asymptoti-
cally. A constitutive model capable of accounting for strain rate history effects should
theoretically be able to predict the distinct equilibrium stress states reached after different
previous loading strain rates. For this purpose, numerical simulations of stress relaxation
tests are undertaken using the proposed elastic-viscoplastic formulation.

Table 2: Loading strain rates of stress relaxation testing.

Q.S. case R1 case R2 case R3
D̄11 [s−1] 4× 10−4 103 6× 103 9× 103

The numerical analyzes are carried out prescribing a total strain equal to 100% at
different strain rates (see Tab. 2) and then keeping it constant along time. The material
properties are those given in Tab. 1. All analyzes were performed considering 200 time
steps and a local convergence tolerance equal to 10−6. The stress-strain curves obtained
for loading and stress relaxation simulations are shown in Fig. 2(a). In this figure,
cases Q.S., R2 and R3 are compared with experiments showing a good agreement. As
expected, the flow stress is an increasing function of strain rate. This effect could readily
be predicted by a conventional viscoplastic model that accounts only for instantaneous
rate-sensitivity. However, the proposed constitutive model is also capable to predict the
hardening rate-sensitivity, since the hardening A should be a direct consequence of the
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Figure 2: (a) Strain rate effects on stress-strain curves: comparison of model prediction and experiments
of [3] (Q.S. and R2 ) and of [35] (R3 ); (b) Strain rate history effect on hardening curves; (c) Strain rate
history effect on stress relaxation.

current microstructure, which in turn is affected by the whole plastic strain and strain
rate history and not only by their current values.

In the proposed model, the hardening variable A increases with rate ε̇, as emphasized
in Fig. 2(b). But, the strain rate influence on hardening becomes significant only for
strain rates greater than 103 s−1. That is, up to a strain rate of 103 s−1 (cases Q.S. and
R1 ) hardening responses are practically overwritten and for strain rates exceeding 103 s−1

(cases R2 and R3 ) the effect of previous strain rate history upon A becomes significant.
The rate dependence of hardening variable A can also be clearly evidenced in Fig. 2(c),
where the relaxation response tends toward an asymptotic equilibrium stress state, which
is given by the non-viscous stress (σy + A) associated with each previous loading strain
rate. In this figure, we observe that R1 curve reaches the Q.S. response asymptotically,
what demonstrates that the difference between cases Q.S. and R1 observed in Fig. 2(a) is
mainly due to viscous effects. On the other hand, the equilibrium stress state (σy + A) is
significantly increased by strain rate for values exceeding 103 s−1. Note that the reference
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time t = 0 in Fig. 2(c) corresponds to the instant at which the stress relaxation starts.

5.3 Billet upsetting simulation

In order to evaluate the whole numerical framework (local constitutive integration
and finite element solution), a billet upsetting simulation is carried out in the sequel.
Numerical results are compared with analytical solution, which was derived in work [26]
for uniaxial compression test,

|τ̄11| = (σy + A)

(
1 +

√
3

2
ϑε̇

) 1
m

, (57)

where |τ̄11| is the absolute value of axial rotated Kirchhoff stress. The analyzes aim to
demonstrate the strain rate effects on plastic fields of a non-homogeneous deformation
process. Furthermore, to assess numerical efficiency and robustness convergence studies
are performed. Convergence criterion is the number of iterations (niter) to reach the
admissible error given by ‖rn+1‖adm∞ = 10−6. The residue vector is the classical one used
into finite element framework, r = f ext − f int, in which f ext and f int are the external
and internal finite element force vectors, respectively.

1.0

3.
0

(a)

(b)Symmetry
lines

A

B
u 2

u

Figure 3: (a) Axisymmetric billet upsetting model (dimensions are in mm); (b) Finite element mesh
and boundary conditions for a quarter of workpiece.

Figure 3 schematically presents the axisymmetric model considered for analysis, where
upper and lower gray regions represent rigid platens. Finite element discretization consists
of 600 quadratic triangular elements (1251 nodes). Material parameters are also those of
Tab. 1. The contact formulation is based on Signorini condition and friction is modeled
by regularized Coulomb model with a friction coefficient of fc = 0.1 and regularization
parameter εT = 10−4. The Augmented Lagrangian algorithm [46, 47] is employed to
impose the contact, and penalty parameter associated with the impenetrability condition
is set as εv = 10−7. The main focus of the present simulation is to analyze the structural
response in frictional compression test. However, the simulation with fc = 0 shall also
be performed and corresponding predictions compared to analytical results derived for
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frictionless case. Starting from ū (t = 0) = 0, the prescribed displacement takes the form
[26]:

ū (t) = l0 [1− exp (Kt)] , (58)

which would correspond in a frictionless problem to a homogeneous axial strain rate
of −D̄11 = K > 0. In Eq. (58) l0 = 3mm is the specimen initial length. A total
prescribed displacement ūtotal = 1.0mm is applied and maintained in 100 equal time
steps (50 for loading stage and 50 for stress relaxation phase). Considering different
values of K according to Tab. 2, the loading process is defined as follows:

ū (t) =

{
l0 [1− exp (Kt)]

ūtotal

0 ≤ t ≤ T

T ≤ t < ∞
, (59)

with ūtotal = l0 [1− exp (KT )] being the total prescribed displacement reached at an
instant t = T . For t ≥ T , the applied displacement is maintained constant along time
in order to investigate the structural response during stress relaxation test. Considering
the friction case, the prescribed displacement ūtotal = 1.0mm induces a non-homogeneous
strain field in the specimen whose maximum magnitude is in all cases lower than 55%. The
limitation to this strain level has been deliberately adopted to avoid numerical difficulties,
thus focusing on the constitutive effects of numerical modeling. For example, the present
numerical strategy does not prevent volumetric locking, and in this case it expected that
for strains higher than 0.55 this numerical issue can become significant.
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Figure 4: Influence of loading rate parameter K on axial strain of point A and point B (friction cases).

As mentioned early, friction conditions along loaded faces induce a heterogeneous strain
field in the specimen. This aspect will be characterized considering two distinct points
A and B of the discretized workpiece, see Fig. 3(a). The loading rate influence on axial
strain history of points A and B is shown in Fig. 4, that is, the influence of loading
rate parameter K on axial strain response vs. normalized time t

T
. Due to friction effects,

point B undergoes smaller strains than point A, since this phenomenon restricts the radial
displacement at platen/specimen interface. However, increasing K leads to a decrease in
axial strain of point A, while it induces an increase in axial strain of B.
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Figure 5: Axial stress vs. strain curves: (a) Quasi -static case, K = 4× 10−4 s−1; (b) K = 103 s−1; (c)
K = 6× 103 s−1; (d) K = 9× 103 s−1.

Figures 5(a)-(d) display, for different values of K, the axial rotated Kirchhoff stress
vs. strain curves of points A and B. In addition to results obtained from numerical
simulations of frictional compression test, these figures also show the numerical predictions
for frictionless situation as well as for the rigid-viscoplastic analytical solution given in Eq.
(57). Note that frictionless numerical predictions are very close to analytical reference
solution. In friction case, the response of point A remains close to that obtained in
frictionless compression (reference situation) until a strain of about 20%. Beyond this
strain level, the response in friction case begins to deviate from this reference situation.
In contrast, due to confined strain state, stress triaxiality appears in vicinity of point B
right after the loading process has started, leading to lower strain and higher stress levels
than at point A.

Comparisons for different values of K of axial rotated Kirchhoff stress vs. logarithmic
strain curves are shown in Figs. 6(a) and (b) for frictional compression test. This com-
parisons indicate that increasing the value of K induces higher absolute stress levels in
the specimen. However, the maximum strain level decreases with K at point A, while it
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exhibits opposite trend at point B.
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Figure 6: Influence of loading rate parameter K on axial stress vs. strain curves (friction cases): (a)
Point A; (b) Point B.
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Figure 7: Influence of loading rate parameter K on pressure transmission coefficient cpt =
τ̄22
τ̄11

vs. strain
curves (friction cases): (a) Point A; (b) Point B.

Stress triaxiality effects are illustrated in Figs. 7(a) and 7(b), where the pressure
transmission coefficients4 cpt =

τ̄22
τ̄11

at points A and B are plotted against the axial strain.
Scalars τ̄11 and τ̄22 refer to axial and radial rotated Kirchhoff stresses, respectively. In
accordance with observations related to Figs. 5, it is first observed that ratio cpt at point
A remains very small for strain lower than 20%, and then increases continuously with the
strain level (Fig. 7(a)). In contrast, ratio cpt at point B increases rapidly with strain in
the small range (until ≈ 5%), followed by a moderate decreasing with strain level (Fig.
7(b)).

4It is worth to recall that in an axisymmetric deformation the value cpt = 0 indicates an axial stress
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Figure 8: Influence of loading rate parameterK on flow stress of Point A and Point B, for a given absolute
strain of 0.2 (friction cases). Analytical solution is taken from Eq. (57), considering a frictionless rigid-
viscoplastic case. Experimental data were taken from references [3, 7, 35] considering an annealed OFHC
copper (see also reference [26]).

Concerning the strain rate sensitivity, in Fig. 8 the influence of loading rate parameter
K on flow stress response can be realized, considering a given absolute strain level of 0.2.
In this figure an upturn in the rate sensitivity is observed for values of K greater than
103 s−1. As discussed by some authors (see for instance [48, 8, 26]) this sudden upturn
behavior is a result of the strain rate hardening observed e.g. in FCC metals as copper and
aluminum. Notice that the stress response of point A is very close to the frictionless rigid-
viscoplastic analytical solution given in Eq. (57) and to the experimental data related to
annealed OFHC copper, see [3, 7, 35]. However, in contrast to point A, due to confined
strain state and then to higher stress triaxiality, point B presents a higher absolute stress
level for the same given total strain of 0.2.

The overall behavior of structure may be characterized by means of the evolution
of resultant vertical force applied to specimen with respect to prescribed displacement.
Figures 9(a)-(d) show the results obtained from numerical simulations as well as analytical
solution for frictionless compression obtained from stress solution of Eq. (57)

|f1| =
V0

l
|τ̄11| , (60)

where |f1| is the resultant applied force, V0 is the initial volume and l is the current length
of workpiece. The numerical frictionless results are very close to analytical reference
solutions. However, slight effects of friction are observed as prescribed displacement is
increasing. It is emphasized that the whole results should be interpreted keeping in mind
that the considered value of friction coefficient is rather small (fc = 0.1). Regarding the
influence of strain rate parameter K, Figs. 10(a) and (b) corroborate, as expected, that
higher forces are needed to impose a given displacement when the loading rateK increases.

state and cpt = 1 a hydrostatic stress state.
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Figure 9: Applied force vs. applied displacement curves: (a) Quasi -static case, K = 4 × 10−4 s−1;
(b) K = 103 s−1; (c) K = 6 × 103 s−1; (d) K = 9 × 103 s−1. Notice that the reference solution is for
rigid-viscoplastic case, see Eq. (57), while the FE solution is for elastic-viscoplastic one.

The capability of the proposed constitutive model to capture the effects of strain rate
on stress response has been illustrated in Figs. 6, which indicate that axial stress-strain
curves are significantly affected by the value of imposed loading rate K. At strain rates
until 103 s−1 the rate dependence is mainly due to viscous effects, and for strain rates
exceeding 103 s−1 proposed model accounts for the dependence of hardening with respect
to strain rate (see for instance [26]). The effects of strain rate on the material hardening
response are clearly evidenced in Figs. 11(a) and (b) in frictional compression test with
fc = 0.1. These figures emphasize how increasing the value of K induces, for a given
accumulated viscoplastic strain, a larger material hardening. However, note that the
curves related to cases Q.S. and K = 103 s−1 are practically overwritten, what clearly
shows that for strain rates < 103 s−1 the proposed model predicts a small strain rate
influence on hardening response.

The analysis performed during loading phase (t ≤ T ) suggests that, due to rate sen-
sitivity of material hardening, significant effects of strain rate on flow stress rise when
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Figure 10: Influence of loading rate parameter K on applied force vs. applied displacement curves: (a)
Frictionless; (b) Frictional cases.
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Figure 11: Influence of loading rate parameter K on stress hardening vs. accumulated viscoplastic
strain (friction cases): (a) Point A; (b) Point B.

K > 103 s−1. This feature is also corroborated in the relaxation phase imposed to speci-
men. Figures 12(a) and (b) present the stress relaxation curves of points A and B, i.e.,
evolution of axial rotated Kirchhoff stress vs. time t. It is observed from these figures
that the equilibrium stress state (asymptotic stress state) reached after relaxation process
is generally sensitive to strain rate history. However, since equilibrium stress quantity is
a direct consequence of material hardening, as commented early, the strain rate influence
on relaxed state becomes significant only for loading rates K > 103 s−1. Consequently,
the case with K = 103 s−1 tends asymptotically to the Q.S. curve. The reference time
t = 0 in Fig. 12 corresponds to instant (T ) at which the stress relaxation starts.

An alternative way to illustrate the strain rate history effects on specimen response
consists of visualizing the contours of von Mises equivalent stress, as displayed in Figs.
13(a)-(d). Two particular instants are considered for each value of K, namely at the
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Figure 12: Influence of loading rate parameter K on stress relaxation (friction cases): (a) Point A; (b)
Point B.

onset of stress relaxation (t = T ) and at the relaxed state. Once again, these figures
confirm the existence of a value of loading rate beyond which strain rate history effects
prove significant. As expected, no noticeable change is observed between the “before
relaxation” and “after relaxation” states for the quasi -static case. In contrast, significant
changes between the “before relaxation” and “after relaxation” states are observed for
the high strain rate cases (K ≥ 103 s−1), what is due to instantaneous viscous effects.
Furthermore, comparison of all “after relaxation” states indicates that the K = 103 s−1

case relaxes to a state close to the quasi -static one. On the other hand, higher values of
K leads to higher absolute values of equilibrium stress fields.

The performance of numerical procedure is assessed by means of convergence analyzes
in both quasi -static and high strain rate (K = 9× 103 s−1) cases. The results are summa-
rized in Tab. 3 for t

T
∈ {0.02, 0.2, 0.5, 1.0} considering frictionless (fc = 0) and frictional

(fc = 0.1) compression. In this table term ALi stands for the number of iterations to
reach convergence in the Augmented Lagrangian algorithm employed to solve contact
problem [46, 47] and niter for the number of iterations to reach finite element equilib-
rium (‖rn+1‖∞ ≤ 10−6). The end of loading phase (t = T ) in Q.S. case correspond to the
higher required iterations for numerical convergence (niter = 15). Table 3 also indicates
that convergence is enhanced with higher loading rate K.

Convergence curves are displayed in Figs. 14(a) and (b) for simulations considering
smooth and frictional contact in the quasi -static and high strain rate (K = 9× 103 s−1)
cases. Two particular instants were examined, namely t

T
= 0.02 and t

T
= 1.0. Figure

14(a) shows that there is no significant difference between the quasi -static and high strain
rate cases for frictionless compression simulations. On the other hand, it is observed in
Fig. 14(b) that the convergence is significantly improved when imposing a higher strain
rate in the case of frictional compression test. As a matter of fact, the number of iterations
for convergence drops from 50 to 5 at instant t

T
= 1.0 and iteration ALi = 2 of Augmented

Lagrangian algorithm. Furthermore, as can be seen in Tab. 3, the Augmented Lagrangian
algorithm took 3 steps to converge in the quasi -static frictional problem. The quasi -static

23

427



Tiago dos Santos, Pedro A. R. Rosa, Samir Maghous and Rodrigo Rossi

Before relaxation After relaxation

(a)

Before relaxation After relaxation

(b) 785.0
711.2
637.5
563.8
490.0
416.2
342.5
268.8
195.0

Before relaxation After relaxation

(c)

Before relaxation After relaxation

(d)

Figure 13: Contours of von Mises equivalent stress [MPa], before stress relaxation (t = T ) and after
stress relaxation: (a) Quasi -static case, K = 4 × 10−4 s−1; (b) K = 103 s−1; (c) K = 6 × 103 s−1; (d)
K = 9× 103 s−1.

simulation has a worse global convergence because, in addition to the trial elastic state
being far from the current solution, in this case a higher time increment ∆t is obtained,
what can give an ill-conditioned tangent operator Dvp. See for instance Eqs. (51)-(55), as
well as Eqs. (70) and (71).

Table 3: Number of iterations required for convergence of frictional contact algorithm.

Quasi -static K = 9× 103 s−1

t
T
- (step number) ALi

niter niter

fc = 0 fc = 0.1 fc = 0 fc = 0.1

0.02 - (1)
1 15 25 11 15
2 11 17 8 11

0.2 - (10)
1 6 9 7 7
2 5 9 5 6

0.5 - (25)
1 6 8 6 7
2 5 9 4 5

1.0 - (50)
1 6 42 6 7
2 4 50 4 5
3 − 29 − −

6 Conclusions

A finite strain elastic-viscoplastic numerical framework was developed and implemented
into the FE context. The overall approach is intended to simulate high velocity plastic de-
formation processes in which loading history effects have to be considered. The main goal
was to provide an adequate and computationally efficient numerical tool for high strain
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Figure 14: Convergence curves for quasi -static (solid lines) and high strain rate
(
K = 9× 103 s−1

)
(dash-doted lines) cases: (a) Frictionless compression; (b) Frictional compression.

rate straining of metals. The accuracy of constitutive modeling and related numerical
procedure was assessed by means of homogeneous decremental strain rate and constant
strain rate loading followed by stress relaxation testing, and global analysis consisting
of a billet upsetting considering friction contact conditions. The loading process in the
latter analysis is also defined by an initial constant loading rate stage followed by a stress
relaxation phase. All these analysis have demonstrated the capabilities of the constitu-
tive and numerical modeling to properly capture the main features of strain rate history
effects on material and structural response of elastic-viscoplastic media. The algorithm
convergence analyzes emphasized the good performance and robustness of numerical pro-
cedure. The numerical results obtained in this paper contribute to the understanding of
high strain rate processes while encouraging for future developments in high strain rate
material modeling.
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A Tangent quantities for return mapping algorithm

The return mapping algorithm is used to solve the nonlinear equations (43), (44) and
(45), making use of an iterative procedure, such as the Newton-Raphson algorithm. In
this context, some tangent quantities have to be evaluated. The system of nonlinear linear
equations to be solved can be set as

f1 =
∥∥∥τ̄Dtrial

n+1

∥∥∥−∆λ2µ−
√

2

3
(σy + An+1)− Θ̄−1 (∆λ,An+1) = 0, (61)

f2 = An+1 − An − A∞n+1c

√
2

3
∆λ−

[
A∞n+1 (1 + cεn)− An

] [
1− exp

(
−δ

√
2

3
∆λ

)]
= 0,

(62)

f3 = A∞n+1 − Alwr
∞ −


 1

∆t



√

2
3
∆λ−∆tε̇lwr

ε̇up − ε̇lwr






ξ

(
Aup

∞ − Alwr
∞

)
= 0, (63)

where involved unknowns are
{
∆λ,An+1, A∞n+1

}
. Accordingly, the tangent terms are

defined by

∂f1
∂∆λ

= −2µ− ∂Θ̄−1

∂∆λ
, (64)

∂f2
∂∆λ

= −
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3
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3
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= −
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∂f1
∂An+1

= −
√

2

3
− ∂Θ̄−1

∂An+1

, (67)

∂f2
∂An+1

= 1,
∂f3

∂An+1

= 0,
∂f1

∂A∞n+1

= 0,
∂f3

∂A∞n+1

= 1, (68)
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= −c
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3
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From Eq. (18) we have the derivatives
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) 1
m
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]
. (71)

B Analytical consistent tangent operator

Evaluation of Dvp
n+1 is obtained from linearization of Eqs. (37), (39), (45) and (44),

dEe
n+1 + d (∆λ)N τ̄n+1 +∆λ

∂N τ̄n+1

∂τ̄ n+1

: dτ̄ n+1 = dEetrial

n+1 (72)
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Combining Eqs. (74) and (75) reads to

dAn+1 = Λd (∆λ) , (80)

where
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Inserting Eq. (80) into Eq. (73) yields
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Substitution of Eq. (82) in Eq. (72) provides
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Observing that (A⊗G) : K = (G : K)A, the above equation writes
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and from the elastic relationship dEe
n+1 = De−1

: dτ̄ n+1 Eq. (85) can be rearranged as
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leading finally to
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