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Abstract. In this work, ductility limits of metallic materials, associated with the occurrence of 
strain localization, are predicted using the GTN damage model coupled with bifurcation 
theory. The resulting approach is implemented into the finite element code ABAQUS within 
the framework of large plastic strains and a fully three-dimensional formulation. A parametric 
study with respect to damage and hardening parameters is conducted in order to identify the 
most influential material parameters on strain localization. The analysis shows that the 
damage parameters have a significant impact on the predicted ductility limits, while the effect 
of hardening parameters on strain localization depends on the choice of void nucleation 
mechanism.

1 INTRODUCTION 
It is well known that in sheet metal forming processes, different types of defects may 

occur, which are usually associated with operating conditions and/or material characteristics. 
Plastic instabilities, corresponding to the occurrence of zones of highly localized plastic 
strain, are examples of these undesirable phenomena. To characterize the formability of thin 
sheet metals, the concept of forming limit diagram has been introduced [1]. Among the most 
influential constitutive features on the formability limits of thin sheet metals, the damage 
development is of particular importance. In this context, Gurson-type damage models have 
been developed, among which the GTN model [2], which is adopted in this work to describe 
the initiation of ductile damage and its evolution during loading. This model is coupled with 
the bifurcation analysis [3,4] to predict the occurrence of strain localization in metallic 
materials. The present work investigates the respective effect of damage and hardening 
parameters on the prediction of ductility limits using different void nucleation mechanisms. In 
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addition, an alternative modeling approach is explored for the analysis of hardening effects on 
strain localization, which consists in adopting a micromechanics-based calibration for the 
GTN q -parameters. 

2 GTN DAMAGE MODEL 
The ductile damage model adopted in this work is based on the Gurson model, which 

accounts for void nucleation and growth. This model has been subsequently modified in the 
literature leading to the following well-known GTN yield potential (see, e.g., [2]): 
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where 1q , 2q  and 3q  are material parameters; mσ  is the hydrostatic stress defined by 
: 3mσ = 1σσσσ , with σσσσ  being the Cauchy stress tensor and 1  the second-order identity tensor; 

eqσ  is the von Mises equivalent stress defined by 3 : 2eqσ = S S , with S  being the deviatoric 
part of the Cauchy stress; Yσ  is the flow stress, function of the equivalent plastic strain pl

mε  of 
the fully dense matrix; ( )*f f  is the modified void volume fraction, function of the actual 
void volume fraction f , which is defined by 
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where the damage parameters crf  and Rf  are the critical void volume fraction, at which the 
coalescence stage starts, and the void volume fraction at final fracture, respectively. 
According to Eq. (2), *( )f f  reaches its ultimate value *

uf  when Rf f= . 
The tensile flow stress Yσ  of the fully dense matrix material is assumed to be governed by 

an isotropic hardening law, as given by the following rate expression: 
pl
mY hεσ = ɺɺ , (3)

where h  is the plastic hardening modulus of the fully dense matrix material. The plastic flow 
rule follows the classical normality law, which defines the plastic strain rate pD  as 

p λ ∂Φ=
∂

D ɺ
σσσσ

, (4)

where λɺ  is the plastic multiplier, and ∂Φ ∂σσσσ  is the direction of the plastic flow. The evolution 
of void volume fraction depends on both growth of pre-existent voids and nucleation of new 
ones. For the nucleation of new voids, the model proposed by Chu and Needleman [5] is 
adopted in this work. This model involves the contribution of both the flow stress rate of the 
dense matrix and the hydrostatic stress rate. The final expression of the incremental change in 
void volume fraction is given by 

( ) ( )p

growth nucleation

1 : mN N Y Nf A h B Bf σ σ  − + + += D 1
 

ɺ ɺɺ . (5)
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In the above equation, the constants NA  and NB  allow characterizing the void nucleation 
model, which is strain controlled for 0NA >  and 0NB = , and stress controlled for 0NA =  and 

0NB > . Their expressions follow normal distribution laws as proposed in [5] 
2 2pl
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where Nε  and Nσ  are the mean strain and the mean stress for nucleation, respectively; Ns  is 
the standard deviation on Nε ; Nf  is the volume fraction of void-nucleating particles; 0σ  is the 
initial yield stress of the matrix surrounding the voids. In the co-rotational frame, which is 
associated with the Jaumann objective derivative, the Cauchy stress rate is expressed using 
the following hypoelastic law: 
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where D  is the strain rate tensor, eC  is the fourth-order elasticity tensor, and epC  is the 
elastic–plastic tangent modulus. Using the consistency condition 0Φ =ɺ , together with the 
above equations, the plastic multiplier λɺ  writes 
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By replacing the plastic multiplier λɺ  (see Eq. (8)) into the hypoelastic law (Eq. (7)), the 
elastic−plastic tangent modulus of the GTN model writes 

( ): :ep e e e Hλ
∂Φ = − ⊗ ∂ 

C C C E C
σσσσ

. (11)

It can be observed that, in the case of strain-controlled nucleation (i.e., 0NA >  and    
0NB = ), the above elastic−plastic tangent modulus becomes symmetric and the normality of 

the plastic flow rule holds. In the case of stress-controlled nucleation (i.e., 0NA =  and   
0NB > ), the elastic−plastic tangent modulus is non-symmetric and the normality of the plastic 

flow rule does not hold. 

3 BIFURCATION CRITERION 
In this section, the constitutive equations described above are coupled with a plastic 
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instability criterion, as proposed by Rudnicki and Rice [3] and Rice [4], in order to predict the 
occurrence of strain localization. This criterion is based on bifurcation theory, where the 
incipience of plastic flow localization in the form of an infinite band is associated with the 
loss of uniqueness for the solution of the rate equilibrium equations. According to this 
criterion, the critical condition, which also corresponds to the loss of ellipticity of the 
associated boundary value problem, is related to the singularity of the acoustic tensor A , 
defined as ⋅ ⋅A = n L n , where n  is the normal to the localization band and the tangent 
modulus L  writes 

1 2 3
ep= + − −L C Z Z Z , (12)

where 1Z , 2Z  and 3Z  are fourth-order tensors that consist of Cauchy stress components. 
These additional tensors originate from the large-strain framework and their complete 
expressions can be found in [6,7]. The critical condition is then given by 

( ) ( ) 0det det= =⋅ ⋅A n L n . (13)

4 PREDICTION OF DUCTILITY LIMITS 
In this section, the GTN model is coupled with the bifurcation analysis to predict strain 

localization in porous materials subjected to in-plane loading conditions. The resulting 
approach is implemented into the finite element code ABAQUS/Standard within the 
framework of large plastic strains and a fully three-dimensional formulation. The effect of 
hardening and damage parameters, as well as the choice of nucleation modeling, on the 
prediction of ductility limits is analyzed. 

4.1 Strain-controlled nucleation model 

In this section, nucleation of new voids is taken strain-controlled, by considering 0NA >
and 0NB =  in the GTN model (see Eq. (5)). It is worth noting that, in this case, the normality 
of the plastic flow rule holds and the elastic–plastic tangent modulus epC  is symmetric, while 
the acoustic tensor A  is non-symmetric due to the convective stress components (Eq. (12)). 

The material considered here is Al5754 aluminum, with Young’s modulus and Poisson’s 
ratio equal to 70,000  MPa and 0.33, respectively. The associated hardening parameters, 
according to the Swift isotropic hardening law, and damage parameters are summarized in 
Table 1 (see [8]). 

Table 1: Hardening and damage parameters for Al5754 

0ε k  [MPa] n 0f Ns Nε Nf crf GTNδ 1q 2q 3q

0.00173 309.1 0.177 0.001 0.1 0.32 0.034 0.00284 7 1.5 1.0 2.15

4.1.1 Effect of damage parameters 

The effect of damage parameters on the ductility limit predictions for the Al5754 
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aluminum alloy is analyzed here. A relatively large number of damage parameters are 
involved in the GTN model; for conciseness, attention is focused on the initial void volume 
fraction 0f  and the nucleation parameter Nf . 

      
        (a)       (b)           

Figure 1: Effect of the initial void volume fraction 0f  (a), and the nucleation parameter Nf  (b) on the 
ductility limit predictions for Al5754 aluminum 

Figure 1 shows the impact of varying one damage parameter at a time on the prediction of 
the ductility limits for Al5754 aluminum. Concerning the effect of the initial void volume 
fraction 0f  (Figure 1(a)), large values for this parameter (e.g., 0 0.01f = ) imply that the 
material has already entered the coalescence stage, which dramatically lowers the predicted 
ductility limits. However, for very small values for parameter 0f , the ductility limit 
predictions are only slightly affected, which suggests that at such low void volume fraction 
levels, void growth is not the predominant mechanism for damage evolution. For the 
nucleation parameter Nf , the predicted ductility limits are lowered as this parameter 
increases. This trend is consistent with the physical meaning of this parameter (volume 
fraction of void-nucleating particles), as larger values for the latter tend to precipitate damage, 
thus promoting early plastic flow localization (see Eq. (6)). 

4.1.2 Effect of the hardening exponent n

The impact of the hardening exponent n , associated with the Swift law, on the ductility 
limit predictions is analyzed here for the Al5754 aluminum material. Figure 2 shows the 
predicted limit strains obtained with different hardening exponents n  for the dense matrix 
material. These results reveal that the effect of the hardening exponent n  on the ductility limit 
predictions is much smaller than that observed for damage parameters (see the previous 
section). Similar results are observed when varying the k  and 0ε  Swift hardening parameters, 
and are not reported here for conciseness. However, a more perceptible effect is found near 
the plane-strain tension (PST) loading path (see Figure 2). 
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Figure 2: Effect of the hardening exponent n , associated with the Swift law, on the ductility limit 
predictions for Al5754 aluminum with strain-controlled nucleation 

Similar trends have been observed in [9], where the GTN model was used with strain-
controlled nucleation and coupled with the bifurcation theory. Indeed, in such a modeling 
approach, strain localization is mainly controlled by damage-induced softening, as shown in 
Figure 3(a) for the uniaxial tensile (UT) strain path, where it can be seen that flow localization 
occurs at strongly negative hardening moduli. Moreover, the evolution of void volume 
fraction based on strain-controlled nucleation for this particular loading path (UT) is shown to 
be insensitive to the strain hardening of the dense matrix material (see Figure 3(b)). 

  
(a)                (b)

Figure 3: Effect of the hardening exponent n  on: (a) the Cauchy stress−strain curve, and (b) void volume 
fraction, until localization along the uniaxial tensile strain path 

4.2 Calibration of the GTN q -parameters 

The previous results have shown limitations of the GTN model, with strain-controlled 
nucleation, in accounting for the effect of strain hardening on the porosity evolution. To 
overcome such limitations, Faleskog et al. [10] suggested calibrating the GTN q -parameters 
in order to include the effect of strain hardening on void growth. Tables 2 and 3 summarize 
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the calibrated q -parameters and the damage parameters for a steel material with yield 
strength ratio 0 0.004Eσ =  (see [10]). The isotropic hardening model used in the simulations 
is based on a hardening power law (see [10]). 

Table 2: Calibrated q -parameters 

q -parameter 0.025n = 0.05n = 0.10n =

1q 1.74 1.48 1.29 

2q 1.013 1.013 0.982 

Table 3: Damage parameters for the GTN model 

Material 0f Ns Nε Nf crf GTNδ
Steel 0.001 0.1 0.3 0.05 0.04 5 

Figure 4: Effect of the hardening exponent n  on the prediction of ductility limits using the calibrated q -
parameters 

Figure 4 shows the effect of the hardening exponent n  of the power law on the prediction 
of ductility limits for the studied steel material based on the calibration of the q -parameters 
and strain-controlled nucleation model. The predicted ductility limits clearly show sensitivity 
to strain hardening for all strain paths, thanks to the use of micromechanics-based calibrated 
q -parameters. 

4.3 Stress-controlled nucleation model 
The effect of strain hardening on the ductility limits is investigated in this section using the 

GTN model with stress-controlled nucleation. The associated material parameters 
corresponding to a steel material are summarized in Table 4. The Ludwig power law is used 
in the simulations for the modeling of isotropic hardening for the dense matrix material. 
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Table 4: Hardening and damage parameters for the studied steel material 

0σ  [MPa] k  [MPa] 0f Ns Nσ  [MPa] Nf crf GTNδ 1q 2q 3q

150 800 0.001 0.1 1000 0.05 0.04 10 1.5 1.0 2.15

Figure 5 illustrates the effect of the hardening exponent n  on the prediction of limit strains 
for the studied steel material. It is clearly shown that the consideration of non-normality in the 
GTN model, due to stress-controlled nucleation, allows for a significant effect of strain 
hardening on the limit strains. Indeed, the predicted limit strains increase as the hardening 
exponent n  increases, which is consistent with the literature findings (see, e.g., [11]). The 
effect of the hardening exponent n  on the evolution of the Cauchy stress and the void volume 
fraction until localization for the UT strain path is shown in Figure 6. It can be seen that, in 
contrast to the case of strain-controlled nucleation (see Figure 3(b)), the evolution of void 
volume fraction is significantly affected by the hardening exponent n , which allows 
accounting for strain hardening effects on strain localization. Moreover, the Cauchy stress 
evolution reveals that the hardening modulus at localization is not strongly negative, as 
compared to that obtained in the case of strain-controlled nucleation. This is caused by the 
non-normality of the plastic flow, which plays a destabilizing role in the localization 
bifurcation analysis. 

Figure 5: Effect of the hardening exponent n  on the prediction of ductility limits for the studied steel material 
with stress-controlled nucleation 
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       (a)               (b)

Figure 6: Effect of the hardening exponent n  on: (a) the Cauchy stress−strain curve, and (b) void volume 
fraction, until localization along the UT strain path, in the case of stress-controlled nucleation 

12 CONCLUSIONS 
In this work, The GTN ductile damage model has been coupled with bifurcation theory to 

predict the occurrence of strain localization for metallic materials. The resulting approach has 
been implemented into the finite element software ABAQUS/standard in the framework of 
large plastic strains and a fully three-dimensional formulation. Ductility limits of metallic 
materials are then predicted using the proposed approach. A parametric study with respect to 
damage and hardening parameters has been conducted in order to determine the most 
influential parameters on strain localization. The analysis showed that the damage parameters 
have a significant impact on the predicted ductility limits. With regard to hardening, it is 
shown that the choice of void nucleation mechanism has an important influence on the 
sensitivity of the predicted ductility limits to strain hardening. Indeed, in the case of strain-
controlled nucleation, the predicted limit strains were found almost insensitive to strain 
hardening for most strain paths, while a significant influence was observed in the case of 
stress-controlled nucleation. The latter leads to non-normality in the plastic flow rule, which 
plays a destabilizing role that promotes early strain localization. This work also discussed the 
use of a micromechanics-based calibration for the GTN q -parameters in the case of strain-
controlled nucleation, which is shown to allow accounting for hardening effects on strain 
localization predictions. 
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