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a b s t r a c t 

A multifractal analysis on a finite-range-scale of the plume concentration images at different experimen- 

tal conditions (the height of the source H o ), where the measure is the grey value of the image (from 0 to 

255), was applied to study its structure through time. The multifractal spectrum showed the characteristic 

inverse U-shape and a similar evolution in all H o . The variation of the Hölder exponent ( �α) presented 

different am plitudes at different moments and increased with time. The symmetry of the spectrum ( �f ) 

decreased with time achieving negative values (from left hand asymmetry evolving to right asymmetry). 

We show the different behaviour of axial velocity ( W ) with �α and �f . There is a linear relation of en- 

trainment coefficient ( αe ) and the entropy dimension ( α1 ). Therefore, the multifractal spectrum and the 

derived parameters can be used as markers of plume evolution as well as to study the effect of experi- 

mental conditions. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Turbulent plumes are fluid motions whose primary sources of

kinetic energy and momentum flux are body forces derived from

density differences [ 1 , 2 ]. The plume boundary is an edge across

which the ambient fluid is entrained and the plume boundary

moves at the velocity of the plume fluid. In geophysics, it is usu-

ally the generation of turbulent plumes as a part of a dispersion

process. For example, volcanic plumes or river plumes can be ob-

served where a stream, usually a river, empties into a lake, sea or

ocean. Therefore, the geophysical importance of turbulent plumes

is clear. It is very interesting to use fractal methods to analyse

satellite images to detect and quantify the time behaviour of vol-

canic plumes to study problems related to environmental impacts

or aviation hazards [ 3 , 4 ]. It is also possible to determine the di-

rection of littoral transport at a time if we study the geometry

of a river plume. Fractal methods can do this analysis [5] . Larger-

scale features of plumes are generally well-represented by the frac-

tal method characterizing scalar isosurfaces in terms of fractal and

multifractal properties. Many other processes can be adequately

described by fractals, such as river networks [6] , rainfall dynam-

ics [7] , cloud shapes [8] and turbulent dispersion of a contaminant

in the atmospheric boundary layer [9–12] . 
∗ Corresponding author 
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The fractal technique has been used to analyse turbulent fields

n several contexts and provides a natural method for describing

he self-similar nature of processes [13] . These are useful tools to

nalyse the geometric evolution of surfaces in turbulent flows and

he implications of this geometric behaviour on mixing [14] . 

Several studies analyse the relation between the fractal di-

ension of various surfaces (boundary layers, axisymmetric jets,

lane wakes and mixing layers) in high Reynolds number turbu-

ent flows. In 1989, Sreenivasan et al, summarized the previous re-

ults on the fractal dimensions of scalar and vorticity interfaces in

everal classical turbulent flows (a fractal dimension of 2.35 ± 0.05

15–16] ). Fractal dimensions between 1.3 and 1.35 are obtained

rom LES (large-eddy simulation) plumes for neutral and convec-

ive conditions [17] . Prasad and Sreenivasan used the box-counting

ethod to analyse images of jet sections and determined that the

ractal dimension of jet boundaries was 1.36, which is close to es-

imates from atmospheric data [14] . Hentschel and Procaccia pre-

icted a slightly higher cloud perimeter fractal dimension in the

ange between 1.37 and 1.41 [13] . Sykes and Gabruk determined a

ractal dimension (roughly 1.30–1.35) for the scalar concentration

eld of a turbulent plume dispersion [17] . Lane-Serff investigated

he effects of buoyancy on the fractal structure of round, turbu-

ent jets and plumes. He also measured the fractal dimension of

oncentration contours in jets and plumes, which had an apparent

inimum of 1.23 [18] . 

https://doi.org/10.1016/j.chaos.2017.10.011
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2017.10.011&domain=pdf
mailto:maplopez@bio.ucm.es
https://doi.org/10.1016/j.chaos.2017.10.011
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Many processes are highly intermittent with spiky measures

nd strong nonuniformities (for example, the distribution of a tur-

ulent kinetic energy dissipation rate). These intermittent pro-

esses cannot be well-described by the typical moment methods

nd, therefore, a multifractal method is required [19] . Multifractal

nalysis aims to deduce the multifractal spectrum which is mea-

ured for several positive magnitudes that characterize small-scale

otions [20–22] . The multifractal description is more general than

ther theories. Some of these are special cases; for example, the

oint f( α = 1) = 1 in the energy dissipation rate spectrum is Kol-

ogorov’s theory (K41). Actually, we consider that turbulence is a

ultiplicative process and, therefore, the multifractal method can

e used to study turbulence [12] . Puthenveettil et al. conducted

he multifractal analysis using binary images and the standard box

ounting methodology to estimate the multifractal exponents [23] .

inally, Lane-Serff concluded that the use of a single value for the

ractal dimension in jets and plumes is questionable [18] . 

The objective of our study is to apply a multifractal analysis to

ompare the characteristics of the multifractal spectrum, obtained

rom grey-scale images of the plume at different times and under

ifferent initial conditions, with the classical magnitudes that char-

cterize the plume’s dynamic. First, we describe the experimen-

al procedure to generate a turbulent plume, its main characteris-

ics and the multifractal method in Section 2 . In §3, we present

he multifractal results and their comparison with the axial veloc-

ty and the entrainment coefficient of the plume. Finally, in §4 we

resent the conclusions and we discuss the relevance of this anal-

sis for the presented case study. 

. Material and methods 

.1. Experimental setup and procedures 

The aim of the experimental procedure is to generate a turbu-

ent axysimmetric plume, controlling its position and its physical

haracteristics as buoyancy and momentum fluxes. We release a

olume fluid vertically down (with a flow rate up to 8.40 cm 

3 s −1 )

rom a small orifice, with a diameter d = 0. 6 cm, into a stationary

ody of water with a height of 16.5 cm contained in a glass tank

f dimensions 32 cm high and a 25 cm × 25 cm cross-section . The

mall orifice is located at a height H o which takes values of 2 cm,

 cm, 3.5 cm and 6.5 cm and, therefore, increases the overall initial

otential energy of the fluid system and the momentum flux. The

twood number, A , measures the density difference of the fluid

ystem. The Reynolds number at the source, based on the source

iameter and the mean velocity there, is approximately 20 0 0. The

ow was not observed in the far field (ranging between 250- d and

50- d ) due to the dimensions of the tank. The releasing fluid was

 potassium permanganate solution (500 cm 

3 ) which is consid-

red as incompressible and miscible and, as such, presents a high

chmidt number (of the order of 10 3 ) and has an intense purple

olour (from pink to mauve). Thus, it was not necessary to add a

ye as passive tracer and the flow was directly visualized. A de-

ailed description of the experimental setup can be found in López

24] and in López, Cano and Redondo [25] . 

The flow was back illuminated from conventional fluorescent

ights approximately 0.5 m from the tank giving a projection. This

rocedure gives an integral image of the plume volume and the

egistered images average the concentration over the plume vol-

me. The flow was recorded by a high-quality digital video sys-

em at high velocity mode (100 fps). The video recordings of the

xperiments were sequenced into frames using a frame-sequencer

oftware (VirtualDubMod). The frame array had a resolution of

40 × 480 pixels capturing the area of 25 × 18 cm 

2 . Each frame has

ntensities recorded as integers in ranging from 0–255. For each

xperimental video, 288 frames were obtained and between 40
nd 60 frames of the time-dependent, three-dimensional plume

ispersion were used for the multifractal analysis (those without

nteraction of the plume with the tank contours). 

Fig. 1 shows a sequence of digitized video images from a sin-

le experiment and show the time evolution of a turbulent plume.

pon entering the ambient fluid, the source fluid becomes unstable

nd forms a turbulent plume at the centre of the tank ( Fig. 1 (a)–

d)). As the plume is gravitationally unstable, it engulfs lighter fluid

s it evolves and there is entrainment of the ambient fluid that

s directed through the border of the turbulent plume [26] . The

ownward speed of the plume produces an upward recirculating

ovement in the ambient fluid which favours the mixing between

hem. 

The behaviour of turbulent plumes is described by three ordi-

ary differential equations for the fluxes of volume, momentum

nd buoyancy under the Boussinesq assumption [1] . The governing

arameters are the radius r , the vertical velocity W , the entrain-

ent velocity U e and the reduced gravity g’. 

The difference between the plume -fluid radial velocity and the

otal fluid velocity naturally quantifies the purely horizontal en-

rainment flux of ambient fluid into the plume. This process is

haracterized by an inflow speed perpendicular to the plume axis

hich is characterized by the entrainment assumption [1,26–28] .

his hypothesis states that the rate of transfer of ambient fluid

nto the plume, U E , is proportional to the mean centre-line ver-

ical speed of the plume, W, or axial velocity. The ratio of inflow

r entrainment velocity to the plume vertical speed is called the

ntrainment constant: αE = U E /W . Fig. 2 shows these main magni-

udes that characterize the dynamics of a plume overwritten on

he third frame of Fig. 1 ( t = 0.44 s). 

Away from the exit of the nozzle, similarity arguments show

hat the plume spreads linearly and the axial velocity decreases in-

ersely to the distance. The mean flow model described by Morton

t al. gives the plume radius r proportional to the distance from

he source z ( r = 6 αP z/ 5 ) where αp is the entrainment coefficient

or a plume and the mean vertical speed W is proportional to r −3 

 W ∝ r −3 ) for plumes [1,18] . 

Images of plumes, such as other digital imagery, typically con-

ain a large proportion of mixed-pixels (pixels whose digital num-

er is the weighted average of more than one constituent, such as

 water/sodium permanganate). To facilitate identification of con-

tituent peaks in the grey-scale histogram, a 2-D filter, executed

n NIH ImageJ [29] , was run on each frame to mask pixels which

iffered by more than 0.1% from the surrounding neighbourhood

f 25 pixels (5 × 5 unit area). Full details of this technique can be

ound in Elliot and Heck [30] . The resulting images are shown in

ig. 1 (e)–(h). 

.2. Multifractal analysis 

Multifractal techniques divide the full image of analysis into

oxes to construct samples at different scales. The size of the box

or implementing the multifractal method will be the one between

he highest resolutions (1 pixel) to the highest size of the full im-

ge. A partitioning process starting from the smallest resolution to

uccessively form larger boxes combining pixels is called upscal-

ng process. There are two main methods of upscaling process: the

ox counting method and gliding box method. In this study, we

ave applied the latter. 

In box counting method the number of boxes will be smaller

hen the box size ε goes closer to 1. This implies that the num-

er of samples will not be enough for carrying out good statisti-

al analysis, increasing the error associated to the measure. On the

ontrary, gliding box method construct samples gliding a box over

he grid map in all possible ways provided that the box is com-

letely bounded by the grid map. Through this procedure more
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Fig. 1. Time evolution of a plume. A fluid of different density from the ambient fluid is injected. The Atwood number is A = 0.01 and the height H o = 2 cm . First row the 

original images and second row the grey images for the following times: (a) and (e) 0.03 s; (b) and (f) 0.15 s; (c) and (g) 0.44 s; (d) and (h) 0.59 s. 

Fig. 2. The main magnitudes of a turbulent plume. The axial vertical velocity is W, r 

is the plume radius and U e is the radial entrainment velocity at which the ambient 

fluid is come into the plume. The tilted arrows show the direction of the engulfed 

ambient fluid. 
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samples are obtained for each scale, improving the statistical sig-

nificance and reducing the measurement uncertainty [31] . 

The gliding box method was originally used in lacunarity anal-

ysis [32] and later modified by Cheng [33] for application to mul-

tifractal analysis and then used in soil analysis. First estimates the

mass exponent function τ (q) where q is the statistical moments
rder: 

(q ) = 

log 

(
1 

N(ε) 

N(ε) ∑ 

i =1 

μq 
i 
(ε) 

)

log ε 
(1)

here ε is the dimensionless box size, N( ε) represents total num-

er of gliding boxes of size ε with measure μ( ε) � = 0 where μ
epresents the grey value of the image (from 0 to 255). Finally, E is

he topological dimension of the object ( E = 2 for two-dimensional

bjects and E = 3 for three dimensional objects). 

The singularity index α, or Hölder exponent, can be determined

y the Legendre transformation of the τ (q) curve as [34] 

= 

dτ (q ) 

dq 
. (2)

f q = 0, the coefficient α is the fractal dimension. The exponent α
s called the entropy dimension when q = 1 and, finally, if q = 2, α
epresents the correlation dimension. 

The number of cells of size ε with the same α, N α( ε) , is related

o the cell size as N α(ε) ∝ ε − f (α) , where f( α) is a scaling exponent

f the cells with common α. This parameter f( α) can be estimated

umerically as [34] : 

f (α) = qα(q ) − τ (q ) . (3)

Assuming that the uncertainty measurement is propagated pro-

ortional to the one associated for τ (q) which is calculated analyt-

cally. So the uncertainty of α will be: 

α = 

�τ

τ
α. (4)

n the case that the variable under study behaves as a multifractal

easure, the shape of the multifractal spectrum (MFS), i.e., a graph

f f ( α) vs. α, will be concave down parabolic shape ( Fig. 3 ). From

he MFS several parameters can be calculated to quantify its shape
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Fig. 3. Multifractal spectrum (MFS) example. We show the parameters derived from 

it to quantify its shape. The minimum point ( αmin , f ( αmin )) corresponds in this case 

to q = + 10 and the maximum point ( αmax , f ( αmax )) corresponds to q = −10. 

Fig. 4. The partition function χ (q, ε) versus the length size of the box ε. Each 

colour represents the different values of q . Frame time is 1.02 s. Experimental condi- 

tions: A = 0.01 and H o = 2 cm. (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 
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Fig. 5. The mass exponent function τ (q) versus q . Each colour represents the frame 

time of the experiment with conditions: A = 0.01 and H o = 2 cm . (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 
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s it is described in Fig. 3 . The asymmetry of MFS ( �f ) to the right

nd left indicates scaling domination of small and large values, re-

pectively [35] . The width of the MFS on singularity indexes ( �α)

s in the f ( α) values (range) indicates overall complexity [36,37] . 

The Hausdorff dimension calculated for q = 1 ( α1 = α( q = 1 ) =
f (q = 1) ) corresponds to the entropy dimension of the distribution

elated to the information or Shannon entropy [38] , and quantifies

he degree of disorder present in a distribution. According to An-

raud et al. [39] and Gouyet [40] a α1 value close to 1.0 character-

zes a system uniformly distributed throughout all scales, whereas

 α1 close to 0 reflects a subset of the scale in which the irregu-

arities are concentrated. 

. Results and discussion 

.1. Multifractal analysis results 

First, we calculate the partition function χ (q, ε) where ε is the

ength size of the box. This function represents the qth -order mo-

ent of the probability distribution of the grey values [34] . Fig. 4

hows the partition function versus ε on a log-log scale for differ-

nt values of q ranging from −10 to 10 with by increments of 1. All

he curves show a high degree of linearity, which means that there

s a relation between scales. However, this similar linear behaviour

epends on the sign of q . If q is positive, the lines are decreasing

nd if q is negative, we have growing straight lines. All these char-

cteristics note the multifractality of the measure (the grey value).
rom these straight lines, we obtain their slopes, which are the

orresponding values of the mass exponent function τ (q) . For any

iven sample, there is a smooth variation with q . 

Second, the mass exponent function τ (q) is calculated for dif-

erent time frames and different experiments to analyse the mul-

ifractal tendency. Fig. 5 shows the mass exponent function τ (q)

ersus q for different times of one experiment (with A = 0.01 and

o = 2 cm). All curves show some degree of nonlinearity and have

ifferent τ (q) behaviour. This expresses scale dependence, a multi-

ractal tendency and time dependence [36] . The null value for τ (q)

s reached when q is 1 due to the conservative character of this

easure. 

Finally, the graph of the Hölder exponent α versus f( α) (mul-

ifractal spectrum) for different times and different experiments

s calculated. The multifractal spectrum quantitatively character-

zes variability of the measure (grey values from 0 to 255) stud-

ed with asymmetry to the right and left, indicating domination

f small and large values, respectively [35] . The multifractal anal-

sis on each grey image revealed the multiscaling nature from 1

o 196 pixels side length of the gliding box. Our study is based on

his range of scales. 

Additionally, in all the MFS, the dimension of the support of the

easure is 2 ( f( α) for q = 0), the dimension of an Euclidean plane.

his case shows a multifractal measure where its support is not

ractal [41] . 

The multifractal spectrum shown at three times for different

xperimental conditions remark a common behaviour in their evo-

ution. Fig. 6 shows the function f( α) versus α for different times

f several selected experiments with different heights ( H o ). 

At the beginning (blue line), the spectrum width is narrow and

resents a left hand asymmetry pointing out a narrow range of α
alues and a strong scaling behaviour in high grey values (lighter

ixels). In a second moment (grey line), the spectrum becomes

ider and keeps the left asymmetry with a different strength de-

ending on the H o of the experiment. Later, (red line) the spectrum

ecomes more symmetrical and wider. This indicates the same

caling strength in the lower grey values as in higher ones. How-

ver, depending on the experimental H o a slight right asymme-
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Fig. 6. Multifractal spectrum f( α) versus the Hölder exponent α. Each colour represents a different time of the experiment with A = 0.01 and the following conditions: (a) 

H o = 2 cm; (b) H o = 3.5 cm; (c) H o = 6.5 cm. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 1 

Parameters extracted from the multifractal spectrum based on the grey values measure at different times t for experiments with the Atwood number A = 0.01. 

Hölder exponent at q = −10 ( αmax ), q = 1 ( α1 ), q = 10 ( αmin ), and �α = αmax - αmin . Multifractal value at αmax is f( αmax ), at αmin is f( αmin ) and �f = f( αmax )- f( αmin ) . 

Ho (cm) t (s) αmin α1 αmax �α f( αmin ) f( αmax ) �f 

2.0 ± 0.1 0.010 ±0.01 1.862 ± 2.0010 −3 1.990 ± 0.00 10 ° 2.036 ± 7.72 10 −4 0.174 ± 0.003 1.151 ± 0.039 1.828 ± 0.016 0.677 ± 0.055 

2.0 ± 0.1 0.260 ±0.01 1.705 ± 0.006 1.978 ± 0.00 10 ° 2.128 ± 0.003 0.423 ± 0.009 1.100 ± 0.122 1.850 ± 0.026 0.750 ± 0.192 

2.0 ± 0.1 0.600 ±0.01 1.831 ± 0.005 1.990 ± 0.00 10 ° 2.307 ± 0.007 0.476 ± 0.012 1.492 ± 0.150 1.343 ± 0.152 −0.149 ± 0.258 

3.5 ± 0.1 0.020 ±0.01 1.775 ± 0.003 1.990 ± 0.00 10 ° 2.018 ± 4.72 10 −4 0.243 ± 0.003 0.628 ± 0.062 1.910 ± 1.00 10 −2 1.282 ± 0.072 

3.5 ± 0.1 0.340 ±0.01 1.805 ± 0.006 1.999 ± 0.00 10 ° 2.255 ± 0.007 0.450 ± 0.013 1.347 ± 0.109 1.649 ± 0.144 0.302 ± 0.253 

3.5 ± 0.1 0.500 ±0.01 1.850 ± 0.005 1.998 ± 0.00 10 ° 2.302 ± 0.007 0.452 ± 0.013 1.541 ± 0.104 1.435 ± 0.148 −0.106 ± 0.252 

6.5 ± 0.1 0.010 ±0.01 1.932 ± 0.001 1.992 ± 0.00 10 ° 2.012 ± 4.26 10 −4 0.080 ± 0.001 1.580 ± 0.020 1.924 ± 9.00 10 −3 0.344 ± 0.029 

6.5 ± 0.1 0.360 ±0.01 1.836 ± 0.006 1.994 ± 0.00 10 ° 2.273 ± 0.008 0.437 ± 0.014 1.439 ± 0.109 1.474 ± 0.161 0.035 ± 0.270 

6.5 ± 0.1 0.440 ±0.01 1.853 ± 0.005 1.994 ± 0.00 10 ° 2.286 ± 0.008 0.433 ± 0.013 1.547 ± 0.105 1.395 ± 0.160 −0.152 ± 0.265 
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try can be observed. Therefore, the multifractal parameters show

sample-to-sample and time-to-time fluctuations. 

As time increases, the multifractal parameters are not similar

( Table 1 ). The value of the Hölder exponent at the box dimension

α0 is not constant in time; in fact, it increases. It achieves values

slightly greater than 2, reflecting the plume expansion. The entropy

dimension coefficient α1 does not have the same behaviour and,

depending on the experimental H o used, its evolution is different.

For H o = 2 cm, α1 has a tendency to decrease as the time increases

until a certain point where it increases again to its original value.

In the case of H o = 3.5 cm, at the beginning, α1 has an increase

tendency and at the end decreases. Finally, for H o = 6.5 cm, the be-

haviour of α1 is similar to the former case but does not decrease

at the end, keeping a constant value. 

There are two parameters which are deduced from the graphs

of Fig. 6 . The first one is the width of the curves (or variation

of the Hölder exponent), which is defined as �α = αmax − α ,
min 
here αmin is the first value of the Hölder exponent and αmax 

s the last one (as shown in Fig. 3 ). This parameter quantifies the

idth of the multifractal spectrum and indicates the overall vari-

bility. We observe that the multifractal spectrum presents differ-

nt amplitudes for different times as commented earlier. 

The second parameter is defined as � f = f ( αmax ) − f ( αmin ) ,

hich is the height of the graphs in Fig. 6 (see Fig. 3 ). This mag-

itude represents the symmetry of the curve and tends to zero if

he curve is more symmetric. The differences between f ( αmin ) and

 ( αmax ) are not constant in time: at the beginning, there is not a

lear trend and later they decrease until a negative value ( Table 1 ),

s commented earlier. 

In general, �α increases with time, implying an increase in

verall variability in space. This reflects that as the plume evolves

ver time, the darker areas are found closer to the plume’s axis

nd the borders show lighter greys increasing the variability of

rey values comparing to the first frame of the plume. 
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Fig. 7. Time evolution of the axial velocity. We show the vertical velocity W for 

experiments with A = 0.01 at different H o values of height. 
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Fig. 8. The Hölder exponent at q = 1 or α1 versus the vertical velocity W . The ex- 

perimental conditions are A = 0.01 and different values of the height H o . 

Fig. 9. The height of the spectrum �f = f ( αmax )- f( αmin ) versus the vertical velocity 

W . The experimental conditions are A = 0.01 and different values of the height H o . 

Fig. 10. The width of the spectrum �α = αmax - αmin versus the vertical velocity W. 

The experimental conditions are A = 0.01 and different values of the height H o . 
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In the �f case, as said earlier, �f decreases with time achieving

egative values at the end. This implies an evolution in the spec-

rum symmetry along the plume evolution. At the beginning, the

ighest values (lighter greys) are driving the scaling behaviour and

t the end are the darker areas that have a higher importance. 

.2. Comparison between multifractal parameters and axial velocity 

The axial or vertical velocity W of the plume is an impor-

ant magnitude ( Section 2.2 ) which has been measured in frames

rom all different experiments. Fig. 7 shows the time evolution of

he vertical speed for experiments with the same Atwood number

 A = 0.01) and different heights H o . As it is observed, initially, the

lume presents a great axial velocity. Later, the vertical velocity de-

reases monotonically and seems to approach an asymptotic value

approximately 15 cm s −1 for H o = 2 cm, 18 cm s −1 for H o = 3.5 cm

nd 21 cm s −1 for H o = 6.5 cm). This time behaviour is similar for

ll the heights Ho although the axial velocity and its asymptotic

alue are greater when H o is greater. The main decrease in the

ertical velocity has been realized before reaching the jet length

 L J ranges between 6 and 7 cm) at approximately 0.30 s. This mo-

entum length scale is reached earlier in time as the height H o is

reater. For example, if H o is 2 cm, L J is reached in 0.38 s and if H o 

s 6.5 cm, in 0.28 s. This means that the buoyancy effect dominates

he plume behaviour earlier in time as the height H o is greater.

fter reaching the jet length, the plume goes on to its asymptotic

peed. 

For a deeper study into the relation between the multifractal

arameters deduced earlier ( Table 1 ) and the vertical velocity of

he plume, several plots have been made to analyse the evolution

f these parameters with axial velocity. Fig. 8 shows the parame-

er α1 versus the axial velocity for the analysed experiments. We

bserve that the curve presents an inverted U-shape at H o = 2 cm,

hich disappears at higher Ho . Therefore, this curve achieves a

aximum value at different velocities, depending on H o . In case

f H o = 2 cm, the maximum α1 value is achieved at W of approxi-

ately 16 cm s −1 and when H o = 3.5 cm, it is achieved at 22 cm s −1 .

his implies that the maximum entropy was achieved earlier in

he former case. For H o = 6.5 cm, the maximum entropy obtained is

ower as the plume arrived the end of the studied frame much ear-

ier, as it can be seen in the axial velocities’ values and the number

f frames analysed. 

On the other hand, in the case of H o = 2 cm, when the entropy

iminishes, the axial velocity varies very little and the values are

maller, indicating the interval where the axial velocity trends to a

imit as seen in Fig. 7 . 

Fig. 9 represents the symmetry of the spectrum, �f, versus the

ertical velocity for all the experiments. We observe that �f of
he spectrum always decreases as the velocity decreases, that is,

s time goes on for all the experiments. Then, we deduce that the

urve is more symmetric as time goes on and the speed decreases

ntil a certain moment where �f is null. The curve is symmetric

hen �f is zero and then there is no scaling domination of small

alues or large ones. This occurs at earlier times and at greater ve-

ocities as the height H o grows. Therefore, the spectrum reaches

he point of symmetry earlier in time if H o is greater. After this

oint, the curve becomes slightly asymmetric to the left; that is,

arge values dominate the scaling. In all the experiments, the �f

ariation versus axial velocity shows a statistically significant lin-

ar trend. 
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Fig. 11. Time evolution of the entrainment coefficient αe . The experimental condi- 

tions are A = 0.01 at different values of the source height H o . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. The Hölder exponent α1 versus the entrainment coefficient αe (inverted 

axis). The experimental conditions are A = 0.01 and different values of the height 

H o . 
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Fig. 10 shows the width of the multifractal spectrum, �α, ver-

sus the vertical velocity for all the experiments. With this parame-

ter, we study the overall complexity, higher is this amplitude more

complex is the distribution of the measure studied. 

We observe that the curve presents an S-shape at H o = 2 cm,

which disappears at higher H o , becoming almost linear. In case of

H o = 2 cm, the maximum �α value is achieved at approximately

16 cm s −1 and when H o = 3.5 cm it is achieved at 22 cm s −1 . This

implies that the maximum amplitude reached earlier in the for-

mer case and these maxima coincide with the ones achieved in

entropy, as it can be seen in Fig. 8 . At H o = 6.5 cm, the maximum

amplitude obtained is slightly lower. However, the trend showed

in all the frames are very similar to the case of H o = 3.5 cm. 

Similar behaviour is observed if we compare Figs. 8 and 10 . In

the case of H o = 2 cm, when the amplitude diminishes the axial ve-

locity varies very little and the values are smaller, indicating the

interval where the axial velocity trends to a limit. In the other two

cases, this cannot be observed as the plume reaches the end of the

frame sooner. 

3.3. Comparison between multifractal parameters and entrainment 

coefficient 

We have just demonstrated that the used multifractal param-

eters are able to describe the evolution of the plume at differ-

ent experimental conditions. Therefore, we can use these param-

eters to analyse the rate of entrainment, which is represented by

the entrainment coefficient ( αe ). Other authors have done similar

studies. For example, Qianqian et al. have analysed the variation

of the fractal dimension of dye plume images at different source

distances [42] . 

The entrainment coefficient αe is not a constant and it presents

time and spatial variations [43–46] . Fig. 11 shows the decrease in

time of αe for different experimental conditions. At early times or

in near-source regions, the values of αe are greater and depend

clearly on H o . Close to the plume source, the concentration field

fluctuates more in both space and in time and the entrainment

coefficient has greater values. 

Later, in time or at far downstream regions, the entrainment co-

efficient tends to a smaller value (approximately 0.45) in all stud-

ied cases. The concentration field is more homogeneous because

the dye concentration spreads widely due to relative diffusion and

then the coefficient αe decreases. This global time evolution is sim-

ilar to other authors’ results [47] . 

Fig. 12 shows the entropy dimension ( α1 ) versus the entrain-

ment coefficient ( αe ) for different experimental conditions. We ver-

ify that when αe diminishes through time, α1 increases. In case of

H o = 2 cm, this behaviour is more evident. We deduce an approx-

imately linear relationship between α1 and αe . This behaviour is

confirmed by the r-squared coefficient of the corresponding linear
ts that are the following: 

o = 2 cm : α1 = −0 . 13 · αe + 2 . 06 r 2 = 0 . 95 

o = 3 . 5 cm : α1 = −0 . 14 · αe + 2 . 07 r 2 = 0 . 92 

o = 6 . 5 cm : α1 = −0 . 08 · αe + 2 . 04 r 2 = 0 . 84 

. (5)

We also observe that the linear fit is less robust as the source

istance H o increases and, therefore, the best fit is for H o = 2 cm .

hat is, the increase in the momentum flux (i.e., plume behaviour

ore such a jet) makes the linear fit not so good. 

Considering Fig.s 11 and 12, the entropy dimension α1 is

ower close to the source where the entrainment coefficient is

reater. α1 is greater for far downstream regions where the plume

preads and the entrainment coefficient decreases. As we describe

n Section 2.2 , that a α1 value close to 1.0 characterizes a system

niformly distributed throughout all scales. Therefore, there is a

elation between the entrainment coefficient and the not uniform

oncentration in our range of scales. Furthermore, as the coefficient

e decreases, this non-uniformity increases because α1 increases

 Fig. 12 ). This means that in nearly-source regions (i.e., at an early

ime), the concentration field is less homogeneous and the entrain-

ent coefficient is greater. 

. Conclusions 

The main objective of this paper was to apply a multifractal

nalysis (MFA) for studying the behaviour of a turbulent axisym-

etric plume under different experimental conditions and its rela-

ion with the axial velocity. This was done by analysing the series

f images that describe the evolution of the plume. 

The MFA on each grey image, applying the box gliding method,

evealed a multiscaling nature from 1 to 196 pixels side length

f the gliding box. The partition function and the mass exponent

unction estimated are characteristics of a multifractal measure

ith a non-fractal support. 

Measurements of the vertical velocity of a plume, in intervals

f 0.01 s, have shown that the axial velocity increases with height

 o and decreases monotonically with time, as previous reported

n other studies. After certain time, the vertical velocity trends

symptotically to the same value regardless of the height. 

On the other hand, several parameters derived from the MFA

ere estimated at different times and experimental height H o . The

esults showed an evolution of α1 , �α and �f that can describe

he evolution of the plume in the cases studied ( H o = 2, 3.5, and

.5 cm and Atwood number equal to 0.01). Therefore, the time

volution of the plume (its spreading) and the effect of momen-

um flux can be approached by means of the multifractal param-
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ters α1 , �α, and �f . This is a key conclusion because, from this

oint on, we can use the multifractal method and its parameters as

arkers of plume behaviour. At the same time, the f( α)- α curves

stimated are similar to the ones obtained from the energy dissi-

ation field, which is caused by the velocity gradients at the vis-

ous scales [48] . The similar f( α)- α curves might imply that the

lume structure in turbulent convection is formed to maximize the

ntropy of the structure [4 8,4 9] . 

Additionally, we plotted each multifractal parameter with the

xial velocity obtained in each photogram by marking the simi-

ar evolution they present in all the source distances used in the

xperiment. However, the curves describing the experiment with

 o = 2 cm were always separate from the other two, mainly due to

he lower values present in the axial velocity. 

We have also showed the time decrease of the entrainment

oefficient ( αe ) for different experimental conditions. We have

emonstrated the different behaviour of αe depending on whether

e are near or far from the plume source. Finally, we have anal-

sed the linear relation between the entropy dimension ( α1 ) and

he entrainment coefficient ( αe ). We have verified that when αe 

iminishes through time, α1 increases and, therefore, is related to

he non-homogeneity of the concentration field. In conclusion, we

re characterizing the rate of entrainment by a multifractal param-

ter that we have demonstrated for the first time. 

Further research is in progress using the multifractal approach

o analyse the effect of buoyancy flux and to compare it with the

ffect of momentum flux we have just studied. Another goal will

e to study the local space behaviour of the entrainment constant.
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