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B. SÖHNGEN∗ AND K. WILLNER∗

∗Institute of Applied Mechanics
Friedrich-Alexander-Universität Erlangen-Nürnberg

Egerlandstr. 5, 91058 Erlangen, Germany
e-mail: benjamin.soehngen@fau.de, kai.willner@fau.de

web page: www.ltm.fau.de

Key words: Kinematic Hardening, Anisotropic Plasticity, Parameter Identification, Bi-
axial Loading, Sheet Metal

Abstract. In this work an anisotropic material model at finite strains with nonlinear
mixed (isotropic and kinematic) hardening is used for the identification of the hardening
parameters of sheet steel. The algorithmic system is thereby reduced to a single equation
return mapping. For the identification, a cruciform specimen is loaded biaxially in an
alternating shear test to provoke the kinematic hardening behavior and prevent the sheet
from buckling. The material parameters are found through an optimization strategy
by comparing the deformation field from the experiment to that from a finite element
(FE) simulation. The resulting cost function is minimized by means of a gradient-based
method.

1 INTRODUCTION

Minimizing production costs and overall weight of products is a major goal for manu-
facturers in the 21st century. In the context of sheet metals an ongoing development is
the incorporation of functional elements through bulk forming operations by means of the
technology of sheet-bulk metal forming [1]. Here, both sheet and bulk forming is applied
to thin sheets to generate complex shape elements and reduce waste.

The accurate rendering of forming processes by the finite element method (FEM) re-
quires suitable material models and proper identification of therein specified parameters.
This can be a challenging task as the ever-increasing complexity of the constitutive models
demand for appropriate identification methods by simultaneously decreasing experimental
effort.

In this contribution a material law capable of describing elasto-plastic material behavior
utilizing a Hill-type yield function in combination with a mixed hardening law is used
to identify parameters for the dual-phase steel DP600.
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2 MATERIAL MODEL

2.1 Notation

In this work, scalar quantities are represented by lower case letters a, b, . . . . Boldfaced
characters A,B, . . . denote second-order tensors; in particular I denotes the second-order
identity tensor A · I = A. Fourth- and sixth-order tensors are defined by calligraphic
symbols A,B, . . . . The dyadic product between two second-order tensors yield a tensor
of fourth-order C = A⊗B and can be expressed in index notation as Cijkl = AijBkl. The
fourth-order tensor C is a linear map from A to B which is given as B = C : A in this
work (accordingly for sixth-order tensors). The fourth-order symmetric identity tensor is
defined through the Kronecker delta as Isym = 1

2
(δikδjl + δjkδil) and has the property that

it projects a symmetric tensor on itself Asym = Isym : Asym for any symmetric second-
order tensor Asym = 1

2
(A+AT). The Euclidean norm of a second-order tensor is defined

as ||A|| =
√
A : A where the double dot product reads a = A : B = AijBij.

2.2 Model formulation

The formulation of large strain plasticity is based on the algorithm presented by Miehe

and Lambrecht [2]. It consists of the calculation of stresses and elasticity moduli with
regard to a Seth-Hill strain tensor. For the application to elasto-plasticity, the algorithm
can be interpreted as a pre- and postprecessing of the stresses and elasto-plastic material
tangent originating from a “small strain” algorithm based on the Hencky (logarithmic)
strain tensor

E0 =
1

2
lnC , (1)

where C = F TF denotes the right Cauchy-Green tensor, as shown by Miehe, Apel,
et al. [3]. Referring to T as the work-conjugate stress measure to the logarithmic strain
E0 and Cep as the consistent material tangent, the transformation to the Lagrangian stress
and module is performed by

S = T : P and Cep
L = PT : Cep : P + T : L (2)

via the fourth and sixth-order projection tensors P and L that are defined as

P = 2
∂E0

∂C
and L = 4

∂2E0

∂C∂C
. (3)

The first and second derivative of the logarithmic strain tensor can be obtained by usage of
a spectral decomposition of the right Cauchy-Green tensor and subsequent differentiation
of the eigenvalues and -vectors w.r.t. C, as shown in [2].

The model regards nonlinear isotropic and kinematic hardening as well as Hill-type
anisotropic plasticity. The yield function therefore reads

Φ = ||ξ||
H
−

√
2

3
σY (4)
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where the tensor norm ||ξ||
H
is given by

||ξ||H =
����ξT : H : ξ

���� (5)

with the relative stress tensor ξ being defined by the stress tensor T and the backstress
tensor B

ξ = T −B . (6)

The anisotropic plasticity is modeled by the fourth-order Hill tensor H which shows
minor (as well as major) symmetry properties and can therefore be represented in a
contracted notation. Besides the popular Voigt notation there are others that show
certain advantages over the former. The main disadvantages of Voigt’s notation are
the different representation of (symmetric) second-order tensors for stress- and strain-like
quantities (coefficient of 2 for shear strain) and that certain tensor operations will not
be transferred to the reduced notation. E.g. the scalar product between two symmetric
second-order tensors or the tensor product between a fourth- and a second-order tensor do
not yield the same result in Voigt notation, A : B �= VA · VB and A : B �= VA· VB, but
using the representation according to Mandel, A : B = MA · MB and A : B = MA · MB.
With the choice of Mandel notation the Hill tensor can be displayed as

MH =
1

3




a2 + a3 −a3 −a2 0 0 0
−a3 a1 + a3 −a1 0 0 0
−a2 −a1 a2 + a1 0 0 0
0 0 0 2 · 3/2 a6 0 0
0 0 0 0 2 · 3/2 a5 0
0 0 0 0 0 2 · 3/2 a4




(7)

with the anisotropy parameters ai which are based on the Hill parameters hi

a1 =
1

h2
2

+
1

h2
3

−
1

h2
1

a2 =
1

h2
3

+
1

h2
1

−
1

h2
2

a3 =
1

h2
1

+
1

h2
2

−
1

h2
3

a4 =
1

h2
6

a5 =
1

h2
5

a6 =
1

h2
4

.

(8)

Remark The tensor P has the property P : I = 0 of a deviatoric projection tensor [3]
and specifically for hi = 1 reduces to the deviatoric identity tensor Idev = Isym − 1

3
I ⊗ I

which yields the classical J2-plasticity for the tensor norm,
�

3/2 ||ξ||
H|hi=1

=
�

3 J2(ξ) =�
3/2 ||dev(ξ)|| .
Considering isotropic hardening, the yield stress in equation (4) is represented by the

exponential law according to Hockett and Sherby [4],

σY(ε̄
pl) = σ∞ + [σ0 − σ∞] exp

�
a ε̄pl

b
�
, (9)

where σ0 and σ∞ are stress-like quantities and a and b describe the curvature of the yield
stress. As the algorithm is not limited to this formulation, other well known hardening
laws like the ones from Ludwik, Voce or Swift could be used as well.
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The shift of the yield surface in stress space is considered by Armstrong and Fred-

erick [5] nonlinear kinematic hardening through the evolution of the backstress by

Ḃ = γ̇ [k1N − k2B] , (10)

with the material parameter k1 representing the kinematic hardening modulus and k2 the
rate of saturation. For usage in a finite element code the evolution law is discretized in
time by an implicit Euler scheme, resulting in

Bn+1 =
1

∆γn+1 + k2
[k1Nn+1 +∆γn+1Bn] . (11)

Declaring the flow rule to be of an associative type, the flow vector reads N = ∂Φ/∂T and
the evolution of the plastic strain tensor is defined through

Ė
pl
= γ̇N , resp. E

pl
n+1 = Epl

n +∆γn+1Nn+1 (12)

2.3 Single equation return-mapping

Using a radial return-mapping algorithm (see e.g. [6]) and starting off with the trial
stress as

�T n+1 = Cel : �Eel

n+1 = Cel :
�
En+1 −Epl

n

�
, (13)

where �[·] indicates a trial value, the updated stress then reads

T n+1 = �T n+1 −∆γn+1 Cel : Nn+1 . (14)

Combining equation (14) with equation (11) into the relative stress gives

ξn+1 = T n+1 −Bn+1

= �ξn+1 −
∆γn+1����ξn+1

����
H

Bn+1 : H : ξn+1 ,
(15)

where the definitions for the stress tensor �ξn+1 and the fourth-order tensor Bn+1,

�ξn+1 = �T n+1 −
1

1 + k2 ∆γn+1

Bn and Bn+1 = Cel +
k1

1 + k2 ∆γn+1

I sym (16)

are introduced. Since in the converged step Φ = 0 and thus ||ξ||H =
�

2/3 σY holds,
equation (15) can be rewritten as

ξn+1 =


I sym +

∆γn+1�
2
3
σY

Bn+1 : H



−1

: �ξn+1 = [An+1]
−1 : �ξn+1 , (17)

hence being solely a function of the unknown plastic multiplier ∆γ. By substitution
into the definition of the yield function (equation (4)) a scalar equation with only one
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unknown is derived. To solve the (nonlinear) equation for ∆γ a Newton-Raphson

scheme is applied, giving

∆γk+1 = ∆γk −

�
∂Φ

∂∆γ

����
∆γk

�−1

Φk , (18)

with k the iteration counter. The derivative of the yield function w.r.t. the plastic mul-
tiplier can be displayed after straightforward usage of the chain rule as

∂Φ

∂∆γ
= Nn+1 : [An+1]

−1 :

�
k2κ

2
n+1Bn −

��
1�

2/3 σY

−
ηn+1

σY

∂σY

∂∆γ

�
Bn+1

− ηn+1k1k2κ
2
n+1 I

sym

�
: P : ξn+1

�
−

�
2

3

∂σY

∂∆γ
,

(19)

with the auxiliary variables

κ =
1

1 + k2 ∆γ
and η =

∆γ�
2/3 σY

. (20)

2.4 Consistent elasto-plastic tangent modulus

In the algorithmic implementation, the related tangent modulus plays the major role
for achieving (quadratic) convergence in the Newton-Raphson iteration for the global
equilibrium. It enters the calculation of the overall stiffness and needs to be consistent with
the algorithm for stress calculation, hence the name of a consistent elasto-plastic tangent
modulus. To develop the algorithmic tangent the system of equations (equations (4), (11),
(12), (14) and (15)) is linearized, giving

dξ = dT − dB

dT = Cel :
�
dE − dEpl

�

dB = κ
�
[k1N − k2B] d∆γ + k1 ∆γ ∂N

∂ξ
: dξ

�

dEpl = ∆γ ∂N
∂ξ

: dξ +N d∆γ

dΦ = 1
||ξ||

H

H : ξ : dξ −
�

2
3
∂σY

∂∆γ
d∆γ = 0 .




(21)

Solving the linearized system for dT / dE leads to the desired tangent operator

Cep =
dT

dE
= C1 :

��
Cel

�−1
: C1 + C2

�−1

(22)

with the fourth-order auxiliary tensors

C1 = −

�
2

3
k1κ∆γ

∂σY

∂∆γ

∂N

∂ξ
+ k2κB ⊗N − k1κN ⊗N −

�
2

3

∂σY

∂∆γ
I sym (23)

C2 = −

�
2

3

∂σY

∂∆γ
∆γ

∂N

∂ξ
−N ⊗N . (24)
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It should be noted that the consistent tangent modulus is calculated at the end of the
stress update, hence all quantities are evaluated at the updated state and the index [·]n+1

has been suppressed to improve readability.
The continuum tangent modulus is defined by the rate relation

Ṫ = Cep
c : Ė = Cel :

[
Ė − Ė

pl
]
, (25)

where [·]c denotes the continuum operator. Under usage of the consistency condition
Φ̇ = 0 an expression for the rate of the backstress can be derived as

Ḃ =
[k1N − k2B] : N

2
3

∂σY

∂ ε̄pl
+ [k1N − k2B] : N

Ṫ , (26)

which - inserted back into equation (25) along with the consistency condition and the rate
of the plastic strain tensor (equation (12)) - yields the continuum tangent operator as

Cep
c =

Ṫ

Ė
=

[[
Cel

]−1
+

1
2
3
∂σY

∂ ε̄pl
+ [k1N − k2B] : N

N ⊗N

]−1

. (27)

Calculating the limit case ∆γ → 0 for the consistent tangent operator leads, after some

rearrangement and by using ∂σY

∂ ε̄pl
=

√
2
3

∂σY

∂∆γ
, to the continuum tangent operator as ex-

pected, lim
∆γ→0

Cep = Cep
c . It is emphasized that although the chosen plasticity model is

associative, the kinematic hardening law is of a non-associative type. This leads to a
non-symmetric elasto-plastic tangent modulus that needs to be taken into consideration
when solving the global equilibrium, as the overall stiffness matrix loses its symmetry as
well and therefore needs a solver that can handle non-symmetric systems. The loss of
symmetry thereby only refers to the major symmetry of Cep, leading to a non-symmetric
representation in Mandel notation MCep �= [MCep]T. The algorithmic equations are listed
in table 1 for convenience.

Remark As already mentioned above, all equations can be represented in some com-
pressed notation. Every fourth-order tensor shows at least minor symmetry and by making
use of e.g. Mandel representation, the calculation time on local Gauss point level can
be reduced substantially.

3 PARAMETER IDENTIFICATION

The experimental investigation is carried out on a biaxial testing machine with four
electro-mechanical actuators of which the two of each axis are operated in master/slave
control to keep the specimen centered and inhibit rigid body motion. To prevent buckling,
the loading along the two axes is applied in an alternating fashion rather than by pure
tension/compression. Therefore, the applied force is equal in amount but opposite in
direction, resulting in an alternating shear loading.

6
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Table 1: Single-equation return-mapping algorithm

� Geometric preprocessing: C = F TF , E0
n+1 =

1
2
ln(C)

� Plasticity algorithm:

• Trial stress: T̃ n+1 = Cel :
[
En+1 −Epl

n

]

• Evaluate yield function: Φ = �ξ̃n+1�H −
√

2
3
σY(ε̄

pl
n ) , ξ̃n+1 = T̃ n+1 −Bn

if Φ ≤ 0.0d0 then
// Elastic step

Set: T n+1 = T̃ n+1 , Bn+1 = Bn , Cep
n+1 = Cel

else
// Plastic step

Set: k = 0 , ∆γ0
n+1 = 0.0d0 , ξ0n+1 = ξ̃n+1 , εtol = 1.0d−8

while |Φk| > εtol do

∂Φ
∂∆γ

∣∣∣
k

= ∂Φ
∂∆γ

∣∣∣
∆γk

∆γk+1
n+1 = ∆γk

n+1 −

[
∂Φ
∂∆γ

∣∣∣
k
]−1

Φk

ξ̂
k+1

= T̃ n+1 − κk+1Bn , ξk+1
n+1 = [A]−1 : ξ̂

k+1

ε̄pl
k+1
n+1 = ε̄pln +

√
2
3
∆γk+1

n+1 , σk+1
Y = σY(ε̄

plk+1
n+1)

Φk+1 =
∣∣∣∣ξk+1

n+1

∣∣∣∣
H
−

√
2
3
σk+1
Y

k = k + 1

end while
Bn+1 = κn+1 [k1Nn+1 +∆γn+1Bn] , T n+1 = ξn+1 +Bn+1

Cep
n+1 from equations (22) to (24)

end if

� Geometric postprocessing: S = T : P , Cep
L = PT : Cep : P + T : L

3.1 Experimental and numerical setup

The considered material is a DP600 sheet steel with 2mm thickness. In the experimen-
tal investigation a cruciform specimen with the dimensions depicted in figure 1 is used.
To obtain the deformation field a speckle pattern which is captured with a stereo camera
setup is applied to the surface of the specimen. The captured images are subsequently
analyzed with the digital image correlation (DIC) software Aramis to generate the dis-
placements. For the numerical computation a FE-mesh consisting of 3080 eight-noded 3D
continuum elements (two in thickness direction) with linear shape functions is used. As-
suming a uniform load distribution generated by the clamping, the respective edge nodes
are coupled through nodal ties and the measured forces are taken as boundary conditions.
To assess the residual of experimental and numerical displacements only a subset of the
FE nodes are considered. These optimization nodes are shown in figure 2 along with the

7
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175

ø6

14.62

16

t=2

Figure 1: Dimensions of the cruciform spec-
imen in mm

Figure 2: Finite element mesh of specimen
(dots mark optimization nodes)

discretization.
To encourage the heterogeneity of the deformation state a bore of 6mm in diameter

is introduced at the center of the specimen, resulting in various strain states. In figure 3
major vs. minor strain is plotted for the optimization nodes along with the strain states for
uniaxial compression (ε1 = −0.5ε2), pure shear (ε1 = −ε2), uniaxial tension (ε1 = −2ε2),
plane strain (ε2 = 0) and equi-biaxial tension (ε1 = ε2). Though the specimen exhibits
mainly pure shear as expected it can be seen that also other strain states are induced.

The afore-mentioned alternating shear loading of the specimen is depicted in figure 4.
Starting off with the initial unloaded configuration the speckle patterns for the three
peak loading values (|Fx/y| = 8kN, |Fx/y| = 9kN and |Fx/y| = 10 kN) are shown. The
deformation state can be judged by the elliptic deformation of the originally circular bore
in the middle. For the loading a linear force rate of |Ḟx/y| = 100N/s is chosen.

3.2 Inverse Identification

The identification process is based on a comparison of the displacements obtained from
experiment and FE simulation. The minimization function can be formulated as

min
α

f(α) = min
α

1

2
||xSim(α)− PxExp||

2
2 , (28)

with xSim denoting the nodal displacements from the FE-calculation and xExp the dis-
placements coming from the experimental full-field measurement. As the discretization
of the numerical analysis and that of the image correlation do in general not coincide,
the operator P is used to map the experimentally obtained deformation values on the
nodal positions of the FE-mesh. The discretization introduced by DIC is thereby about
ten times finer than that of the FE-mesh, hence the possible error derived from interpo-
lation should be marginal. The vector α contains the parameters to be optimized, in the

8
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Figure 3: Distribution of major vs. minor strain in the specimen during loading

present case it consists of the four parameters describing the mixed hardening behavior,
α = [σ0, σ∞, k1, k2]

T. As a remark, the identification of the mixed hardening parameters
demand a strategy where both phenomena are considered simultaneously. The parameters
for isotropic hardening may not be taken from e.g. a uniaxial tensile test.

To minimize the cost function f(α), an appropriate optimization algorithm has to be
chosen. In general, one distinguishes between gradient-based and gradient-free methods,
the latter having the advantage of not needing derivatives of the minimization functions.
Nevertheless, in the context of material parameter identification, experience shows that
gradient-based approaches should be chosen over gradient-free methods. Not only having
an increased rate of convergence by nature, the amount of function evaluations can be
significantly lower, despite using a finite difference scheme to approximate the gradient, see
as well e.g. [7]. The application of a finite difference procedure to evaluate the sensitivity
of the cost function w.r.t. the design parameters α seems a necessary evil. An attempt to
an analytical derivation for elasto-plastic material behaviour was made by Cooreman et
al. [8]. The derivation however is simplified substantially and only applicable to isotropic
plasticity with a strictly homogeneous strain field (simple tensile test). Moreover, the
sensitivity of every node has to be calculated in an iterative manner, leading to the
question about performance gain over finite differences, which keeps unanswered.

A well-suited and in the area of parameter optimization widely used (see e.g. [9])
algorithm is the Levenberg-Marquardt method. It shows quadratic convergence (see
e.g. [10]) and is used with a forward finite differences scheme in this work. The minimum
of the cost function is assumed to be found once either the relative step size of the
design parameters or of the objective function itself reaches a threshold of 1.0d−6. The
parameters for the anisotropy of the yield surface hi for the considered material have been
identified in [11] and are listed in table 2. For that identification the same cruciform
specimen geometry was loaded with equi-biaxial tension. In the elastic region the material
is assumed to behave isotropically with an elastic modulus of E = 210 000MPa and a
Poisson’s ratio of ν = 0.3. The optimization of the mixed hardening parameters is

9
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Figure 4: Specimen at four different stages of loading: 1 initial unloaded configuration,

2 |Fx/y| = 8kN, 3 |Fx/y| = 9kN, 4 |Fx/y| = 10 kN

Table 2: Hill parameters for DP600 [11]

h1 h2 h3 h4 h5 h6

0.9759 1.0039 0.9714 1.0571 1.0000 1.0000

based on three different initial values sets that are given in table 3 along with the mean
and standard deviation (SD) of the three optimization runs. Observing a relative SD of

Table 3: Initial and identified parameters of the mixed hardening formulation for DP600

σ0 in MPa σ∞ in MPa k1 k2

Set 1 350 1500 1000 10
Set 2 350 1500 5000 100
Set 3 400 3000 1000 100

Mean of optimization 263.2 821.7 17 434.9 174.1
SD 3.3d−2 2.9d−2 9.0d0 5.5d−2

5.0d−4 and less confirms the significance of the mean values and hence the global nature
of the minimum. To fulfill the above- mentioned convergence criteria the Levenberg-

Marquardt optimization of the three sets needs between 14 (Set 2) and 25 (Set 3)
iterations. Thereby, the number of iterations refer to the optimization algorithm itself
and does not represent the total number of FE simulations which is greater due to the
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evaluation of the finite differences. In figure 5 the isotropic hardening function for the
initial values and the mean of the identified parameters is plotted vs. the equivalent
plastic strain (ε̄pl =

∫ t

0
γ̇ dt). The evolution of the backstress in loading direction w.r.t.

ε̄pl is depicted in figure 6. As can be seen the kinematic hardening modulus k1 leads to an
initially steep incline while the parameter k2 causes the increase in backstress to saturate
with advancing plastic strain for the identified parameters.
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Figure 5: Evolution of isotropic hardening
w.r.t. the equivalent plastic strain
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Figure 6: Evolution of backstress in loading
direction w.r.t. the equivalent plastic strain

4 CONCLUSION AND OUTLOOK

In this contribution a single equation return mapping algorithm for large strain an-
isotropic plasticity with isotropic and kinematic hardening is presented. The identification
of the mixed hardening parameters for the dual-phase steel DP600 with a Levenberg-

Marquardt approach is performed on a cruciform specimen, which is loaded in an
alternating shear test on a biaxial testing machine. To assure the obtained minimum of
the cost function to be of a global nature, the optimization is run with three distinct initial
values sets, whereby all lead to similar material parameters with only small deviations.
The material model is written in Fortran and can be used (with rather minor adjustments)
in commercial FE-packages like Marc or Abaqus through the provided user subroutines
hypela2 and UMAT, respectively.

To further enhance the identification of material parameters with the proposed method,
uncertainties in the experimental investigation will be considered in a next step. This
includes in particular the determination of the deformation field through digital image
correlation where the uncertainty in dependence of the deformation state can be included
in the minimization function by weighting factors.
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