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Abstract:  

 

We present the performance of the rockfall fractal fragmentation model (RFFM) developed by Ruiz-Carulla et 

al. (2017) and based on Perfect (1997). The RFFM combines disaggregation of the initial rock mass and 

breakage of the blocks. The model has been upgraded as to meet the mass balance, and to generate both a 

continuous decreasing and scale variant distribution of fragments volumes. The input of the model may be 

either a single block or a rock mass characterized by its In situ Block Size Distribution (IBSD). The measured 

fragment size distributions of seven inventoried rockfall events, are used to calibrate the model. The results of 

the simulations fit well to the measured volume distributions. Our findings indicate that fragmentation is better 

characterized by the whole volume distribution of fragments generated and the increase of new surface area of 

the rock fragments. A relation has been observed between the potential energy of the first impact, the new 

surface area of fragments generated, and the model parameters. Although a greater number of parametric 

analyses and calibration exercises are required, this relation is proposed as a first approach to model rockfall 

scenarios.   
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Notations and nomenclature:  

 

IBSD In situ Block Size Distribution. 

 

RBSD Rockfall Block Size Distribution.  

 

RFFM Rockfall Fractal Fragmentation Model. 

 

k  Number of initiators blocks.  

 

b Geometrical factor. 

 

i Level of hierarchy in a fractal system. Number of iteration in numerical solutions. 

 

bi Geometrical factor to the power at ith level of hierarchy. 

 

N(1/bi) Total number of fragments at the ith level of hierarchy. 

 

1/bi  Fragment size descriptor in function of the geometrical factor and the ith level of hierarchy in a fractal 

system. 

 

ni  Number of fragments generated only in the ith level of hierarchy. 

 

D    Fractal dimension. 

 

P(1/bi)  Probability of failure at the ith level of hierarchy.  

 

Sr  Survival rate. 

 

Vmin Minimum volume threshold value for fragments generation. 

 

q Probability of survival.  

 

r Scale variance factor.  

 

lmax Length of the largest fragment generated from each initiator block.  

 

l Length of each new fragment generated from each initiator block. 

 

(lmax/l)  Fragments size descriptor in function of the length of the largest fragment generated and the length of 

each fragment generated from each initiator block. 

 

P(l/lmax) Probability of failure of blocks of (l/lmax) size. 

 

Xir
2 Reduced Chi squared test error estimator. 

 

n  Number of fragments accumulated. 

 

Vo Volume of the initiator block. 

 

DFN Discrete Fracture Network.  

 

DSM Digital Surface Model. 3D mesh format. 

 

UAV  Unmanned Aerial Vehicle. 
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Dmin  Minimum Fractal Dimension. 

 

Dmax Maximum Fractal Dimension. 

 

Pmin  Minimum Probability of Failure. 

 

Pmax Maximum Probability of Failure. 

 

RMR Rock Mass Rating. 

 

UCS Uniaxial Compressive Strength. 

 

TS Tensile Strength 

 

IA3D Initial Area based on 3D surfaces of the 3D blocks in mesh format, measured in m2. Sum of all the 

surfaces of the IBSD blocks. 

 

IAcubic Initial Area based on the 3D surface of a cubic estimation of blocks, measured in m2. Sum of all the 

surfaces of the IBSD blocks. 

 

TA Total Area, measured in m2. Sum of all the fragments surfaces in the deposit. 

 

TARBSD Total Area based on the RBSD blocks, measured in m2. Sum of all the fragments surfaces in the 

rockfall deposit. 

 

TARFFM Total Area based on the RFMM blocks (proposed model output), measured in m2. Sum of all the 

fragments surfaces in the rockfall deposit. 

 

NA New Area, measured in m2. Defined as the difference between the Initial Area and the Total Area. 

 

NARBSD New Area based on the RBSD blocks, measured in m2. Defined as the difference between the Initial 

Area and the Total Area based on the RBSD blocks. 

 

NARFFM  New Area based on the RBSD blocks, measured in m2. Defined as the difference between the Initial 

Area and the Total Area based on the RFFM blocks. 

 

SSA Specific Surface Area, measured in m-1. Amount of surface area per unit volume of an object or 

collection of objects, also defined as surface-area-to-volume ratio. 

 

ISSA Initial Specific Surface Area, measured in m-1. IA normalized by the total rockfall volume. Descriptor 

of the initial state of the blocks detached from the cliff.  

 

TSSA Total Specific Surface Area, measured in m-1. TA normalized by the total rockfall volume. Descriptor 

of the final state of the fragments in the rockfall deposit. 

 

NSSA New Specific Surface Area, measured in m-1. NA normalized by the total rockfall volume. Descriptor 

of the new surface area per unit of volume generated by breakage. 
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1. Introduction: 

 

Fragmentation of the rock mass is the reduction in particle size due to an external action. It is of interest in 

mining industry, particularly for the activities of drilling and blasting because it affects the cost of excavation 

and loading operations. An efficient blasting should avoid secondary blasting or mechanical breakage of the 

rock fragments (Aler et al. 1996; Morin et al. 2006; Kulatilake et al. 2010; Sanchidrián et al. 2014).  Rock 

fragmentation is relevant for the performance and efficiency of mechanical excavators, tunnel boring machines, 

and the consumption of cutting tools (Gong et al. 2005; Bakar et al. 2014). In nature, rock fragmentation is 

found associated to the collision of meteorites, asteroids and interstellar grains (Hartman, 1969; Keil et al. 

1994), the emplacement of volcanic deposits (Wohletz et al. 1989; Bonadona and Houghton, 2005), or as result 

of the tectonic activity (Molnar et al. 2007; Sammis and King, 2007). Fragmentation also occurs during the 

emplacement of rock avalanche deposits (Locat et al. 2006; Crosta et al. 2007; Davies et al. 1999; Hewitt, 1999; 

Weidinger et al. 2014) and in rockfalls (Giacomini et al. 2009, Wang and Tonon 2010, Crosta et al. 2015). 

 

Despite the increasing number of studies on rockfalls, fragmentation as consequence of the impact on the ground 

surface is poorly understood. The rock volume detached from a cliff consists of either an individual block or a 

jointed rock mass. In the latter, the intersection of joints defines individual blocks, which range of sizes is the 

In-situ Block Size Distribution (IBSD) (Lu and Latham, 1999; Elmouti and Poropat, 2012).  As the result of the 

impact, the rockfall fragments appear scattered along the slope and, as the rockfall volume increases, a more or 

less continuous debris cover is formed. The range of sizes of the rockfall fragments is the Rockfall Block Size 

Distribution (RBSD). Davies et al. (1999) restricted fragmentation to the breakage of rocks into pieces smaller 

than those defined by the joint system of the parent rock mass. Here, we use fragmentation as a generic and 

inclusive term, meaning the division of an initial rock block or rock mass caused by either the breakage of the 

rock pieces, the disaggregation of joint-determined blocks, or both (Ruiz-Carulla et al. 2017).   

 

The quantitative hazard and risk analyses of rockfalls requires the quantification of fragmentation. The impact 

of the rockfall mass upon the ground surface results in the production of a number of smaller pieces that move 

as independent rigid bodies, with different velocities, and often divergent trajectories. Because of this, 

fragmentation affects both the runout and energy of the new particles (Agliardi and Crosta, 2003) and the 

encounter probability with the elements at risk (Corominas et al, 2019). Rockfall analyses based on the 

assumption of large unbroken rockfall masses will produce unrealistic results (Okura et al. 2000; Dorren 2003). 

 

The analysis of the rockfall fragmentation has been approached empirically by means of real scale tests 

(Giacomini et al. 2009; Gili et al. 2016), and in the laboratory (Bowman and Take, 2015). The results showed 

the complexity in predicting the size distribution of the fragments based on impact energy thresholds of 

individual rock blocks. On the other hand, numerical simulations with Discrete Elements Methods highlight 

that high kinetic energy associated to steep slopes increases the intensity of fragmentation (Zhao et al. 2017). 
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Perfect (1997), described fragmentation as a natural phenomenon that may be characterized by means of 

fractals.  In the present paper we present the performance of the fractal fragmentation model of Ruiz-Carulla et 

al. (2017), that simulates the processes of disaggregation and breakage in rockfalls by means of the calibration 

of 7 inventoried fragmental rockfalls. The model has been upgraded with the inclusion of the scale variant 

equations and considering the cumulative number of fragments proposed by Perfect (1997). We present the 

basic components of the model and improvements in section 2, the simulation of seven inventoried rockfall 

cases in section 3, and the results and discussion in section 4. 

 

 

2. Modelling the fractal behavior of Rockfalls  

 

2.1. Fragmentation metrics 

 

Several descriptors have been proposed to quantify fragmentation. The mean size or the diameter before (D) 

and after (d) breakage has been used in the mining industry (Cunningham, 1987; Hardin 1985), which has been 

related with the explosive energy and powder factors (Kuznetsov, 1973). This type description means that the 

rock mass redistribution after fragmentation is described using an average size of the fragments. To complement 

it, a shape coefficient for the whole distribution may be included (Hou et al. 2017). In fact, the mean size and 

the uniformity coefficient are parameters required to obtain statistical distributions, which can be fitted to the 

rock fragments distributions. The approach most commonly used in blasting activities is the Rosin-Ramler 

model (Latham et al. 2006, Gheibie et al. 2009, Kulatilake et al. 2010 and Hudaverdi et al. 2010). Similarly, the 

largest remaining fragment has been suggested as descriptor of the fragmentation intensity (Bowman et al, 

2014; Haug et al, 2016).  

 

For those interested in rockfall hazard and risk analyses, we argue that these descriptors are not enough. To 

illustrate it, two synthetic cases with the same largest remaining fragment but different block size distribution 

are shown in Figure 1 and 2. The rock block with a volume of 0.67 m3, breaks upon impact on the ground 

generating 3 (Figure 1a) and 10 (Figure 1b) fragments. The largest remaining fragment has 0.38 m3 in both 

cases but block in Figure 1b generates more fragments and different range of volumes. The total surface area 

of the initiator block has a 3D surface of 4.5 m2, and the total surface area of the fragments increases from 6.6 

m2 to 8.33 m2, respectively (Figure 2). This has a direct effect in rockfall hazard assessment. The knowledge of 

the number and size of the rockfall fragments are required in order to quantify the trajectories, runout distances 

and energies of the fragments, the impact probabilities with the exposed objects and the efficiency of the 

protection measures. 
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Figure 1: Comparison of two synthetic cases with the same probability of survival of the block and different 

number of fragments. 

 

 

Figure 2: Comparison of two RBSD from synthetic cases (Figure 1, a and b). Note the increase on total block 

surface from 4.5 m2 to 6.6 m2 and 8.33 m2.  

 

Fragmentation of a rockfall may be therefore quantified by comparing the block size distributions before (IBSD) 

and after (RBSD) the impact on the ground (Charrière et al. 2015; Ruiz-Carulla et al. 2017) (see Figure 3).  
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Figure 3: Change in block volume distribution by fragmentation. The initial block size distribution (IBSD) 

results in an increase of the number of blocks by fragmentation (RBSD). 

 

2.2. The Rockfall Fractal Fragmentation Model 

 

The Rockfall Fractal Fragmentation Model (RFFM) proposed by Ruiz-Carulla et al, 2017, takes the In situ 

Block Distribution (IBSD) as input and use 3 parameters to obtain Rockfall Block Size Distribution (RBSD). 

The model generates a block size distribution (RBSD) from a single block or a list of blocks (IBSD). Each 

broken block produces a distribution of fragments according to the main equation for fractal systems (Perfect, 

1997), which is written as follows (Eq.1):  

 (1/ ) 1/ ; 0,1,2...
D

i iN b k b i


       Eq. 1 

Where “N(1/bi)” is the total number of fragments at the ith level of hierarchy (or iterations); “k” is the number 

of initiators of unit length, where initiators are the initial blocks as input; “b” is the geometrical factor (b>1); 

that defines a geometric fractal proportion between the original block and the generated fragments; and “D” is 

the fractal dimension. As many fractal systems, the generation of elements is based on an iteration procedure 

that is controlled by the term “i” referencing to the number of iteration. “N” is rounded to the lower nearest 

integer. The fractal dimension D is defined by Eq. 2, where the probability of failure “P(1/bi)” expresses the 

proportion of the block that breaks creating new fragments. Following the description of Perfect (1997), the 

probability of failure “P(1/bi)” ranges between b-3<P(1/bi)<1, and when P(1/bi)=1 and D=3, the whole block 

is fragmented, while for P(1/bi) ≤ b-3 the block remains intact. 

       
 

log (1/ )
3

log

iP b
D

b

           Eq. 2 
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In the RFFM presented in (Ruiz-Carulla et al. 2017), a survival rate (Sr) is included as percentage of blocks that 

remain intact (no breakage). For Sr=1 pure disaggregation occurs. All the blocks survive and RBSD equals the 

IBSD. For Sr=0, all blocks of the IBSD break, generating a new RBSD whose shape varies according to the 

fractal parameters considered in the model.   

 

Three main drawbacks were identified with the performance of the RFFM: (1) The blocks of the IBSD (list of 

block volumes as input) are classified in bins according to their size (e.g. 0.1-0.5; 0.5-1; 1-5; 5-10; 10-50; 5 50-

100 m3). Each block of the bin has the average volume of the bin instead of the exact one (3m3 in the bin ranging 

between 1 and 5m3). Because of this, the mass balance is not preserved; (2) Each iteration increases the number 

of fragments by reducing their size. However, the number of iterations used modifies the value of the fitted 

model parameters P(1/bi) and b; (3) Finally, the model produces fragments of equal size in each iteration. 

However, experiments with single blocks falls (Gili et al. 2016) and the rockfall inventories show that the 

fragments generated follow continuous decreasing size distributions, which in some cases may not fit to a scale 

invariant behavior. This effect is masked when the initiator is an IBSD but becomes evident when the initiator 

is a single block.   

 

To overcome the mentioned drawbacks we have upgraded the RFFM by adding the alternatives proposed in the 

paper of Perfect (1997).  The iteration over the geometric factor “b” which generates fragment volumes in terms 

of (1/bi), is replaced by (l/lmax) in a cumulative form, where “lmax” is the length of the largest remaining 

fragment, and “l” is the length of each new fragment generated. This procedure avoids iteration and prevents 

from obtaining equally sized fragments.  Instead of using the average volume of the blocks in each bin, the 

procedure is applied to each initiator block. This is carried out by listing all the volumes of the IBSD. The 

resultant RBSD is a continuous list of rock fragments, which is described as cumulative number of fragments 

ordered by decreasing size. The steps of the procedure are shown in what follows. 

 

In the upgraded RFFM, Eq.1 describing the number of fragments of size “1/bi” is rewritten in terms of 

cumulative number of fragments of size greater than or equal to “l/lmax” (Eq. 3). As we apply the model over 

every block of the IBSD, the number of initiators is always 1 (k=1). 

                                             Eq. 3 

The length “l” of the fragments generated starts with “lmax”. Then “lmax/lmax” is 1, and the cumulative number 

of fragments for the largest fragment is 1. Then, “l” decreases giving “N” accumulated number of fragments. 

As the number of fragments must be a natural number, the term “ℕ(l/lmax)” is rewritten as a variable “n”, 

ranging from 1 to infinite. Therefore, Eq.3 may be rewritten as function of the number “n” of fragments 

accumulated, obtaining the length “l” that defines the size of the following fragment: 

      
1/

max· ; 1,2...Dl l n n               Eq. 4 
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As “lmax” and “l” only represent proportions, to convert the characteristics lengths “l” into volumes, the initial 

volume “Vo” is used. Therefore, the main equation used to generate the cumulative number of fragment 

volumes in the upgraded model is:  

1/

max( ) · · ; 1,2...D

frag oV n V l n n             Eq. 5 

The maximum length “lmax” is defined as lmax = 1 – P(l/lmax) in the scale invariant formulation (Perfect, 1997). 

 

The generated RBSD is obtained increasing “n” from 1 to infinite. The sequence of volume generation is as 

follows: first, the largest fragment, and then, the rest of fragments are added, ordered by decreasing sizes, until 

either the initial block volume is completed or until the fragments become smaller than the threshold defined. 

The threshold value is established as the minimum volume of the fragments generated (Vmin) that is not 

measured and checked in the field. The remaining mass below the threshold is computed as fine fraction. 

 

The effect of the replacement of “1/bi” by “l/lmax” and the use of the cumulative list of volumes instead of bins, 

is illustrated in Figure 4. The input of the model is, in both cases, the IBSD composed of a single block of 1 m3 

(blue square in Figure 4). The models parameters are b=2 and P(1/bi)=0.5. The RBSD using “1/bi” has three 

different sizes (purple squares in Figure 4). The results after two iterations are: a fragment of 0.5 m3, four 

fragments of 0.05 m3 each, and 16 fragments of 0.01 m3 each, being 21 in cumulative number of fragments 

(1+4+16). In contrast, l/lmax” generates 7 fragments of different size (green dots in Figure 4). The sum of 

fragments volume using“1/bi” is 0.86 m3, that is, a loss of 0.14 m3 of the initial mass. The sum of fragments 

volume using “l/lmax” is 0.999 m3, obtaining consistent results in terms of mass balance. 

 

Figure 4: RFFM performance for breakage of 1 m3 using bins (two iterations and 1/bi as size descriptor), and 

using the cumulative form, and l/lmax as size descriptor.   
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2.3. Scale variant behavior 

 

As mentioned above, the measurement of more than 10.000 fragments in the 7 inventoried rockfalls and real 

scale fragmentation tests, indicate that fragments generated may follow either scale invariant or variant 

behavior. The latter is characterized by a change in the proportion between the number of objects and their size. 

The scale variant behavior implies the modification of the fractal dimensions depending on the objects size. 

Then, blocks distributions cannot be fitted with a simple power law. This is illustrated in Figure 5 showing the 

cumulative RBSD (red dots) of one of the real scale fragmentation test (Gili et al, 2016). The blue dot represents 

the initial volume of the block tested. The scale invariant volume distribution generated with the RFFM (green 

dots) diverges from the distribution of the small-fragments measured (Figure 5, left). The results of the model 

using the scale variant formulation (Figure 5, right) reproduces adequately the changes in the slope for the entire 

volume distribution. 

 

Fig. 5: Calibration of the RFFM (green dots) using the scale invariant (left), and the scale variant (right) 

formulations. The calibration is carried out by fitting the distribution to the measured RBSD (red dots) from the 

fragmentation test of a single block volume (blue dot). 

 

In the case of scale variant behavior, the number of fragments generated changes with the scale. In this case, 

each block size has different probability of failure, in the form (Perfect, 1997): 

           (1/ ) 1 ( )i i rP b q b                   Eq. 6 

Where “q” is the probability of survival of the rock block as defined by Perfect (1997). The probability of 

survival “q” is interpreted as the inverse of the probability of failure “P”. The latter expresses the proportion of 

the block that breaks creating new fragments. Therefore, the probability of survival “q” expresses the proportion 

of the block that survives and defines the largest fragment generated after breakage. As the model is applied to 

each initiator block, the survival rate “Sr” is replaced by “q”. The parameter “r” controls the scale variant 

behavior and is explained next.  
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The fractal dimension for scale variant behavior is (Perfect, 1997): 

  
 

log ( )
3

log

r i rb q b
D

b

      Eq. 7 

In the scale variant, different sizes display different patterns of fragmentation. For instance, the smaller blocks 

may offer a greater resistance to breakage than larger blocks. The increase or decrease of the strength of the 

rock block as the block size diminishes is simulated with the negative or positive value of “r”, respectively. 

For r=0, the scale variant is equal to the scale invariant case. 

 

Finally, the maximum length “lmax” for the scale variant formulation is defined as (Perfect 1997): 

     lmax = q(bn)r     Eq. 8 

The upgraded RFFM can generate block size distributions of different shapes. Figure 6 shows the results of 

real-scale rockfall tests (Gili et al. 2016; Ruiz-Carulla et al. 2016b).  For the sake of brevity, only four cases are 

plotted. These examples illustrate the capability of the RFFM to generate both irregular shape and continuous 

BSD distributions, using the scale variant behavior and the continuous generation of fragments (l/lmax). The size 

of the block tested was measured with digital photogrammetry (blue circles in Figure 6). At each test, the block 

dropped from a height of 17 meters. 

  

The RBSD of each test is plotted in Figure 6 (red squares). The model parameters are calibrated by minimizing 

the difference between the volumes measured and the simulated (green diamonds in Figure 6). We run the 

model until the values of the reduced Chi squared “Xir
2 fall between 10^-4 and 10^-2. Under the same testing 

conditions, blocks with similar volume and mechanical properties display contrasting behavior. From a 

probability of survival of 0.97 and few fragments generated (Figure 6 upper left, T1-B5 case), to probability of 

survival of less than 0.4 and tens of fragments generated, sometimes with a progressively curved shape 

distribution (Figure 6 bottom, T1-B3 and T1-B2). It is worth noticing that by breaking less than 20% of the 

block volume (q = 0.817), more than 20 fragments can be easily generated (Figure 6, T1-B12).  
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Figure 6: Results of a calibration of the model parameters with data from real-scale test. The block initiator size 

(blue circle); the measured RBSD (red squares), and modelled RFFM-RBSD (green diamonds) are shown. 

 

3. Performance of the RFFM 

 

Seven natural rockfall events have been simulated with the RFFM. The goals of the simulation are, on one side, 

testing the sensitivity of the parameters and calibrate the model considering different sizes, lithologies, rock 

strengths, heights of fall and slope conditions. On the other side, we aim at searching for relations between the 

model parameters and the geometry of the fall in order to adjust its predictive capacity. 
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3.1 Inventoried rockfall events 

 

Perfect (1997) highlighted the need of using well detailed descriptions of the rigid bodies before and after the 

fragmentation. We present in this section the description and main characteristics of the block size distribution 

of 7 inventoried fragmental rockfalls. To characterize the initial state of the rock mass, we reconstructed the 

detached volume and the IBSD, the latter based on the joint pattern present on the cliff. This has been carried 

out using UAV and digital photogrammetry, obtaining the 3D model of the scar in point cloud format, and 

extracting the joint pattern on the cliff (Gates et al, 2012; Gigli and Casagli 2011; Haneberg et al, 2006; Buyer, 

et al 2017). On the other hand, the RBSD is obtained by measuring thousands of blocks in the rockfall deposit 

with a tape and following the procedure described in Ruiz-Carulla et al. (2015 and 2016a). 

 

The seven rockfall events represent different scenarios, in terms of failure mechanism, lithology (limestone, 

sandstone, conglomerate and schist), volume (between 2 m3 and 10.000 m3), and impact ground conditions 

(Figure 7). Three rock samples of each event were collected for mineralogical description and rock strength 

testing. The description of the rockfall events and rock mass properties are summarized in Tables 1 and 2.  
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Figure 7: Pictures of the inventoried rockfalls. 
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Table 1: Rockfall inventory cases, summary data, rock properties and measured fragments. 

 

 

The images captured with UAV and the 3D photogrammetric reconstruction were used to measure distances 

reached by the blocks, the 2D (projected) and 3D areas of the deposits and their volumes, generate slope profiles 

with overhangs, and contour maps. Table 2 summarizes the main geometrical descriptors of the falls. The scar 

area is measured in the 3D model, obtaining a 3D surface area of the scar. The coefficient of correlation r-

squared of the 3D scar area and the total volume is 0.99, using the lineal form “log(3DScarArea)”= 

“log(TotalVolume)” · 0.4476+32.963.  

 

 

Table 2: Summary of geometrical descriptors of the falls measured on the 3D models: 

 



Editorial version: https://link.springer.com/article/10.1007/s00603-019-01987-2 

16 

 

The falling rock mass tends to accelerate in the steepest part of the cliff (>45º) becoming the most “energetic 

part” of the trajectory (colored from yellow to red on 3D models of Figure 8). At Gurp (Figure 8, top), the slope 

profile shows a natural berm inclined less than 45º (blue zone located at the upper half of the cliff). Rockfalls 

may impact over this berm, causing the breakage of the mass and redirecting the trajectories of the fragments. 

The gentle surfaces at the upper part of the cliff in Gurp and Monasterio de Piedra (Figure 8), define the base 

of the rockfall scar. 

 

Figure 8: 3D models of Gurp and Monasterio de Piedra rockfalls. The zone affected by the rockfall is colored 

based on the slope surface angle.  
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3.2 Reconstruction of the detached rock mass and generation of the IBSD  

 

The initiator of the fractal fragmentation model is the 3D reconstructed rock mass intersected by several 

discontinuity sets. The IBSD is generated by means of a discrete fracture network (DFN). The assumptions and 

procedures we have considered are described next.  

 

The detached rockfall volume at each site is calculated as the difference of the Digital Surface Model (DSM, 

3d mesh surface) of the cliff before and after the event, following the methodology described in Ruiz-Carulla 

et al. (2015). The DSM prior to the event is generated from the LIDAR point cloud provided by the Cartographic 

and Geological Institute of Catalonia (ICGC), except for the case of Monasterio de Piedra, which is provided 

by the National Geographic Institute of Spain. When the morphology of the cliff and/or pictures before the 

event are not available, we manually modified the DSM in order to define the pre-event scenario as real as 

possible. The DSM of the cliff after the event is generated from the pictures taken using a UAV (DJI Inspire 2, 

X5S camera), except in the case of Vilanova de Banat that was obtained from ground pictures taken with a 

Nikon D90 camera. 

 

The Facet Matching plugins (Dewez et al., 2016) on Cloud Compare (Girardeau-Montaut 2006) and Compass 

tool (Thiele et al. 2017) are applied to the 3D point cloud to extract semi-automatically the joint pattern of the 

cliff. The parameters of the Facet Matching used to define the fitted facets are accommodated to the scale of 

the main joint sets. Thus, in the definition of large facet areas, high tolerances are accepted for the minimum 

distance between the 3d points and the facet planes. The fitting parameters are calibrated according to the scale 

of each rockfall scar, and the results are visually checked. The manual selection of the planes, the adjustment 

to the facets, as well as the identification of the joint traces is carried out using the Compass tool. Finally, the 

Discrete Fracture Network (DFN) is obtained by combining both semi-automatic and manual detection of joints, 

and exported as mesh format (Firpo et al., 2011). The DFN is overlaid to the volume of the detached rock mass 

to generate the IBSD using the software Rhinoceros ®. Joints are assumed fully persistent and are placed in its 

real position, thus providing the actual spacing. A few examples of the procedure followed are shown in Figure 

9. 

 

The blocks of the IBSD are listed and both the volume and the 3D surface area of each block are measured. The 

list of volumes is the input of the fragmentation model. Table 3 presents the main characteristics of the IBSD 

of the inventoried rockfall events  
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Table 3: Summary of IBSD characteristics: 

 

 

The 3D model of the scars shows the different orientation of the surfaces involved. The reconstructed volumes 

cut with the DFN of Gurp, Monasterio and Malanyeu cases are shown in Figure 9. The Cadí case is presented 

in Ruiz-Carulla et al (2017), following the same methodology. 
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Figure 9: Stereoplots of the joint sets identified on the 3D models of the rockfall scar. The joint sets are overlaid 

to the detached volumes to generate the IBSD of Gurp, Monasterio and Malanyeu events. 
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3.3 Calibration of the model 

 

Here, each rockfall event is calibrated using the same set of parameters “b”, “r” and “q” for all the blocks. The 

simulated block size distribution of fragments (RFFM_RBSD) is fitted to the measured (RBSD) (Figure 10 and 

Figure 11).  

 

Figure 10: RBSD measured in the field (upper left) and performance of the RFFM. The RFFM is applied to the 

IBSD of Pont de Gulleri, Lluçà, and Omells rockfalls to generate the simulated fragment distributions 

(RFFM_RBSD).  
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Figure 11: Application of the RFFM to the IBSD of Gurp, Monasterio de Piedra, Malanyeu and Cadí rockfall 

events and the simulated (RFFM_RBSD) and measured (RBSD) fragment distributions.  

 

The size distribution of the fragments shows scale variant patterns. The biggest fragments are often the strongest 

ones, and their volumes approach the size of the biggest blocks of the initial distribution. The curves of the 

volume distribution of the largest fragments of the RBSD and RFFM are substantially parallel and very close 

to the curve of the IBSD, in all the cases. It is also interesting the change in the slope of the distributions for the 

smallest fragments. The relation tends to flatten, evolving from a power law to an exponential curve (Figure 

11). Two possible explanations may be proposed for such a behavior: the undersampling of the small-size 

fragments, or the change of the pattern of breakage of the particles. Undersampling has been claimed as the 

cause for the deviation of the distribution of landslides and rockfalls from the power law (Evans & Hungr 1993). 



Editorial version: https://link.springer.com/article/10.1007/s00603-019-01987-2 

22 

 

In this case, this possibility has to be disregarded because, as shown in Table 1, the flattening of the curve 

initiates at fragment sizes several orders of magnitude larger that the smallest fragment size measured.  

Therefore, the flattening of the curve might reflect a change in the fragmentation pattern associated to the 

reduction of the particle size. As fragments become smaller than the joint spacing, fragmentation requires the 

breakage of the rock matrix.  

 

The model calibrated parameters are summarized in Table 4. In all the cases, the Xir
2 ranges between 0.0004 

and 0.018. Notice that the values of the geometric factor “b” range between 1.235 and 2.34, and the probability 

of survival “q” between 0.18 and 0.9. The parameter “r”, yields 4 cases where it is equal to 0 (Table 4), 

characterizing these rockfall events as a predominant invariant behavior.  

 

The fractal dimensions for the scale variant cases vary between a minimum and a maximum value (Dmin and 

Dmax in Table 4), as well as the probability of failure (Pmin and Pmax in Table 4), depending on the probability 

of survival “q”, the exponent “r”. In scale variant formulation, the fractal dimensions and the probability of 

failure vary for each iteration. In the numerical solution, the fractal dimensions vary for each “n” fragment 

generated, due to the “bi” term is replaced by “bn”. For these reason, in scale variant formulation, each new 

fragment generated uses a different value of the fractal dimensions, that can be plotted as a distribution or 

described by the maximum and the minimum values used. 

 

Table 4: Summary of the model parameters calibrated and measured errors. 
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4. Discussion 

 

4.1 Number of fragments 

 

The number of fragments generated is relevant in quantitative risk analysis because it affects the probability of 

impact. Given the uncertainties of the quantification of the persistence of the joints, the number of initial blocks 

of the IBSD has to be considered a rough estimation. On the contrary, the total number of fragments generated 

is well constraint by the in-situ measurements. Figure 12 (left) presents the number of blocks of the IBSD (blue 

circles), the number measured fragments (red diamonds), and the number of modeled fragments (green squares). 

The vertical displacement from the IBSD to both the RBSD and the RFFM shows the increase of blocks in each 

rockfall by breakage. The total number of fragments increases as the rockfall volume increases, as expected. 

To highlight the effect of fragmentation, Figure 12 (right) shows the number of blocks normalized by the 

rockfall volume. The normalized number of fragments ranges between 5 and 10 blocks/m3 for event volumes 

smaller than 100 m3, except in the Pont de Gulleri case, with 45 blocks/m3. In the latter case, the original rock 

mass is a densely fractured metamorphic rock and the initial number of blocks exceeds 10 blocks/m3.   

 

 

Figure 12: Left: Total number of initial blocks (of the IBSD, blue dots), fragments measured (red dots) and 

modeled fragments (green squares); Right: number of fragments normalized by the rockfall volume. 
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4.2 Probability of survival  

 

The parameter “q” controls the proportion of the initial block that remains after the breakage. It defines the 

largest fragment “lmax” remaining after the impact. In the presented calibration exercise, the same set of model 

parameters is used for all the blocks for each rockfall event.   Some trends may be derived from the results. The 

cases of Cadí and MdP stand out above the rest, showing remarkably low values of the probability of survival 

“q”, indicating that the initial blocks are significantly reduced in size. These two events are characterized for 

their large volume and free fall height (50 and 35 m, respectively, Table 2), suggesting that the impact energy 

must have an effect on it. On the opposite end, PdG and Lluçà display the highest “q” values indicating limited 

block fragmentation. The latter mobilized small volumes and fell from a reduced free fall height.   

 

Therefore, the results of Table 4 should be interpreted in light of both the probability of survival and the number 

of new fragments created by the impact. Thus, despite the probability of survival of Omells (0.52) is smaller 

than in Gurp (0.67) and Malanyeu (0.61), in the latter two, the number of new generated fragments has increased 

up to two order of magnitude and reaching similar normalized number of fragments (Figure 12, right), which 

indicates more intense fragmentation. These figures are approximate values only because the fine fraction is 

not included in the plots. 

 

According to the equation 7, the model parameters, “q” and “b”, relate to the Fractal Fragmentation Dimension. 

However, as shown in Figure 13 left, the relation is weak. Comparing the model parameters with some rock 

mass properties, the RMR (Bieniawski, 1979) shows a very weak positive correlation with the geometric factor 

“b” and with the probability of survival (Figure 13 right). Similarly occurs with the correlation with the Uniaxial 

Compressive Strength (UCS) and the Tensile Strength (TS) (Figure 14), where no clear correlations are found.      

 

Figure 13: Calibrated model parameters “b” and “q” versus Max. Fractal Fragmentation Dimension (left) and 

Rock Mass Rating, RMR (right). 
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Figure 14: Calibrated model parameters “b” and “q” versus Uniaxial Compressive Strength (left) and Tensile 

Strength (right). 

 

The lack of direct correlation between fragmentation and rock strength parameters in already known. In fact, 

real scale tests carried out with relatively homogeneous rocks and similar setting have shown high scattering of 

the results (Giacomini et al. 2009; Gili et al. 2016). Fragmentation is a complex physical process. Many 

parameters contribute to fragmentation such as the presence of discontinuities and/or fissures in the impacting 

rock, the strength of the rock, the impacting energy, the rigidity of ground conditions, impact angle and velocity 

(Dussage et al. 2003; Wang and Tonon, 2010). This complexity cannot be visualized be means of bivariate 

correlations. 
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4.3 Newly generated surfaces and impact energy 

 

The energy required to break the rock blocks has been related to amount of the new area created (Bond 1952, 

Locat et al, 2006, Crosta et al 2007). We have calculated the increase of blocks’ surface area associated to 

fragmentation in the inventoried rockfall events. First, we listed the 3D surface areas of the blocks in the IBSD, 

and we sum them all to obtain the total Initial Area (IA3D) of the detached rock mass. We also calculate the 

equivalent surface area of cubes having the same volume than the blocks of the IBSD (IAcubic) using the 

following expression: 

IAcubic = 6V2/3  Eq. 9 

The reason for calculating the cubic area is that usually the data collected in rockfall inventories are the list of 

volumes, not the areas. The results of Figure 15 show that IA3D (light blue columns) is bigger than IAcubic (dark 

blue columns).  

 

The Total Area (TA) is the total surface area of the fragments calculated from the RFFM simulation (TARFFM) 

or based on the measured RBSD list of volumes (TARBSD) (Figure 15, green and red columns, respectively). We 

measured in the field 3 lengths (d1, d2, d3) of each rock fragment to calculate the total surface area assuming 

prismatic and cubic shapes (Table 5). As there is no significant difference between the prismatic and the cubic 

estimation, the latter was used to calculate the area of the RBSD.   

 

Table 5: Surface area of the fragments calculated from the measurement of three fragment dimensions (d1, d2, 

d3) assuming prismatic shape and the equivalent cubic shape:  

 

 

As shown in Figure 15 the fragmentation model reproduces satisfactorily the TA, being the TARBSD (red column) 

and the TARFFM (green column). 
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Figure 15: Surface areas calculated: Initial surface area (IA) from the IBSD using a cubic estimation (dark blue) 

or from 3d shapes of the blocks modeled (light blue bar); Total surface area of the fragments generated (TA) 

from RFFM and RBSD (green and red bars respectively); using a cubic estimation  

 

The difference between the IAcubic (blue surface in Figure 16) and the TA (using TARBSD or TARFFM , both cubic 

estimations (red surfaces in Figure 16), yields the new surface area (NA) generated by breakage (orange surface 

in Figure 16), defined as:   NARBSD = TARBSD -  IAcubic and NARFFM = TARFFM -  IAcubic. A very good correlation 

is found by fitting a power law to the total volume of the rockfall (Figure 17, left). The coefficients of 

determination r-squared are 0.971 for the NARFFM and 0.96 for the NARBSD.  

 

Figure 16: Conceptual scheme of 3D surfaces in a single block breakage; Initial Area, Total Area, and the New 

Area generated by breakage and estimated by the difference of the Total Area minus the Initial Area. 
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Spreafico et al (2017) and Blasio & Crosta (2016) found a relation between the new surface area generated 

(NA) and the fragmentation energy. This is confirmed in Figure 17 right, the total potential energy of the 

rockfall event and the potential energy of the first impact on the ground are plotted against the new surface area 

created.  A power law can be fitted with coefficients of determination r-squared of 0.96 (based on total potential 

energy) and 0.90 (based on the first impact potential energy), both cases using the NARFFM. 

 

 

Figure 17: Left: New surface area from RBSD (NARBSD) or from RFFM (NARFFM) versus Total rockfall volume. 

Right:  New surface area (NARFFM) versus Total Potential Energy and the 1st Impact Potential Energy. 

 

The Specific Surface Area (SSA) is a property of solids defined as the total surface area per unit volume (m2/m3 

or m-1). The total surface areas IA, TA and NA have been normalized by the rockfall volume, obtaining: the 

Initial Specific Surface Area (ISSA) representing the initial state in the cliff, the Total Specific Surface Area 

(TSSA) representing the deposited fragments, and the New Specific Surface Area (NSSA) representing the new 

surfaces related with the breakage, (Table 6). 
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 Table 6: Initial Specific Surface Area (ISSA), Total Specific Surface Area (TSSA); New Specific Surface Area 

(NSSA); the proportion of NA over TA in percentage (equal to NSSA/TSSA); and the Increase Area ratio. 

 

 

Figure 18 (left) shows the ISSA (in blue), the NSSA (stacked in orange) and the TSSA (adjacent column in 

red). Also the proportion of NA/TA (or NSSA/TSSA) is plotted as a percentage. The ISSA column represents 

the initial surfaces per volume unit, defining the initial degree of fracturing of the rock mass. NSSA quantify 

the new area created by breakage. The vertical bars (Figure 18 left) represent the proportion between 

disaggregation (previously existing surfaces) and breakage (new surfaces). The increase of area due to breakage 

results in an Increase Area Ratio, defined as the total area (TA) over the initial area (IA). Figure 18 (right) 

shows the trend of the Increase Area Ratio with the model parameters. 

 

 

Figure 18: Left: Initial, New and Total Specific Surface Area (ISSA, NSSA and TSSA). Left bar stacks the 

ISSA (in blue, from IBSD) and the NSSA generated by breakage (in orange, with the percentage that represent 

over the TSSA labelled on the top). Right bar represents the TSSA representing the deposited blocks (in red, 

from RBSD). Right: Model parameters versus Increase Area ratio. 
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Pont de Gulleri (PdG) shows the highest value of TSSA, however, only the 21% of the surface is new and 

related to breakage. 79% of the surfaces were already present in the detached rock mass as shown by the ISSA 

value of 12.5 m2/m3. In this case, fragmentation is governed by the disaggregation of the rock mass along pre-

existing discontinuities. 

 

Monasterio de Piedra (MdP), Cadi and Omells events show TSSA values close to 10 m2/m3 with a variable 

proportion of newly generated surfaces: 87%, 65% and 49% respectively, being Monasterio de Piedra the event 

with the highest breakage ratio, followed by the Cadi case. These high NA/TA ratios may be explained by the 

high free fall heights and the potential energy (Figure 17, right).  In contrast, rockfalls of Lluçà, Gurp and 

Malanyeu show low values of TSSA and are interpreted as low fragmentation events. In the latter group of 

events, a number of blocks remain intact or slightly broken only: Lluçà includes a block of 8,5 m3 over 10,7 m3 

of total detached mass; Gurp includes two blocks of more than 20 m3 over the total 100 m3 of rockfall; and 

Malanyeu, where the deposit includes 7 blocks greater than 100 m3, with a maximum boulder of 445 m3, and 

more than 60 blocks bigger than 10m3.  

 

The model parameters show a trend with the NA (Figure 19, right) and a distinct correlation with the proportion 

of NA/TA (Figure 19, left). By decreasing the geometric factor “b” and the probability of survival “q”, the 

NA/TA increase, increasing the proportion of new fresh faces by breakage. 

 

Figure 19: Model parameters “b” and “q” versus the proportion of New Area over the Total Area (NA/TA, left), 

and versus New Surface Area created, (NA, right).  
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4.4 Model applicability 

 

Fragmentation is a stochastic phenomenon. Further parametric analyses and calibration exercises are needed 

before providing guidance for the performance of the RFFM and its implementation in rockfall hazard 

assessment. Despite of this limitation, our results show that fragmentation scenarios in which the size of the 

potentially unstable rock mass and the impact height are estimated beforehand, can be simulated using a range 

of initial model parameters. This is exemplified in Figure 20. A potentially unstable rock mass is identified in 

a cliff. The rock mass is characterized by its volume and the IBSD. 

 

A preliminary trajectographic analysis may provide the most likely impact point within confidence limits, from 

which estimate the potential energy (Ep) of the first impact and a first estimation of the new area generated by 

fragmentation (Figure 17 right and Figure 20). The ratio NA/TA is then obtained from the following expression: 

NA NA

TA NA IA



         Eq. 10 

Being all the parameters known at this stage. The model parameters “b” and “q” may be estimated (with a range 

of confidence or introducing a random variation in a defined range) using Figure 20 bottom. The fractal 

dimension (D) and lmax are finally estimated from Eqs. 7 and 8, respectively. The main equation (Eq.5) of the 

RFFM may be used to generate a distribution of fragments until the sum of the fragments reach the initial block 

volume or until the new fragments generated become smaller than the minimum volume defined. The scale-

variant behavior is controlled with parameter “r” and may be considered equal to 0 as a first approach.  
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Fig. 20: Framework for the implementation of the RFFM. 

 

 

5. Conclusions 

 

Perfect (1997) highlights the importance of describing the initial state of a brittle material before and after the 

fragmentation to study properly the phenomenon. UAV and digital photogrammetric techniques were used to 

obtain detailed 3D models of the whole scenario, and specifically, of the scar. From the latter, it is possible to 

reconstruct the detached volume and characterize the joint pattern. We used the real position of the modelled 

joints to generate the DFN, assuming infinite persistence, as hypothesis (as a first approach). The reconstructed 

volume is cut in order to estimate the IBSD. We inventoried 7 rockfalls with total volumes ranging between 2.6 

m3 and 10.000 m3, measuring more than 7200 fragments of the deposits (3 lengths with a tape assuming 

prismatic shape) in order to obtain the RBSD of each inventoried rockfall event. Using the IBSD as input, and 

the measured RBSD, we calibrate the model parameters to simulate the RBSD and the estimation of the new 

surfaces created. The model is able to reproduce satisfactorily the measured RBSD, from the IBSD.  
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In order to simulate all possible rockfall scenarios, the model has been upgraded, introducing two main 

improvements:  

 

1) Avoidance of bins, working in cumulative form and preserving the mass balance: With the use of bins, all 

the fragments from each size bin in the IBSD is defined by an average size, and the fragments created on each 

iteration are equal size. Due to this, the mass balance cannot be guaranteed. The upgraded model uses each 

initial block of the IBSD (list of volumes) as initiator, and generates an accumulated number of fragments of 

decreasing size that fits better to the observations, specially in the case of a single block as initiator like in the 

real-scale fragmentation test on quarry. The model generates fragments until the sum of fragments is equal to 

the initiator initial volume, or until the fragments become smaller than a threshold value. The remaining mass 

is computed as volume of fine fragments (finer than the threshold defined). Thus, the upgraded model preserves 

mass balance.  

 

2) The use of the scale-variant behavior: Based on the RBSD measured in the deposits and from the block size 

distributions measured in real-scale fragmentation tests, a scale-variant (or scale-dependent) behavior is 

observed. The upgraded model uses the formulation proposed by Perfect (1997) for scale-variant fragmentation. 

The probability of failure is defined by the probability of survival “q”, and represents the largest remaining part 

of the block normalized by the initial block volume. The probability of survival controls whether a block breaks 

or not, being 1 for unbroken blocks. Here, the “q” is applied over each initiator instead to the global number of 

initial blocks. Then, a new parameter “r” controls scale dependency making blocks either stronger or weaker 

by decreasing their size. This happens when the fragment size is smaller than the minimum joint spacing or 

weakness planes within the rock mass. The upgraded model is able to reproduce all kind of block size 

distributions observed in natural rockfall deposits and of real-scale fragmentation test, even when the initiator 

is a single block. 

 

In this study, we calibrate the model parameters using the same set of parameters “b”, “r” and “q” for all the 

blocks of each rockfall event. The calibrated values of the geometric factor “b” range between 1.235 and 2.34, 

and the probability of survival “q” from 0.18 to 0.9. The parameter “r” controls the variant or invariant 

behavior, yields 4 cases where it is equal to 0, characterizing these rockfall events as a predominant invariant 

behavior. In all the cases, the Xir
2 used to calibrate the model ranges between 0.0004 and 0.018. We use the 

average parameters of the fragmentation model, despite the fact that the set of parameters can be specific of 

each block, depending on the impact conditions. Future trajectory simulators considering fragmentation should 

be able to apply a different set of parameters for each block at each impact.  A better understanding of factors 

controlling fragmentation is required and this will be the focus of our future research. In particular, the rigidity 

of the ground surface, which despite its relevance is difficult to quantify, as well as the impact conditions 

(impact angle), and both the shape and strength of the blocks. 
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The RMR shows a positive correlation with probability of survival “q”, however, the correlation with the 

geometric factor “b” is weak. Similarly occurs with the correlation with the Uniaxial Compressive Strength and 

the Tensile Strength without any direct correlation with the model parameters. It may be noticed a relation 

between the 3D surface area of the scar and the total rockfall volume, as well as the number of fragments and 

new area created in a wide range of orders of magnitude. The new area created is related to the fragmentation 

energy, and it appears directly correlated with the total rockfall volume as well as the total potential energy.  

 

We propose the initial specific surface area (ISSA) and the specific area of the resultant fragments (TSSA) as 

quantitative descriptors of fragmentation. The ISSA (Initial Specific Surface Area) is the one generated by 

disaggregation of the rock mass through the preexisting discontinuities, and is defined by the IBSD. The NSSA 

(New Specific Surface Area) is the result of the breakage of the rock that creates new surfaces. According to 

this, the rockfall fragmentation may be characterized by the proportion of New Surface Area over Total Surface 

Area (NA/TA = NSSA/TSSA). The model parameters show a strong correlation with the proportion of NA/TA 

and with the Increase Area ratio defined as TA/IA as alternative. 

 

Finally, a relation has been observed between the potential energy of the first impact, the new surface area of 

fragments generated, and the model parameters. However, the number of inventoried cases is still small to 

generalize these findings. The fragmentation process is a complex phenomenon where randomness may affect 

the results. From real-scale fragmentation test, we observed that blocks dropped from the same height on the 

same place yield “q” values ranging between 0.2 and 1 (unbroken) depending on the local impact conditions 

(Ruiz-Carulla et al. 2016b). For these reasons, a probabilistic approach of the fragmentation should still be used. 
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