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Abstract. The aim of this presentation is to highlight the role that Particle-based
simulations and Radial Basis Functions (RBFs) have played in the development of
a computationally efficient, level-set, Finite Element method for the simulation of
Newtonian and non-Newtonian interface flows. First, we introduce the mathemat-
ical formulation and the interface-capturing technique used in the simulation of
multiphase flows, underscoring the influence of marker particles on the enhanced
definition of the interface. Then, we explore the effect of adding polymer parti-
cles to the domain to perform Brownian Dynamics Simulations of polymer flows.
Finally, we leverage RBFs to reconstruct, in an almost free-independent way the
polymer stress tensor retrieved from the polymer particles.

Numerical simulations of pure advection flows and bubble dynamics simulations
of complex flows on two-dimensional configurations emphasize the improvements
offered by this hybrid, Finite Element/RBF/Particle-based method.

1 INTRODUCTION

From its inception, the contribution of meshfree methods to the solution of
complex scientific and engineering problems has proven remarkable; at this point
in its history, particle and meshless methods offer a viable alternative to more
traditional methods [1, 2, 3, 4, 5]. The purpose of this work is to highlight some
recent advances made in the field of Multiphase Flows and non-Newtonian Fluid
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Dynamics by combining particle methods and Radial Basis Functions with the
Finite Element Method in a semi-Lagrangian approach.

2 MATHEMATICAL FORMULATION

Since we aim with this work to illustrate the role of particles in multiphase flows,
and more precisely, in bubble dynamics simulations, we succinctly describe here
the numerical tools used, referring the reader elsewhere for additional details.

2.1 Marker particles for free-surface representation

As an improvement over the level set method, marker particles can be added
to better represent the interface between the two fluids. The idea is to advect
the massless particles and provide each of them with a variable radius rmin ≤
rp ≤ rmax so that the particle surface, whenever possible, remains in contact with
the free-surface; otherwise, the particle will have a minimum or maximum radius.
Then, we carry out a three-stage procedure based on error identification, error
quantification and error correction, with local level set functions φp defined at each
of the massless particles according to:

φp(xi) = snp
(∣∣xi − xn

p

∣∣− rnp
)
,

with snp ≡ sign
{
φn
h(x

n
p )
}
. These particles help in correcting the global level set

function φ whose zero isocontour represents the interface. For details, see [6].

2.2 Polymer particles in Brownian Dynamics simulations

As an alternative to the constitutive modeling of non-Newtonian fluids, the
micro-macro (stochastic) approach uses polymer particles that carry the internal
degrees of freedom of the viscoelastic fluid; these particles are advected by the flow,
contributing to the incompressible, Navier-Stokes equations through the extra-stress
tensor computed by taking moments of the configurations. In this work, we use the
Hookean and FENE (‘Finitely Extensible, Nonlinear Elastic’) kinetic models, each
of them represented by two dumbbells connected by a spring of force F, so that
the stochastic differential equation ruling the configurations Q of the dumbbells
are integrated by a (weak) second-order algorithm, as in [7, 8]. Further, the cubic
equation for the FENE model is efficiently solved with the method proposed in
[9]. Variance-reduction techniques are applied using Nens ensembles each of them
containing Nd dumbbells, as described in [6].

2.3 CSRBFs for polymer stress tensor reconstruction

Compactly-Supported Radial Basis Functions offer a way of handling, in an
efficient and mesh-independent manner, the problem of image reconstruction
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from a set of points [10]. In our context, their usefulness directly relates to the
reconstruction of the polymer stress tensor: as data set we have the values of each
of the components of the polymer stress tensor τ ipij at a certain ensemble i, along
with the position of the ensembles themselves {xi}. We choose to use the CSRBFs
of minimal degree obtained by Wendland [11], solving the linear systems resulting
after imposing the orthogonality conditions using the techniques described in [12].

3 ILLUSTRATIVE EXAMPLES

In this section, we highlight the usefulness of particles and RBFs for improving
interface shape, modeling non-Newtonian fluids, and reconstructing the polymer,
extra-stress tensor, by a series of numerical tests.

3.1 Star-shaped droplet in vortex flow

We consider the pure advection test recently proposed in [13] to check the
ability of the method to deal not only with stretching filaments and quite possibly
with topological changes, but also with a multi-layered structure that must be
recovered at the end of the periodic simulation. A star-shaped droplet is placed
at the center of a square [0, 1] × [0, 1] domain, with the interface given in polar
coordinates by r (θ) = a + b cos(mθ), with a = 0.3, b = 0.1 and m = 5. The
imposed, periodic (Tp = 4) vortex flow is defined by the stream function ψ =
1
π
sin2 (πx) sin2 (πy) cos (πt/Tp), so that the velocity field is obtained as

{
u = − sin2 (πx) sin (2πy) cos (πt/Tp) ,

v = sin2 (πy) sin (2πx) cos (πt/Tp) .
(1)

Next, we use our SLEIPNNIR method [6] to retrieve the interface at the final
instant of the simulation, for a variable number of marker particles scattered in the
domain Np = {0, 104, 5× 104, 105}; a second-order, eikonal-based reinitialization
procedure is used every other time step to ensure that no numerical instabilities
propagate away from the interface; the fixed time step size is ∆t = 0.01. A uniform,
unstructured mesh refinement was carried out to ascertain the influence of the mesh
size h, with h successively halving from h = 8× 10−2 down to h = 5× 10−3. The
shapes of the droplet are pictured in Fig.1: we observe how the addition of marker
particles notably improves shape preservation, strikingly so for the coarsest mesh
(h = 8× 10−2) in which the addition of even a small amount of marker particles
(Np = 104) enhances the final shape from a rather amorphous interface when no
marker particles are used, to a quite precise final shape.

Table 1 conveniently collects the mesh size h, number of elements NE, number
of mesh nodes NC, and number of particles Np used in each simulation, along with
the errors measured in the L2 and L∞-norms, percentage of mass loss at the end
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Figure 1: Shape of a star-shaped droplet in a square [0, 1] × [0, 1] domain under a periodic
(Tp = 4) vortex flow, under uniform mesh refinement. Panels from left to right, and from top to
bottom: h =

{
8× 10−2, 4× 10−2, 10−2, 5× 10−3

}
. For each panel, a variable number of marker

particles is used: Np = 0 (green), Np = 104 (orange), Np = 5× 104 (blue) and Np = 105 (purple);
the initial solution is represented in black.

of the simulation and maximum memory demanded during the simulation. For a
fixed mesh size, increasing the number of particles results in a behavior resembling
the law of diminishing returns: the benefits of the addition of marker particles are
remarkable, while increasing the number offers increasingly small improvements.
Nevertheless, the computational cost of the marker particles in terms of memory
spent during the simulation, is modest in the coarser meshes and negligible in the
finer meshes.

In Fig.2 we plot the evolution of the eL2 error for the three finer meshes and
an increasing number of marker particles. As we can observe, the maximum value
is reached at the moment of the largest deformation of the flow, decreasing again
when particles are added, and slowly increasing in time if no marker particles are
used. Again, the same trend of diminishing returns is observed throughout the
simulations.
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Table 1: Average size h of the unstructured, uniform mesh; number of marker particles Np;
number of elements NE; number of mesh-points NP ; error in the Euclidean norm eL2 ; error in
the infinity norm eL∞ ; mass loss percentage; and maximum memory used during the simulation
of a periodic (Tp = 4) star-shaped droplet under a vortex flow. Values collected at the end of the
simulation (t = 4).

h Np NE NC Error eL2 Error eL∞ Aloss(%) Mem (MB)

8E−2 0 360 773 3.1647E−1 1.1128E−1 3.81E−2 39.86
8E−2 10000 362 777 5.4471E−2 3.2967E−3 1.30E−2 40.38
8E−2 50000 362 777 6.3726E−2 4.5122E−3 6.32E−2 46.87
8E−2 100000 360 773 6.9271E−2 5.3317E−3 4.02E−2 55.98
4E−2 0 1484 3069 2.9478E−1 9.6547E−2 2.53E−1 63.44
4E−2 10000 1484 3069 3.1659E−2 1.1137E−3 3.77E−3 63.39
4E−2 50000 1484 3069 2.9832E−2 9.8883E−4 9.81E−3 67.47
4E−2 100000 1484 3069 2.4658E−2 6.7557E−4 8.59E−3 77.23
2E−2 0 5846 11893 2.8022E−1 8.7248E−2 2.51E−3 142.08
2E−2 10000 5846 11893 4.4221E−2 2.1728E−3 6.76E−2 142.06
2E−2 50000 5846 11893 1.2143E−2 1.6383E−4 4.42E−4 142.10
2E−2 100000 5846 11893 1.1652E−2 1.5085E−4 6.64E−4 142.17
1E−2 0 23384 47169 2.1471E−1 5.1223E−2 3.61E−2 514.41
1E−2 10000 23384 47169 2.0051E−2 4.4672E−4 1.88E−4 514.31
1E−2 50000 23384 47169 1.1636E−2 1.5043E−4 2.27E−4 514.38
1E−2 100000 23384 47169 1.0572E−2 1.2418E−4 7.75E−5 514.41
5E−3 0 94330 189461 9.1740E−2 9.3514E−3 3.57E−3 2,029.47
5E−3 10000 94330 189461 1.9352E−2 4.1612E−4 2.16E−4 2,029.37
5E−3 50000 94330 189461 1.0243E−2 1.1657E−4 5.29E−5 2,029.48
5E−3 100000 94330 189461 8.3215E−3 7.6941E−5 5.62E−5 2,029.46

3.2 Viscoelastic droplet in shear flow

We now proceed with a problem in which the viscoelastic effects are present,
namely, the behavior of a viscoelastic droplet in a Newtonian, viscous fluid. This
situation has been thoroughly investigated (see e.g. [14, 15, 16]) in studies strongly
suggesting that droplet viscoelasticity prevents deformation to a certain degree
The schematics are showed in Fig.3, in which a droplet of radius a is placed at the
center of a domain [2L × 2H], with H = 4a and L = 8a. The no-slip boundary
condition is imposed at the bottom and top lids of the domain, which move at a
velocity V in opposite directions, giving rise to a shear rate γ̇ = V/H, here taken as
γ̇ = 1. For details on the numerical model, refer to the uncorrelated computations
found in [6] and [17].

The viscoelastic drop is modeled by Hookean dumbbells (equivalent to the
Oldroyd-B constitutive equation), and is immersed in a Newtonian, ambient fluid.
The flow is suddenly started at t = 0 with shear rate γ̇ = 1, using a mesh
with 80× 40 elements and Np = 107 uncorrelated, polymer particles (dumbbells)
uniformly placed inside the droplet; the flow is continued until dimensionless time
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Figure 2: Evolution of the eL2 error during the simulation of a star-shaped droplet in a square
[0, 1]× [0, 1] domain under a periodic (Tp = 4) vortex flow, under uniform mesh refinement h ={
2× 10−2, 10−2, 5× 10−3

}
and variable number of marker particles Np =

{
0, 104, 5× 104, 105

}
.

t∗ = tγ̇ = 10, with a small time step to accurately solve the internal configurations of
the dumbbells (dt = 1/200), taking Nt = 2000 time steps to finish each simulation;
the number of marker particles to improve the definition of the interface is Nmp =
2.5 · 105. The effects of the Reynolds prove to be of utmost importance, in the sense
that, if the method is not able to deal with extremely low Re (creeping flows), the
inertial effects become relevant when small time steps are used, thus affecting the
history of the flow and, consequently, that of the dumbbells: it is for this reason
that Re = 10−5 is chosen. The rest of the dimensionless parameters are those found
in [14] (also referenced henceforth as “Yue et al. PoF05”): Fr → ∞, We = 10−6

so that the Capillary number Ca = 0.1; our concentration parameter c, according
to the characteristic scales chosen in that article, corresponds to c = 1− β, with
β = 0.5 the retardation parameter of the Oldroyd-B fluid; the Deborah numbers
studied are De = {0.25; 0.5; 1; 2}; and the density and viscosity ratios between the
droplet and the outer ambient fluid (matrix) are ρ2/ρ1 = µ2/µ1 = 1.

We perform a set of simulations to obtain the evolution of the droplet deformation,
and compare the results with those by Yue et al. in their Fig.1; the results are
collected in Fig. 4. Despite the rather coarse mesh used, the not-so high number
of dumbbells, and the totally different approach taken by the two techniques
compared (their diffuse-interface method along with a phase-field approach ruled
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Figure 3: Viscoelastic droplet in Newtonian matrix under a shear flow. Sketch.

by Cahn-Hilliard dynamics to study the Newtonian/non-Newtonian problem in
a unified way; and our micro-macro, semi-Lagrangian, Particle Level-Set Finite
Element method) the results are in remarkably good agreement, especially the steady
state values of the deformation parameter D, defined as D = (L− B) / (L+ B),
with L and B being the longest and shortest lengths from the center of the droplet
to the interface (corresponding also to the major and minor axes of the ellipse),
respectively. The transient behavior shows a noteworthy resemblance as well, with
the overshoot appearing for sufficiently high De values, and the evolution of De = 2
being for t � 4 being higher than those for De = 1. In any case, we notice the
effect of the droplet viscoelasticity as a means to reduce the deformation of the
interface; plots of the actual shape of the interface (not included here) show this
same trend. Finally, we would like to point out that more refined meshes would
be needed to prevent some of the oscillation from appearing in the Figure; apart
from the stochastic noise (we are using here totally uncorrelated dumbbells), the
modification of the interface by the correction stage of the marker particles and
the mass conservation step add somewhat to this oscillatory behavior in D, which
is explicitly computed from the discrete interface; additional results with a better
mesh indeed confirm this fact.

3.3 Reconstruction of polymer stress tensor

Finally, to show the ability of the CSRBFs to reconstruct the extra-stress tensor
in non-Newtonian fluids, we perform some numerical tests in a two-dimensional
configuration using SLEIPNNIR [6] where a Newtonian bubble rises in a non-
Newtonian ambient fluid. A very fine, uniform mesh with grid size h = 1/320
is used, with Nens = 3 × 104 ensembles being scattered in the viscoelastic fluid,
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Figure 4: Evolution of the deformation parameter D for a viscoelastic droplet in a Newtonian
matrix under a shear flow, for increasing values of the Deborah number De. Comparison with
Fig. 1 of [14].

each of them carrying Nd = 25 × 103 dumbbells for variance-reduction effects.
The dimensionless numbers defining the problem are: Reynolds Re = 35, Weber
We = 10, concentration parameter c = 5, Deborah number De = 3, density and
viscosity ratios ρ1/ρ2 = 10 = µ1/µ2; the kinetic FENE (b = 50) model is used,
with the efficient solution to the resulting cubic equation proposed in [9], and the
simulation is continued until dimensionless time t = 3 is reached. Four different
Compactly-Supported Radial Basis Functions proposed by Wendland are used, with
different degree of smoothness represented by the number of continuous derivatives,
ϕsk ∈ C2k (R) with convergence rate hs/2+k+1/2, and a support size χ = 65. We
observe that increased smoothness is beneficial to the reconstruction of well-defined
surfaces, with a sufficiently high number of ensembles; see Fig. 5 for the final
shapes of the bubbles, in which a nice convergence is noticed for ϕ31, ϕ32 and ϕ33.
Additionally, Fig. 6 plots the reconstruction of the shear component of the polymer
stress tensor at the end of the simulations; the previous comments may be applied
here as well. For additional details about the effect of ensembles and dumbbells
per ensemble, see [12].
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Figure 5: Final shape of bubble using differents CSRBFs: ϕ30, ϕ31, ϕ32, ϕ33.

4 CONCLUSIONS

The purpose of this work has been to underscore the role of particles in the
context of numerical methods for multiphase flow problems, showing their relevance
in a three-fold way:

• Improvement of mass conservation and enhancement of shape preservation,
by means of marker particles.

• Modeling of non-Newtonian fluids in complex, multiphase flows, using poly-
mer particles along with Brownian Dynamics simulations.

• Reconstruction the polymer, extra-stress tensor, leveraging smooth Compactly-
Supported Radial Basis Functions.

All these effects have been addressed in a series of numerical simulations that
prove the potential of such an approach. Future work involves Adaptive Mesh
Refinement techniques, with preliminary results recently communicated in [18].
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Figure 6: Reconstruction of the shear component τp12 of the polymer stress tensor at the end of
a bubble dynamics simulation, for different Wendland’s CSRBFs. Panels from left to right, and
from top to bottom: ϕ30, ϕ31, ϕ32, ϕ33.
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