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Abstract. This work addresses identification of inelastic parameters based on an opti-
mization method using a multi-objective technique. The problem consists in determining
the best set of parameters which approximate three different tensile tests. The tensile
tests use cylindrical specimens of different dimensions manufactured according to the
American ASTM E 8M and Brazilian ABNT NBR ISO 6892 technical standards. A ten-
sile load is applied up to macroscopic failure. The objective functions for each tensile
test/specimen is computed and a global error measure is determined within the optimiza-
tion scheme. The Nelder-Mead simplex algorithm is used as the optimization tool. The
proposed identification strategy was able to determine the best set of material parameters
which approximate all tensile tests up to macroscopic failure.

1 INTRODUCTION

A proper set of material parameters is one of the most important aspects for a suc-
cessful simulation of metal forming processes. The present work discusses techniques to
obtaining constitutive parameters based on a multi-objective optimization method for
the 304 stainless steel. In order to ensure greater generality, the identification strategy is
applied simultaneously to tensile tests using specimens of different sizes, defined by the
American ASTM E 8M [1] and Brazilian ABNT NBR ISO 6892 [2] standards. The pa-
rameter identification method is based on optimization and can approximate the material
response up to macroscopic failure with greater accuracy. Noticeably, after the maximum
load, the stress state becomes triaxial and the classical calibration techniques cannot be
applied.

Identification of elasto-plastic parameters using optimization techniques has long been
used in the literature. In the last ten years, many identification strategies have been
proposed based on optimization techniques. Most authors agree that the non-linearity of
the direct problem (elastoplasticity at finite strains) and the yield curve itself can cause
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difficulties in finding the global optimum. A final verdict of best method is temerarious
and, so far, the best strategy has proved to be problem dependent. For the sake of
objectivity, the reader is referred to Vaz Jr. et al. [3, 4] and references therein for
further insights on the application of optimizations techniques to identification of inelastic
parameters.

2 PARAMETER IDENTIFICATION AND THE OPTIMIZATION PROB-
LEM

Parameter identification is a class of inverse problems which determines material or
system parameters from a known response. The present problem is formulated using un-
constrained optimization and accounts for experimental data obtained from three different
tensile tests. Therefore, the multi-objective problem is formulated as

Minimise g(p) =
ns∑
s=1

λsgs(p) p ∈ Rnd

Such that pinfi ≤ pi ≤ psupi i = 1, . . . , nd

, (1)

where g(p) is the objective function (global fitness) of the multi-objective problem, p =
[p1 p2 · · · pi · · · pnd

]T is the design vector containing nd material parameters pi, and psupi

and pinfi are lateral constraints. The global fitness, g(p), comprises contributions from ns

individual problems, so that λs is the weight function (
∑ns

s=1 λs = 1), and gs(p) is the
individual and represents a quadratic relative error measure between the experimental,
RExp

s , and corresponding computed forming load, R (p)Num
s , of a mechanical test “s”,

gs (p) =

���� 1

Ns

Ns∑
j=1

ξs,j

(
RExp

s,j −R (p)Num
s,j

RExp
s,j

)2

, (2)

in which Ns is the number of experimental points and ξs (0 ≤ ξs,j ≤ 1) is the weight curve
of each individual set of experimental data.

The optimization technique adopted in this work uses the gradient-free downhill sim-
plex method, also known as Nelder-Mead algorithm (NM) [5]. The technique defines a
regular polytope of nd + 1 vertices (in a nd dimensional design space), which moves to-
wards the optimum by replacing the worst vertex by a new one selected along a search
line. The Nelder-Mead algorithm contains three basic elements: (i) creation of the initial
simplex from an initial estimate; (ii) search along a given direction and formation of a new
polytope by replacing the worst vertex after the following possible operations: reflexion,
expansion, or contraction; and (iii) shrinkage of the polytope towards the best vertex.
The reader if referred to References [4, 6, 7] for further insights on the algorithm used in
this work.

The Nelder-Mead method has already been used in identification of material consti-
tutive parameters. For instance, Banabic et al. [8] applied to identification of inelastic
parameters based on biaxial tensile tests, and Pannier et al. [9] used to find elastic-plastic
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constitutive parameters based on the Virtual Fields Method associated to tensile tests.
Further details on the application of the NM scheme to mechanical problems are given in
Luersen and Le Riche [10]. Noticeably, the authors have already investigated application
of the NM scheme for both classical von Mises [4, 6] and damaged materials [7].

3 NUMERICAL RESULTS AND DISCUSSIONS

The identification procedure is based on tensile tests of cylindrical specimens prepared
according to the American ASTM E 8M [1] and Brazilian ABNT NBR ISO 6892 [2]
technical standards. It is used extensometers with initial gauge length l0 = 25 mm or
l0 = 50 mm according to the specimen with maximum crosshead speed 3 mm/min. The
specimens used in this work are illustrated in Figure 1 and referred as follows:

ASTM #1: initial gauge length l0 = 25 mm and diameter d0 = 6.0 mm,

ASTM #2: initial gauge length l0 = 50 mm and diameter d0 = 12.54 mm,

NBR #3: initial gauge length l0 = 50 mm and diameter d0 = 10.0 mm,

(a) Specimen ASTM #1 : l0 = 25 mm, d0 = 6 mm. 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

33 mm 

 6 mm 

130 mm  

12,5 mm 

6 mm 

(b) Specimen ASTM #2 : l0 = 50 mm, d0 = 12.54 mm.

 
 
 
 
 
 
 
 
 
 
 
 
 
 

59,4 mm 

162 mm 

 20 mm 

12,54 mm 
13 mm 

(c) Specimen NBR #3 : l0 = 50 mm, d0 = 10 mm.
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Figure 1: Specimen geometry for ASTM and ABNT-NBR standards.
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The finite element mesh used for specimen ASTM #2 is presented in Figure 2. The
geometrical model considers axisymmetry around the rotation axis Z−Z ′ and symmetry
about the R−R′ axis, making possible to model only 1/4 of the specimen. It was adopted
a structured, eight-noded quadrilateral finite element mesh with 200 elements and 661
nodes with progressive refinement towards the specimen R − R′ axis. The meshes used
for ASTM #1 e NBR #3 specimens were geometrically proportional to ASTM #2 with
identical element topology.

U6.27 mm

25 mm
R

R’

Z’Z

Figure 2: Finite element mesh for the ASTM #2 specimen.

It is important to highlight that, contrary to the classical calibration procedures, the
objective of the present identification process is to determine the material parameters
up to macroscopic failure of the specimens. This strategy accounts for larger plastic
deformations, making possible to use the material parameters in metal forming processes
which present equally large plastic strains. Therefore, instead of using the well-known
Swift’s [11] equation, this work adopts Voce’s [12] modified hardening equation to model
isotropic hardening, as

σY = σ0 + ζr + (σ∞ − σ0) [1− exp (−δr)] , (3)

where σ0 is the initial yield stress, σ∞ is the saturation stress, and ζ and δ are the
exponential and linear hardening parameters, respectively, so that the parameters to be
determined are {p} = {σ0 , σ∞ , ζ , δ}.

3.1 The identification process

This section summarises an investigation on convergence aspects of the optimization
problem. An initial assessment indicates that the individual (each specimen) and global
(combining all specimens) optimization problems are convex, making possible to use the
Nelder-Mead optimization scheme. The control parameters for the NM algorithm used
in the simulations are ρ = 1, γ = 2, β = 0, 5 e σ = 0, 5, whereas the initial estimate and
lateral constraints are presented in Table 1.

One can define three basic identification problems according to individual tensile tests.
In Case (A) identification is performed taking into account only the experimental curve
for specimen ASTM #1. Cases (B) and (C) are solved in similar fashion, accounting for
only experimental curves for specimens ASTM #2 and NBR #3, respectively. Therefore,
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Table 1: Lateral constraints and initial estimate.

Parameter pi Lower limit pinfi Upper limit psupi Initial estimate p0i

σ0 [MPa] 200 800 500
σ∞ [MPa] 400 1200 800
ζ [MPa] 300 1200 750

δ 0 50 25

identification based on experimental data for specimens ASTM #1, ASTM #2 and NBR
#3 are solved for the following sets of weight parameters, λs: Case (A) λ

(A)
1 = 1.0 and

λ
(A)
2 = λ

(A)
3 = 0.0, Case (B) λ

(B)
2 = 1.0 and λ

(B)
1 = λ

(B)
3 = 0.0, and Case (C) λ

(C)
3 = 1.0

and λ
(C)
1 = λ

(C)
2 = 0.0.

In addition to the aforementioned cases, in Case (D), identification is also performed
assuming that each tensile test imposes the same effect in obtaining the material param-
eters, i.e. the global objective function, g(p), is computed using weights λ

(D)
1 = λ

(D)
2 =

λ
(D)
3 = 1/3.

Figure 3 shows evolution of the convergence index, ϕ(k) = [g(p)
(k)
nd+1−g(p)

(k)
1 ]/[g(p)

(0)
nd+1−

g(p)
(0)
1 ], which represents the relative difference between the worst and best vertices of

the polytope with respect to the initial simplex. In this work, convergence is assumed
for ϕ(k) ≤ 10−9. It can be observed that evolution of the identification process is similar
for Cases (A), (B) and (C) and somewhat faster for the equally balanced identification
problem, Case (D).
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Figure 3: Convergence evolution of the optimization problem.

The Nelder-Mead algorithm requires an initial estimate, from which the initial simplex
is constructed. Therefore, the tolerance to changes of the initial estimate yet able to
achieve success must also be evaluated. In this case, in addition to the mean values
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Table 2: Initial estimates, p0i , and final parameters for λ1 = λ2 = λ3 = 1/3.

Test σ0 [MPa] σ∞ [MPa] ζ [MPa] δ Success?

Mean 500.00 800.00 750.00 25.0000 Yes
1 200.00 400.40 1084.09 5.0203 Yes
2 638.21 812.33 879.40 0.7273 No
3 301.86 1013.47 947.91 7.1787 Yes
4 496.42 1039.51 621.66 6.1902 Yes
5 313.91 614.02 789.68 35.7311 Yes
6 507.68 555.84 696.61 36.4500 Yes
7 509.39 497.26 937.77 19.5037 Yes
8 382.30 504.89 1186.05 27.9432 Yes
9 738.71 766.36 940.71 4.2220 Yes
11 520.93 695.71 958.31 17.6329 Yes

Final
Parameters 399.68 686.16 878.30 9.9677

(shown in the last column of Table 1), ten random initial estimates located within the
search space are also used. This test was performed for uniform weight parameters (λ1 =
λ2 = λ3 = 1/3). Table 2 presents the initial estimates, a success indication and final
parameters. The simulations show that only one set of initial parameters was not able to
obtain the expected results. The reason probably lies on the small value of parameter δ
assumed as initial estimate.

3.2 The loading process

The experimental and numerical load curves are shown in Figure 4, from which the
three well-known regions can be distinguished: (a) elastic loading, (b) load increase owing
to hardening and (c) load decrease due to reduction of the specimen cross-section area.
The transition between (b) and (c) is indicated by the maximum load (also known as
instability point). Table 3 presents the individual weights, λs, and corresponding mate-
rial parameters for Cases (A)−(D). Case (D) considers that each individual tensile test
contributes equally to determine the inelastic parameters.

Table 3: Individual weights, λs, and material parameters, p.

ASTM #1 ASTM #2 NBR #3

Case λ
(·)
1 λ

(·)
2 λ

(·)
3 σ0 [MPa] σ∞ [MPa] ζ [MPa] δ

(A) 1.0 0.0 0.0 405.89 839.36 714.47 5.3900
(B) 0.0 1.0 0.0 421.45 991.70 372.92 4.6021
(C) 0.0 0.0 1.0 409.16 878.59 597.24 5.1941
(D) 1/3 1/3 1/3 399.68 686.15 878.31 9.9684

Identification for Case (A) requires minimization of the global objective function, g(p),
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Figure 4: Load curves for tensile tests based on specimens ASTM #1, ASTM #2, and NBR #3.

computed using only the experimental data of specimen ASTM #1 (λ
(A)
1 = 1.0, λ

(A)
2 =

λ
(A)
3 = 0.0). Therefore, the numerical loading curve presents the minimum possible error

for specimen ASTM #1, measured by the individual fitness g
(A)
1 (p) = 7.2273 × 10−3

(the numerical curve visually matches the corresponding experimental data). However,
some discrepancies are found when using set (A) of material parameters to simulate
tensile tests for ASTM #2 and NBR #3 specimens (the corresponding individual fitness

g
(A)
2 (p) = 1.4112× 10−1 and g

(A)
3 (p) = 5.9591× 10−2).

A similar assessment is also performed for tensile tests of ASTM #1, ASTM #2
and NBR #3 specimens using data sets (B) and (C) of Table 3. Table 4 shows that
identification for the corresponding data set yields also very small individual fitness,
g
(B)
2 (p) = 7.9852 × 10−3 and g

(C)
3 (p) = 7.9447 × 10−3. Nevertheless, as discussed in

the previous paragraph, cross-simulations give rise to substantially large individual er-
rors, g

(B)
1 , g

(B)
3 , g

(C)
1 and g

(C)
2 .

The material data and individual fitness obtained for for Case (D) (λ
(D)
1 = λ

(D)
2 =

λ
(D)
3 = 1/3) are also presented in Tables 3 and 4. In this case, the numerical curves for

ASTM #1, ASTM #2 and NBR #3 specimens present also some differences, especially
after the maximum load is reached (see the thick solid line in Figure 4).

The best set of material parameters is not obvious from visual assessment of Figure
4. Furthermore, the differences of the weight parameters, λs, for Cases (A)−(D) also
preclude use of the global objective function, g(p) =

∑ns

s=1 λsgs(p), to determine the best
set of parameters. Therefore, a global index, G(·)(p), consisting the mean ratio between

the individual fitness and the corresponding minimum value, g
(·)
s /gmin

s , is evaluated as

G(·)(p) =
1

3

3∑
s=1

g(·)s /gmin
s . (4)
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Table 4: Individual, g
(·)
s (p), and relative, g

(·)
s /gmin

s
(∗), fitness for Cases (A)−(D).

Specimen

Case ASTM#1 ASTM#2 NBR#3 g
(·)
1 /gmin

1 g
(·)
2 /gmin

2 g
(·)
3 /gmin

3 G(·)(p)

g
(·)
1 (p) g

(·)
2 (p) g

(·)
3 (p)

(A) 7.2273E-03 1.4112E-01 5.9591E-02 1 17.6721 7.5008 8.7243
(B) 2.9773E-01 7.9852E-03 1.5886E-01 41.1946 1 19.9964 20.7303
(C) 1.0617E-01 1.0171E-01 7.9447E-03 14.6897 12.7378 1 9.47.58
(D) 3.7466E-02 1.1179E-01 3.1782E-02 5.1839 13.9991 4.0004 7.7278

(∗) The minimum individual fitness are gmin
1 = g

(A)
1 , gmin

2 = g
(B)
2 and gmin

3 = g
(C)
3 .

Table 4 indicates that, based on the global index, Case (D) yields the best numerical
approximation to the experimental data of all three tensile tests (G(D) = 7.7278). It
means that, in average, the error for an individual tensile test is approximately 7.7278
times the minimum possible individual fitness. On the other hand, Case (B) provides
the worst set of material parameters with a global index G(B) = 20.7303, owing to the
excessive load decrease after the maximum load when simulating tensile tests for ASTM
#1 and NBR #3 specimens, as shown by the dashed lines in Figure 4.

4 FINAL REMARKS

Hardening parameters for the AISI 304 stainless steel were determined based on three
tensile tests using specimens defined by the American ASTM E 8M (l0 = 25 mm, d0 =
6.0 mm, and l0 = 50 mm, d0 = 12.54 mm) [1] and Brazilian ABNT NBR ISO 6892
(l0 = 50 mm, d0 = 10.0 mm) [2] technical standards. The tensile tests were carried
out up to macroscopic failure aiming at determining inelastic parameters associated with
large plastic strains. The non-uniformity of the stress state after the maximum load
precluded application of the classical calibration techniques. Therefore, the identification
process used optimization schemes based upon a multi-objective strategy. The global
objective function used a weighted combination of individual fitness computed for each
tensile test/specimen. The simulations have shown that the size of the specimen plays an
important role in the identification problem, thereby requiring a careful balance between
effects of individual tensile test/specimen. In the present work, an equally balanced global
fitness provided the best approximations for all specimens. However, some differences were
observed after the maximum load.
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