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Abstract. In forming processes, components generally undergo large deformations. This
induces the evolution of damage, which can influence material and product properties.
To capture these effects, a continuum damage mechanics (CDM) model, based on the
work of Lemaitre [8] and Soyarslan [13, 14] as well as different fracture criteria according
to Cockcroft and Latham [2], Freudenthal [4] and Oyane [10] are implemented and in-
vestigated. While the CDM theory considers the evolution of damage and the associated
softening, fracture criteria do not affect the results of the mechanical finite element (FE)
analysis. However, a coupling is generally possible via element deletion, but material
softening cannot be depicted in the simulation. Tensile tests with notched specimens are
performed in order to obtain the material parameters associated with these models by
inverse parameter identification processes. The optimized set of parameters is finally ap-
plied to the damage and fracture models used for the FE simulations of a cold extrusion
process, which are investigated in terms of damage evolution and material failure. It is
demonstrated that the CDM model predicts the evolution of damage observed for differ-
ent process parameters in cold extrusion quantitatively. The prediction of the failure by
the fracture criteria does not agree well with the experiments.

1 INTRODUCTION

In forming processes, the material used to produce components generally undergo large
deformations. For metals, this implies large plastic strains and damage, which has a
significant effect on the material, and thus, product properties. The depiction of damage
in FE-simulations is therefore necessary.

On the microscopic scale, damage occurs at inhomogenities such as inclusions or grain
boundaries. During deformation, damage develops as a result of nucleation, growth and
coalescence of voids. Excessive growth of these voids finally leads to macroscopic cracks,
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and thus, failure of the component. The mere existence of damage, however, does not
necessarily imply failure of the part, as Tekkaya et al. point out in [16].

The prediction of damage and fracture with finite element (FE) simulations requires
the definition of a constitutive damage model to properly depict the physical behavior.
McVeigh et al. [9], Saanouni et al. [12] and Soyarslan et al. [13] investigated cold extrusion
processes by predicting central bursting in FE analyses with the use of continuum damage
mechanics (CDM) theory. McVeigh et al. implemented a combined Drucker-Prager/HLC-
type yield surface based on a micromechanical cell modeling technique. Soyarslan et al.
performed investigations based on a Lemaitre-type damage model with fictitious material
parameters, while Saanouni et al. used parameters which were identified based solely on
uniaxial tensile tests. As an alternative to CDM, damage, which may ultimately lead
to fracture, can be accounted for by so-called fracture criteria, which predict fracture
in terms of the accumulation of certain stress states. Chen et al. [1] investigated cold
extrusion processes with those fracture criteria.

The goal of this work is the analysis of a cold extrusion process for 16MnCr5 in terms of
damage and the comparison of different damage and fracture formulations. The material
and model parameters associated with the constitutive damage model and the fracture
criteria are determined by an inverse parameter identification process for notched tensile
tests. Since no macroscopic cracks occur for the experimental setups of the cold extrusion
processes investigated in this work, the predictions for damage are validated by comparison
with scanning electron microscopy images of voids.

2 FRACTURE AND DAMAGE MODELING

In general, the prediction of damage with fracture criteria is based on very little infor-
mation about the material and stress states, resulting in a low effort for the computation
and the implementation. These criteria can be either used coupled or uncoupled to the
FE analysis. While softening effects cannot be conducted, the criteria can be coupled to
the simulation via element deletion. In this case, the interaction arises trough changes
in stiffness. Although such failure criteria give an estimation of the damage, they do
not cover any other effects that micro-cracks might have. Damage can decrease the elas-
ticity modulus, the yield stress, the hardness, the ultrasonic waves velocity, the density
or increase the electrical resistance. Constitutive models are capable of covering those
effects, since the evolution of damage can be modelled more accurately. However, the
computational cost compared to the fracture criteria is higher.

2.1 Fracture Criteria

Various fracture criteria exist to predict failure in forming processes. Most of them
can be written as the integral of a function of the stress state expressed in terms of the
Cauchy stress f(σ) over the plastic equivalent strain α with the failure strain αf as the
upper boundary, i.e.

C =

αf∫

0

f(σ) dα . (1)
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The variable C can be interpreted as the critical value when failure occurs and therefore
is a material parameter.

The established models of Freudenthal, Cockcroft and Latham and Oyane are imple-
mented in this work and explained in the following.

According to Freudenthal [4], the critical parameter at fracture

CF =

αf∫

0

σeq dα , (2)

is a measure for the absorbed energy per unit volume, where σeq denotes the equivalent
stress. This model does not consider the effect of high tensile stresses or hydrostatic stress
states explicitly.

Cockcroft and Latham [2] postulated that fracture is triggered by the maximum prin-
ciple tensile stress instead of the generalized stress. Therefore, the critical material de-
pendent value at fracture

CCL =

αf∫

0

�σp,1� dα (3)

is defined as the integral over the largest positive principal stress. The first principal
stress is denoted by σp,1, where σp,i represents the i-th principal stress, with σp,1 ≥ σp,2 ≥
σp,3. The expression �•� represents the Macaulay brackets, i.e. �•� = 0, ∀ • < 0 and
�•� = •, ∀ • ≥ 0. This criterion does not consider the influence of hydrostatic stresses
explicitly.

Oyane et al. [10] consider a void growth model. They postulate

CO =

αf∫

0

[
1 +

1

a0

σh

σeq

]
dα (4)

to be the criterion for fracture, where σh = 1
3
tr(σ) denotes the hydrostatic stress. The

parameter a0 can be adapted inside reasonable limits for a better correlation of numerical
and experimental results. It is connected with the volumetric strain and can be derived
by experiments with two different stress states, as explained in [10].

2.2 Continuum Damage Model

An elasto-plastic material model coupled with damage is selected for this article. It is
based on the work of Lemaitre, see [8], with modifications following the implementation
of Soyarslan et al. [13, 14]. All simulations in this work are performed with the commer-
cial FE software Abaqus. In the following, the constitutive model is introduced as it is
implemented in the framework of the Fortran-based user subroutines for finite strains. It
is formulated in terms of the rate of the Mandel stresses and logarithmic stretches.
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To define damage, the variable D, with D ∈ [0, 1], is introduced, which describes the
surface density of mechanical defects. The stresses acting on the resisting area are called
effective stresses, with •̃ = •/[1−D], where • can be any stress measure.

The deformation gradient
F = F e · F p (5)

is decomposed multiplicatively into elastic and plastic parts, F e and F p, respectively, see
[7]. Using the polar decomposition theorem, the deformation gradient can be written as

F = R ·U = V ·R , (6)

whereR is an orthogonal rotation tensor andU and V are symmetric deformation tensors,
representing the stretches, as explained in [3]. The logarithmic stretches

ln (U) = ln (U e) + ln (Up) (7)

can be decomposed additively into the elastic ln(U e) and plastic ln(Up) part. The rate

of the elastic logarithmic strecth
˙

ln(U e) can be approximated as

˙
ln(U e) = ReT ·D ·Re −Dp (8)

for small elastic strains (|U e| ≪ 1). Assuming that the plastic spin W p = skw(Lp) ≈ 0
in terms of the plastic part of the velocity gradient Lp = Ḟ p ·F p−1 can be neglected, one
obtains

Ṙe = W ·Re −Re ·W p (9)

for the elastic rotation. With this at hand, the rate of the effective Mandel stresses is
defined as

˙̃
M = λ0 tr(

˙
ln(U e)) I + 2µ0

˙
ln(U e) , (10)

where the Mandel stresses are related to Cauchy stresses via

σ =
Re ·M ·ReT

det (F )
. (11)

The damage associated driving force, also referred to as energy density release rate

Y =
1 + ν

2E

[
�M̃�+ : �M̃�+ + h �M̃�− : �M̃�−

]
−

ν

2E

[〈
tr(M̃)

〉2

+ h �tr(−M̃ )�2
]

(12)

is defined as proposed by Soyarslan et al. [13, 14]. The variable h was introduced by
Lemaitre as a material-dependent parameter associated with closing micro-defects. In the
latter definition of the damage related driving force, the crack-closure effect is not taken
into account. Here, h controls the delayed void growth under compressional loading.

The hardening law is chosen to be of a Swift-type, see [15], which defines the yield
stress as

q = A [α0 + α]n , (13)
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where A, α0 and n are material parameters. The yield function is defined as

Φy(M , q, D) = M̃eq − q , (14)

with M̃eq =
√

(M̃ : H : M̃ ), where H is the the so-called Hill-operator [5]. With this at

hand, the plastic part of the deformation rate can be derived as

Dp = λ̇
∂ Φ

∂M
= λ̇

1

1−D

H : M̃

M̃ eq

, (15)

where λ̇ represents the plastic multiplier. The evolution of damage is given via the relation

Ḋ = λ̇

〈
Y − Y0

S

〉κ
1

[1−D]β
, (16)

where κ, S, Y0 and β are material parameters.

3 Parameter Identification Process

Material models and fracture criteria used for the simulation of forming processes are
generally based on a variety of material and model parameters. For the mathematical
modeling of complex material behaviours, adapting the model parameters is essential for
the accurate prediction of the material response. While some parameters like the Young’s
modulus and the Poisson’s ratio can be computed directly, others can not. A common
approach is an inverse parameter identification process. The aim of the inverse problem of
parameter identification is to minimize the deviation between the experimental data and
the data obtained by numerical simulations using an optimal set of parameters, under the
consideration of mathematical and physical constraints.

To this end, a simulation of the experimental setup has to be performed multiple
times, where the material parameters are iteratively updated, until the numerical and
experimental results match as best as possible. Mathematically speaking, the optimal
parameter set is defined by the minimization problem of the form

min
κ

(f(κ)) , ∀κ ∈ K, with K = {κ |h(κ) = 0, g(κ) ≤ 0} . (17)

where f(κ) is the objective or error function. It depends on the parameter set κ which
underlies equality h and inequality constraints g.

While the simulations of the experiments are performed with Abaqus, the algorithm
for the parameter identification process is implemented in Python, making use of the
provided optimization library. Since the minimization algorithms do not necessarily find
global minima, all parameter identification processes have been performed with various
initial guesses for the starting parameter vectors and different optimization algorithms,
i.e. zero-order and gradient-based methods as well as evolutionary algorithms.
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Figure 1: Engineering drawing of the specimen (a) and load displacement curves obtained from the
experiments (b).

In general, it is possible to compare any values of the simulation with the experimental
data. In this work, the optimization procedure is always applied to the full body response,
i.e. the load displacement curve. To this end, the objective function is defined as

f(κ) :=

√√√√
nsp∑
i=1

[
w(i)

[
f sim(κ, i)− f exp(i)

]]2
, (18)

which is a least-square-like error function, where i denotes the summation index, with
i ∈ nsp and nsp represents the number of sample points. It measures the difference between
the numerically and experimentally obtained reaction forces f exp and f sim, respectively,
weighted by w.

To this end, experiments have to be carried out in order to generate data for comparison
to the simulation results. Notched tensile tests are performed to induce a localization
of the deformation and to impose an inhomogeneous stress field throughout the entire
experiment. The resulting load displacement curves, as depicted in Figure 1(b), show
variations in curvature, as well as differences in the point of crack initiation and failure.
Since the response of specimen 1 yields an average behaviour, the following parameter
identification processes are performed with respect to its associated experimental data.

Since isotropy is considered, the parameters associated with the Hill operator are chosen
as r0 = r45 = r90 = 1. The elastic properties, i.e. the Young’s modulus and the Poisson’s
ratio, are determined analytically as E = 210000 MPa and ν = 0.3, see [11].
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Table 1: Identified parameters for elasto-
plastic continuum model in conjunction with
fracture criteria.

A 9.332 ·102 MPa
α0 1.196 ·10−3

n 1.575 ·10−1

CCL 5.912 ·102 MPa
CF 4.069 ·102 MPa
CO 9.859 ·10−1

Table 2: Identified parameters for fully cou-
pled continuum model.

A 1.043 ·103 MPa
α0 5.630 ·10−3

n 2.095 ·10−1

κ 3.087 ·100

S 3.226 ·100 MPa
Y0 3.710 ·10−2 MPa
β 1.989 ·101

Dcrit 4.607 ·10−1

3.1 FE-Model for the Notched Tensile Test

The FE-model including the geometry, the mesh and the boundary conditions of the
notched tensile test is shown in Figure 2(a). Axisymmetry, as well as symmetry with
respect to the horizontal plane is considered. The geometry is discretized with 230 four-
noded, axisymmetric, quadrilateral elements with reduced integration (type CAX4R) and
an edge length of 4.3 mm. The load is applied linearly over time as displacement boundary
conditions on the thread. In the experiment, the displacements were tracked with an
extensometer, with its sensors positioned 20 mm above and below the plane of horizontal
symmetry, as indicated in Figure 2(a). The displacements are evaluated at a node at the
same exact position to reproduce the load displacement curve correctly.

For the depiction of cracks in FE analyses, element deletion is used. To this end, the
parameter Dcrit is introduced as a threshold value to trigger the removal of elements. The
simulations are performed with Abaqus/Explicit.

3.2 Identification of Plasticity Parameters

In this section, a parameter identification is performed for elasto-plasticity with Swift-
type hardening, as introduced in Section 2.2. To this end, the error in the load dis-
placement curves in the elasto-plastic area, which is the region before the crack starts to
develop, is minimized.

The associated load displacement curve is depicted in Figure 2(b). The numerical
results for the optimized parameter set, as shown in Table 1, are in good agreement with
the experimental data.

3.3 Parameter Identification for the Fracture Criteria

In the following, an identification of the parameters for the fracture criteria, i.e. CF, CCL

and CO, as shown in eqs. (3) to (4), is carried out. These constants are used as threshold
values for material failure and therefore trigger element deletion. The fracture criteria are
used in conjunction with a Swift-type hardening model with the optimized parameter set
identified in the previous section.

Performing the test, the specimen fully fails immediately after crack initiation. Since
there is no material softening, an excessive amount of elastic energy is released upon
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Figure 2: Illustration of the FE-model of the notched tensile test (a). The node, where the displacement
is recorded for the load displacement curves, is marked by the red dot. The load displacement curves of
the experiment and the simulations (b) are performed with optimized parameter sets.

failure, resulting in unrealistic large vibrations. The resulting oscillations in reaction
forces are removed for visualization purposes. Since the time discretization is identical
for all simulations, the resulting load displacement curves are identical for all fracture
criteria, as depicted in Figure 2(b). The identified threshold values are shown in Table 1.

3.4 Parameter Identification for the Continuum Damage Model

In this section, a parameter identification process for the continuum damage model is
performed. In general, various options exist to realize this. One way is the identification of
only the damage related parameters, based on the optimized plasticity, as done in Section
3.2. The load displacement curve does not hold any information about the initiation of
the damaging process, because the decrease in the reaction force does not necessarily has
to be damage induced and can be caused solely by cross section reduction of the specimen.
Thus, the optimization of the plasticity and damage associated parameters simultaneously
could be another possible way for performing the parameter identification process. This
implies, that the damage evolution can start at basically any point.

Here, the latter approach is implemented, because it is more reasonable that the dam-
age evolution is a steady process, that most likely occurs before the crack initiation on
macroscopic scale. Since the stress state is purely tensional, the parameter h has no in-
fluence on the results and has to be obtained from different experiments. To this end, h
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is set to zero.
The resulting load displacement curve is depicted in Figure 2(b). The numerical data

is associated with the optimized parameter set in Table 2. While the specimen fails
immediately after crack initiation using the fracture criteria, a developing crack can be
observed for the continuum damage model.

4 SIMULATION AND ANALYSIS OF COLD EXTRUSION PROCESSES

In the following, the simulation of a cold extrusion process is presented, based on the
parameter sets identified in the previous sections.

Simulations are performed for two experimental setups with different extrusion strains,
i.e. ϕ1 = 0.5 and ϕ2 = 1.0. The extrusion strain ϕ is defined as ϕ = ln(A0/A1), where A0

and A1 represent the cross sections before and after the extrusion, respectively. The initial
workpiece diameter is D0 = 30 mm. A friction coefficient of µ = 0.04 between workpiece
and die is used. The shoulder opening angle of the die is defined as α∗ = 45◦, the transition
radii are set to 3 mm and an undercut is used. For the sake of saving computational
time, axisymmetry is considered for the FE model. The billet is discretized with 4260
four-noded, axisymmetric, quadrilateral elements with reduced integration (type CAX4R)
with an edge length of 4.3 mm. The die is modeled as a linear-elastic solid with a Young’s
modulus of Edie = 210000 MPa and a Poisson’s ratio of νdie = 0.3. The parameter sets
identified in the previous sections are used. The workpiece is pushed trough the die by a
constant velocity of 6.1 mm/s over 7.1 s of process time.

Figure 4 depicts the damage distribution for the continuum damage model for the two
experimental setups. It can be observed that the maximum damage appears beneath the
surface of the billet. The level of damage for the smaller extrusion strain ϕ1 is higher on
the central axis compared to ϕ2, which is also observed in the experiments, as seen in
Figure 4.

(a) ϕ = 0.5 (b) ϕ = 1.0

Figure 3: SEM micrographs of 16MnCr5 for extrusion strains of ϕ = 0.5 (a) and ϕ = 1.0 (b). Taken
from [16].

The contour plots of damage for the fracture criteria are shown in Figure 5. Here,
damage is defined by the actual value of the associated damage criterion C• divided by
the critical value C•,crit identified in Section 3.3. Comparing all contour plots for ϕ1, they
show significant variations in values and distribution. While the maximum damage in the
stationary region is 1.5 %, and therefore, rather low, the maximum damage for the criteria
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of Cockcroft-Latham, Freudenthal and Oyane is 42 %, 292 % and 51 %, respectively. Using
the criteria of Cockcroft-Latham and Oyane, most damage occurs in the center, while the
criterion of Freudenthal predicts the highest damage beneath the surface.

Isik et al. investigated damage in terms of void volume fraction experimentally. It was
shown that the damage in the dual phase steel DP600 was below 1 % for equivalent plastic
strains of up to 0.8. Since 15MnCr6 shows a similar mechanical behavior to DP600, the
results of the CDM model seem reasonable, while the damage predicted by the fracture
criteria is significantly overestimated.

D in %
1.500

1.125

0.750

0.375

0.000

(a) ϕ = 0.5

(b) ϕ = 1.0

Figure 4: Contour plot of damage D distribution for cold extrusion for extrusion strains of ϕ = 0.5 (a)
and ϕ = 0.1 (b) with the use of the continuum damage model.
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Figure 5: Contour plot of damage D distribution for the fracture criteria of Cockcroft-Latham (a),
Freudenthal (b) and Oyane (c) for the cold extrusion process with ϕ1. The damage value is defined by
the actual value of the criterion, divided by the critical value identified in Section 3.3.

5 CONCLUSION

From the simulation results it can be concluded that the use of the presented fracture
criteria is very limited and only reasonable in certain cases. In this work, the coupling
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between the fracture criteria and the stresses is not implemented, so the effect of damage
induced softening cannot be captured explicitly, leading to an overestimated stiffness.
Fracture criteria depend on a single stress-dependent function and cannot distinguish
between different damage mechanisms, which may lead to errors. Cracks can be depicted
by coupling those fracture criteria to an element deletion criterion. Removing undamaged
elements, however, is associated with the removal of energy and mass, which may influence
the physical behavior. A fine discretization would diminish this effect, but is related to
increasing computational effort.

A CDM model generally yields a better prediction of the damage, up to the point of
fracture. Elasticity is coupled to the damage evolution and therefore the effect of damage
induced softening can be captured. Here, the removal of elements with damaged material
is not as significant as for the fracture criteria due to the decrease in stiffness. The CDM
model presented in this work can be adapted to the problem more accurately, since the
evolution of damage is controlled by several parameters. While the fracture criteria only
depend on a single stress dependent function, the constitutive damage model can distin-
guish between different stress states.
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