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Abstract. In this work we compare two frameworks for thermodynamically consistent
hyperelasto-plasticity with kinematic hardening. The first was formulated by Dettmer and
Reese (2004), inspired by Lion (2000), and has been used to model sheet metal forming.
The second, formulated by Wallin et al. (2003), has been used to model large shear
strains and cyclic ratcheting behavior of pearlitic steel (Johansson et al. 2006). In this
paper we show that these frameworks can result in equivalent models for certain choices
of free energies. Furthermore, it is shown that the choices of free energy found in the
literature only result in minor differences. These differences are discussed theoretically
and investigated numerically.

1 INTRODUCTION

Large strains in metals during room temperature occur in many technical applications,
often during manufacturing, such as sheet metal forming. Some components are also
subjected to large strains during service, for example in the surface layer of railway rails and
wheels (see e.g. [1, 2]). Experiments have shown that the Bauchinger effect, often modeled
with kinematic hardening, is pronounced in many metals. Kinematic hardening can be
modeled with different thermodynamically consistent hyperelasto-plastic frameworks found
in the literature, and two of them are considered here. The first framework is based
on rheological models with an Armstrong-Frederick (AF) type of kinematic hardening,
and was proposed by Lion [3] and further developed by Dettmer and Reese [4]. The
second framework, introduced by Wallin et al. [5], also features an AF type of kinematic
hardening, and has been used to model the Swift effect [6] and large deformations in
railway applications [7, 8]. In this paper we compare these frameworks, both theoretically
and numerically.
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2 DESCRIPTION OF FRAMEWORKS

In this section, the modeling frameworks are presented in terms of their assumed
kinematics and thermodynamics. The common parts are presented in Subsections 2.1
and 2.2, followed by a description of how the frameworks differ in Subsections 2.3 and
2.4. Three specific models are defined in Subsections 2.5 and 2.6, which are compared
in the numerical examples in Section 3. For the clarity of the presentation, only linear
kinematic hardening is considered in the current section. In Section 4 we investigate
nonlinear kinematic hardening, e.g. of Armstrong-Frederick type.

Ω

¯̄Ω Ω̄

ω
F

Fke

Fp FeFkp

Figure 1: Configurations and deformation gradients

2.1 Kinematics and notations

Figure 1 shows the different configurations used in both [4] and [5]. Dettmer and
Reese [4] introduce the inelastic plastic deformation gradient Fkp connecting the fictitious

kinematic configuration ¯̄Ω to the initial configuration Ω. This connection is not introduced
in Wallin et al. [5], but otherwise the same configurations and remaining deformation
gradients are present in both frameworks.

Tensors on the current configuration ω are denoted with lower case letters and no bars,
e.g. b. Tensors on the intermediate Ω̄ and kinematic ¯̄Ω configurations are denoted by one
bar, e.g. C̄e, and two bars, e.g. ¯̄Cke, respectively. The following decompositions of the
deformation gradients and definitions of the deformation tensors will be used:

F = FeFp C̄e = F t
eFe ce = F−t

e F−1
e = b−1

e

Fp = FkeFkp
¯̄Cke = F t

keFke c̄ke = F−t
ke F

−1
ke = b̄−1

ke

(1)

The velocity gradients on the intermediate and kinematic configurations are defined as

L̄p = ḞpF
−1
p (2)

L̄ke = ḞkeF
−1
ke (3)

¯̄Lkp = ḞkpF
−1
kp (4)
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and hence the velocity gradient l on the current configuration can be written as

l = Ḟ F−1 = ḞeF
−1
e + FeL̄pF

−1
e (5)

2.2 Thermodynamics

The free energy Ψ is introduced with the additive split according to

Ψ = Ψe

(
C̄e

)
+Ψkin (Fke) (6)

whereby the dissipation inequality (see e.g. Simo (1998) [9]) becomes

D = τ : l− Ψ̇ = τ : l− ∂Ψe

∂C̄e

˙̄Ce −
∂Ψkin

∂Fke

: Ḟke ≥ 0 (7)

where τ is the Kirchhoff stress. Using the requirement of zero dissipation during elastic
loading and Equation (5), the reduced dissipation inequality becomes

D = M̄ : L̄p −
(
∂Ψkin

∂Fke

F t
ke

)
: L̄ke (8)

where the Mandel stress M̄ is defined as

M̄ = 2C̄e

∂Ψe

∂C̄e

(9)

In a standard fashion, we adopt an associative evolution of the plastic deformation
gradient in this paper:

L̄p = λ̇
∂Φ

∂M̄
(10)

where the functional dependence of the yield function Φ ≤ 0 will be specified later. Up
until this point the two frameworks are identical. We first describe the framework by
Dettmer and Reese [4], before proceeding with the framework by Wallin et al. [5].

2.3 1st framework [4]

In the first framework proposed by Lion [3] and further developed by Dettmer and
Reese [4], the plastic deformation gradient Fp is multiplicatively decomposed into an
elastic part Fke and a plastic part Fkp. The physical motivation is that Fke represents
local elastic deformations on the microscale caused by dislocations and Fkp represents
irreversible displacements in the slip systems. The assumption is that development of
Fke results in linear kinematic hardening and the development of Fkp reduces Fke, hence
causing saturation (dynamic recovery) of the kinematic hardening. This is illustrated using
a rheological model by Lion [3]. The multiplicative split of Fp results in the following
additive split of the plastic velocity gradient L̄p

L̄p = L̄ke + Fke
¯̄LkpF

−1
ke (11)

3

344



Knut A. Meyer, Magnus Ekh

For the case of purely linear hardening (Fkp = I), the reduced dissipation, Equation (8),
can be written as

D =
(
M̄ − 1M̄k

)
: L̄p (12)

where the kinematic hardening stress of Mandel type (also denoted back-stress) is defined
as

1M̄k =
∂Ψkin

∂Fke

F t
ke (13)

This motivates that the driving force for plastic flow is M̄ − 1M̄k and thereby a yield
criterion expressed as Φ(M̄ − 1M̄k).

2.4 2nd framework [5]

In the second framework, proposed by Wallin et al. [5], the deformation gradient
F−1

ke is introduced to model the deformation of the crystal lattice, due to the residual
micro stresses responsible for the Bauchinger effect. From this deformation gradient the
kinematic hardening stress of Mandel type is defined as

2M̄k = −∂Ψkin

∂Fke

F t
ke (14)

which yields that the reduced dissipation inequality (8) is

D = M̄ : L̄p +
2M̄k : L̄ke (15)

Using the standard interpretation of 2M̄k as a back-stress that reduces the driving force
for plasticity, motivates the yield function Φ(M̄ − 2M̄k). This gives, by the postulate of
maximum dissipation, the kinematic relation

L̄p = −L̄ke (16)

and the same reduced dissipation inequality as in Equation (12) is obtained:

D =
(
M̄ − 2M̄k

)
: L̄p (17)

2.5 Specific formats for free energy

The elastic and kinematic free energies (with the third invariant I3• = det(•)) proposed
by Vladimirov et al [10] are

AΨe =
1

2
G
(
tr(C̄e)− 3− ln

(
I3Ce

))
+

Λ

4

(
I3Ce

− 1− ln
(
I3Ce

))
(18)

AΨkin =
1

2
Hkin

(
tr( ¯̄Cke)− 3− ln

(
I3Cke

))
(19)
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The part of the elastic free energy, corresponding to Lamé’s second parameter Λ, is thus
not included in the kinematic free energy.

A similar split is introduced in [5], but the free energy in that work is decomposed into
an isochoric and a volumetric part. The formulation for the volumetric part is not the
same in [5] and [7, 8], and here we use the formulation from [7, 8]. This difference only
affects the bulk elastic response and the influence on the numerical results studied in this
paper is therefore negligible.

BΨe =
1

2
G
(
tr
(
I
−1/3
3Ce

C̄e

)
− 3

)
+

1

2
K

(
I
1/2
3Ce

− 1
)2

(20)

BΨkin =
1

2
Hkin

(
tr
(
I
−1/3
3cke

c̄ke

)
− 3

)
(21)

From the discussion so far, there seem to be several differences between the frameworks:
(1) the definition of the Mandel back-stress (1M̄k or 2M̄k), (2) the variable of which the
kinematic free energy depends on ( ¯̄Cke or c̄ke) and (3) what part of the elastic free energy
formulation that is used to formulate the kinematic free energy. The third of these can be
investigated by taking the format of free energy from the second framework, but using the
definitions and variables from the first framework to obtain model C:

CΨe =
BΨe (22)

CΨkin =
1

2
Hkin

(
tr
(
I
−1/3
3Cke

¯̄Cke

)
− 3

)
(23)

2.6 Stresses for each model

We have now described both frameworks, the first by Dettmer and Reese [4] and the
second by Wallin et al. [5]. By letting Ψkin depend on ¯̄Cke or c̄ke we can use (13) and (14),
respectively, to obtain the Mandel back-stresses for the two frameworks:

1M̄k =

(
∂Ψkin

∂ ¯̄Cke

:
∂ ¯̄Cke

∂Fke

)
F t

ke = 2Fke

(
∂Ψkin

∂ ¯̄Cke

)
F t

ke (24)

2M̄k = −
(
∂Ψkin

∂c̄ke
:
∂c̄ke
∂Fke

)
F t

ke = 2c̄ke
∂Ψkin

∂c̄ke
(25)

The Mandel stresses for model A, AM̄ and AM̄k, are found using Equations (9) and
(24) with the free energies in Equations (18) and (19):

AM̄ = G(C̄e − I) +
Λ

2
(I3Ce

− 1)I, AM̄k = Hkin

(
b̄ke − I

)
(26)

The stresses for model B, BM̄ and BM̄k, are given by using Equations (9) and (25) with
the free energies in Equations (20) and (21):

BM̄ = GI
−1/3
3Ce

C̄dev
e +K(I3Ce

− I
1/2
3Ce

)I, BM̄k = HkinI
−1/3
cke

c̄devke (27)
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For model C, we use the first framework, i.e. the stresses CM̄ and CM̄k are given by using
Equations (9) and (24), but with the free energies in Equations (22) and (23). We further
note that I3Cke

= I3bke and tr( ¯̄Cke) = tr(b̄ke), which leads to:

CM̄ = BM̄ CM̄k = HkinI
−1/3
bke

b̄devke (28)

If Bc̄ke =
Cb̄ke then clearly model B and C are equivalent. Assuming that is the case for

some point in time, we also have BL̄p = CL̄p = L̄p. Since model B is using the second

framework, and model C is using the first, we also have −BL̄ke =
CL̄ke = L̄p, hence

B ˙̄cke = −
(
BL̄t

ke
Bc̄ke +

Bc̄ke
BL̄ke

)
= L̄t

p
Bc̄ke +

Bc̄keL̄p (29)

C ˙̄bke =
(
CL̄ke

Cb̄ke +
Cb̄ke

CL̄t
ke

)
= L̄p

Cb̄ke +
Cb̄keL̄

t
p (30)

As Bc̄ke =
Cb̄ke = I initially, the statement Bc̄ke =

Cb̄ke is true for all points in time under
the assumption that L̄p is symmetric. If the free energy is isotropic, the Mandel stresses M̄
and M̄k are symmetric, and hence L̄p becomes symmetric for the associative choice of L̄p

in Equation (10). This leads to the conclusion that model B and C are equivalent, which
is verified numerically later. Furthermore, this proof leads to the interesting conclusion
that the frameworks can give exactly the same model with proper choices of free energy.
The possibility to formulate an unsymmetric L̄p for isotropy is discussed in e.g. Wallin et
al. [5] and Wallin and Ristinmaa [6], but is not investigated in this paper.

3 NUMERICAL RESULTS

In this section we evaluate the response of the material models for uniaxial loading
and simple shear loading. The models are implemented using a standard Backward Euler
integration scheme, for which Vladimirov et al. [10] noted that the accuracy suffers at
large time steps. To avoid these accuracy problems, approximately 4 · 104 and 5 · 104 load
steps are used for the uniaxial and simple shear loading, respectively.

The von Mises effective stress is used to define the yield function Φ according to

Φ =

√
3

2

√
dev

(
M̄ t − M̄ t

k

)
: dev

(
M̄ − M̄k

)
− Y0 = f

(
M̄ − M̄k

)
− Y0 ≤ 0 (31)

whereby the evolution of the plastic deformation gradient in (10) becomes

L̄p = λ̇
3

2

dev
(
M̄ t − M̄ t

k

)

f
(
M̄ − M̄k

) (32)

From this it follows that the plastic deformation is isochoric: By time differentiation of
det

(
Fp

)
and using (2)

∂

∂t
det

(
Fp

)
= det

(
Fp

)
F−t

p :
(
L̄pFp

)
= det

(
Fp

)
tr
(
L̄p

)
= 0 (33)

hence, det
(
Fp

)
= 1.

The following material parameters: G = 81GPa, K = 174GPa, Λ = K − 2G/3,
Y0 = 100MPa and Hkin = 1000MPa, are used in the numerical examples in Figure 2.
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Figure 2: Numerical results

We first consider uniaxial stress in Figure 2a, by letting the normal deformation gradient
F11 increase from 1 to 10 while keeping the Cauchy stresses σ22 = σ33 = 0 (σ = τ/I3F). As
previously shown theoretically, model B and C give the same response. Model A gives a
somewhat stiffer response at large deformations, due to the different choice of free energy.

In the case of simple shear loading, Figure 2b shows that the response of all the models
coincide. While this is expected for model B and C, the fact that model A and C coincide
is explained with simple shear being an isochoric process (I3F = I3Fp

= 1 ⇒ I3Fe
= 1)

The results in Figure 2 show negligible differences between the different formulations
of free energy. From a theoretical point of view, one could argue that the deviatoric
dependence of the back-stress is more correct, based on the experimental evidence of
volume preservation for metal plasticity.

4 ARMSTRONG-FREDERICK SATURATION

Linear kinematic hardening was considered in Section 2, for which Dettmer and Reese
[4] set Fkp = I, yielding the reduced dissipation inequality in Equation (12). If the general
case with an evolving Fkp is considered, the reduced dissipation inequality, using Equation
(11), becomes

D =
(
M̄ − 1M̄k

)
: L̄p +

1M̄k :
(
Fke

¯̄LkpF
−1
ke

)
(34)

From this the kinematic stress of Mandel type on the kinematic configuration 1 ¯̄Mk is
defined as

1 ¯̄Mk = F t
ke

1M̄kF
−t
ke (35)

7

348



Knut A. Meyer, Magnus Ekh

Saturation is motivated by the rheological model, setting the evolution on ¯̄Lsym
kp . As the

Mandel stresses in [4] are symmetric, this can be written as

¯̄Lkp = λ̇
1 ¯̄M t

k

b∞
(36)

where b∞ is a material parameter controlling the kinematic saturation. Equation (11) and
(35) then yield

L̄ke = L̄p − λ̇
1M̄ t

k

b∞
(37)

This Equation can be compared with Wallin et al. [5], who use a modified potential Φ∗
kin

to obtain

L̄ke = λ̇
∂Φ∗

kin

∂
(
2M̄k

) = −L̄p + λ̇
2M̄ t

k

b∞
(38)

L̄ke will be symmetric if a modified yield potential Φ∗
kin exists and we have, as before,

symmetric Mandel stresses. This is the case for the considered model with Armstrong-
Frederick type of non-linear kinematic saturation. L̄ke is also symmetric in the work by
Zhu et al. [11], where the first framework was extended to include nonlinear kinematic
hardening of Ohno-Wang type. When L̄ke is symmetric, the same arguments as before
relating to Equations (29) and (30) hold true. Hence, for appropriate free energies the
two frameworks give the same model also for nonlinear kinematic hardening.

5 CONCLUDING REMARKS

We have shown that the two different frameworks, introduced by [4] and [5], can give
equivalent models for isotropic free energies. The major difference between the models
used for the different frameworks is the kinematic free energy. To obtain the same model,
the same structure of the kinematic free energy must be used, but with a different variable
( ¯̄Cke or c̄ke). The numerical results confirm these theoretical findings. They further show
that the difference between the formulations of free energy has a negligible effect on the
material response up to a stretch of 5 for uniaxial loading, and no effect during simple
shear.

6 ACKNOWLEDGMENTS

This work has been partly financed within the European Horizon 2020 Joint Technology
Initiative Shift2Rail through contract no. 730841. The use of AceGen [12] has been very
effective in speeding up the implementation of the material models.

8

349



Knut A. Meyer, Magnus Ekh

REFERENCES

[1] F. A. M Alwahdi, A. Kapoor, and F. J. Franklin. “Subsurface microstructural analysis
and mechanical properties of pearlitic rail steels in service”. In: Wear 302.1-2 (2013),
pp. 1453–1460. doi: 10.1016/j.wear.2012.12.058.

[2] K. Cvetkovski and J. Ahlström. “Characterisation of plastic deformation and thermal
softening of the surface layer of railway passenger wheel treads”. In: Wear 300.1-2
(2013), pp. 200–204. doi: 10.1016/j.wear.2013.01.094.

[3] A. Lion. “Constitutive modelling in finite thermoviscoplasticity: a physical approach
based on nonlinear rheological models”. In: International Journal of Plasticity 16.5
(2000), pp. 469–494. doi: 10.1016/S0749-6419(99)00038-8.

[4] W. Dettmer and S. Reese. “On the theoretical and numerical modelling of Armstrong-
Frederick kinematic hardening in the finite strain regime”. In: Computer Methods in
Applied Mechanics and Engineering 193.1 (2004), pp. 87–116. doi: 10.1016/j.cma.
2003.09.005.

[5] M. Wallin, M. Ristinmaa, and N. S. Ottosen. “Kinematic hardening in large strain
plasticity”. In: European Journal of Mechanics - A/Solids 22.3 (2003), pp. 341–356.
doi: 10.1016/S0997-7538(03)00026-3.

[6] M. Wallin and M. Ristinmaa. “Deformation gradient based kinematic hardening
model”. In: International Journal of Plasticity 21.10 (2005), pp. 2025–2050. doi:
10.1016/j.ijplas.2005.01.007.

[7] G. Johansson, J. Ahlström, and M. Ekh. “Parameter identification and modeling
of large ratcheting strains in carbon steel”. In: Computers and Structures 84.15-16
(2006), pp. 1002–1011. doi: 10.1016/j.compstruc.2006.02.016.

[8] N. Larijani, G. Johansson, and M. Ekh. “Hybrid micro-macromechanical modeling of
anisotropy evolution in pearlitic steel”. In: European Journal of Mechanics - A/Solids
38 (Mar. 2013), pp. 38–47. doi: 10.1016/j.euromechsol.2012.09.011.

[9] J. C. Simo. “A Framework For Finite Strain Based on Maximum plastic dissipation
and the multiplicative decomposition: Part I. Continuum formulation”. In: Computer
Methods in Applied Mechanics and Engineering 66 (1988), pp. 199–219.

[10] I. N. Vladimirov, M. P. Pietryga, and S. Reese. “On the modelling of non-linear
kinematic hardening at finite strains with application to springback - Comparison of
time integration algorithms”. In: International Journal for Numerical Methods in
Engineering 75.1 (July 2008), pp. 1–28. doi: 10.1002/nme.2234.

[11] Y. Zhu et al. “An extended cyclic plasticity model at finite deformations describing
the Bauschinger effect and ratchetting behavior”. In: 13th International Conference
on Fracture 2013, ICF 2013 5 (2013), pp. 1–11.

[12] J. Korelc. “Multi-language and Multi-environment Generation of Nonlinear Finite
Element Codes”. In: Engineering with Computers 18.4 (Nov. 2002), pp. 312–327.
doi: 10.1007/s003660200028.

9

350




