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Abstract. Until recently, models of communication have explicitly or implicitly

assumed that the goal of a communication system is just maximizing the information

transfer between signals and ’meanings’. Recently, it has been argued that a natural

communication system not only has to maximize this quantity but also has to minimize

the entropy of signals, which is a measure of the cognitive cost of using a word. The

interplay between these two factors, i.e. maximization of the information transfer

and minimization of the entropy, has been addressed previously using a Monte Carlo

minimization procedure at zero temperature. Here we derive analytically the globally

optimal communication systems that result from the interaction between these factors.

We discuss the implications of our results for previous studies within this framework.

In particular we prove that the emergence of Zipf’s law using a Monte Carlo technique

at zero temperature in previous studies indicates that the system had not reached the

global optimum.
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1. Introduction

During the last years, the interest in the study of sound-meaning mappings from an

analytical perspective has exploded (e.g. [1, 2, 3, 4, 5, 6, 7]). The majority of models

study the evolution of sound-meaning mappings without worrying about the cognitive

cost of using signals. It is known in psycholinguistics that the availability of a word is

positively correlated with its frequency. Thus, the higher the frequency of a word, the

lower its cost [8]. This phenomenon is known as the word frequency effect [9]. Imagine

that we have a set of n signals S = {s1, ..., si, ..., sn}. In human language, the elements

of S can be words. H(S), the entropy of the set of signals S, has been proposed as a

measure of cost of word use for both sender and receiver [10, 7]. By now, it is enough to

know that H(S) is a measure of disorder in the occurrence of signals, i.e. of how equally

likely signals are. H(S) takes its maximum value, log n, when all signals are equally

likely and takes its minimum value, 0 when only one signal has non-zero probability.

When all signal are equally likely, we have the worst case for word availability because

all words take the smallest frequency, i.e. 1/n. When only one word is used (a single

word has probability 1 and the rest have probability 0), we have the best case for word

availability because one word has the the greatest availability and the rest are just

simply not used. Independently, other entropies have been proposed for measuring the

cost of linguistic units such as inflectional morphology [11] or words [8].

We assume that we have a general communication framework where signals are

elicited by stimuli. The stimuli of our set of the signals S communicate about stimuli

from a set of m stimuli R = {r1, ..., rj, ..., rm}. In human language, the elements of R

can be stimuli that elicit the words in S [12]. Stimuli could be objects or events. Animal

behaviourists may prefer that R is the set of mental states triggering each signal.

A few of the large amount of the kind of studies mentioned above use the standard

information theory framework, where the effectiveness of a communication system is

measured using Shannon’s information transfer. We define I(S, R) as the Shannon

information transfer between S and R. ‡ By now, it is enough to know that I(S, R) is

a non-negative function that measures the amount of information conveyed by signals

in S about stimuli in R and vice versa [13].

A natural communication system must tend to maximize I(S, R) to be

communicatively effective and tend to reduce H(S) due to word-frequency effects. A

simple way of integrating this two communication factors is a linear combination though

a single parameter λ that weight the contribution of each factor. This way, the function

that a natural communication system should minimize can be written as

Ω(λ) = −λI(S, R) + (1 − λ)H(S). (1)

The minimization of Ω(λ) has been studied numerically using a Monte Carlo algorithm

at zero temperature in various models [14, 7]. The goal of the present article is studying

analytically the global minima of Ω(λ) in these models for λ ∈ [0, 1]. In particular, this

‡ See Section 2 for a review of the definition of this standard information theory concept.
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study aims to shed light on the nature of Zipf’s law for word frequencies. Zipf’s law

states that the (relative) frequency of the i-th most frequent word in a text obeys [15]

P (i) ∼ i−α, (2)

where α is a constant, the so-called exponent of the law. In many real cases, α ≈ 1

although noticeable deviations from this value have been reported (see [16] for a review).

Zipf’s law for word frequencies has been obtained by minimizing Ω(λ) for a critical value

of λ, λ∗, such that λ∗ ∈ [0, 1/2) using a Monte Carlo technique at zero temperature

[14, 7]. We will show that Zipf’s law indicates that the global minimum of Ω(λ) has not

been reached.

The remainder of this article is organized as follows. Section 2 introduces the

elementary entropies needed in this article and provides a general outline for studying

the minima of Ω(λ). Section 3 introduces the family of models in which we will study the

minima of Ω(λ). Section 4 gives the global minima of Ω(λ) for the two different models

of the family mentioned before. Section 5 discusses the results with special emphasis on

the implications for previous related work.

2. A quick review of information theory

We define p(si) as the probability of si and p(si|rj) as the probability of producing si

when rj is given. We define p(rj) as the probability of rj and p(rj |si) as the probability

of interpreting rj when si is given. The Shannon information transfer, I(S, R), can be

defined in two equivalent ways [13]. On the one hand,

I(S, R) = H(S) − H(S|R), (3)

where

H(S) = −

n∑

i=1

p(si) log p(si), (4)

H(S|R) =

m∑

j=1

p(rj)H(S|rj), (5)

and

H(S|rj) = −

n∑

i=1

p(si|rj) log p(si|rj). (6)

On the other hand,

I(S, R) = H(R) − H(R|S), (7)

where

H(R) = −

m∑

j=1

p(rj) log p(rj), (8)

H(R|S) =
n∑

i=1

p(si)H(R|si), (9)
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H(R|si) = −

m∑

j=1

p(rj|si) log p(rj |si). (10)

The model in [14] defines what constitutes an effort for the speaker and an effort for

the hearer in Ω(λ). There, the function that a communication system has to minimize

is

Ω′(λ) = λH(R|S) + (1 − λ)H(S). (11)

The minimization of Ω′(λ) is equivalent to the minimization of Ω(λ) when H(R) is

constant, which is the assumption of the model in [14]. To see this, we can write Ω(λ)

as

Ω(λ) = −λH(R) + λH(R|S) + (1 − λ)H(S), (12)

knowing I(S, R) = H(R) − H(R|S).

It is argued in [14] that H(R|S) is an effort for the hearer and H(S) is an effort

for the speaker. This issue needs to be clarified. H(S) is both a source of effort for the

speaker and the hearer because the word frequency effects concern both word production

(e.g. through cues) [17, 18] and also recognition of spoken and written words [19, 20, 8].

For this reason, later articles referred to H(S) as a measure of both effort for the speaker

and the hearer [7, 10] although the confusion persists [21]. Besides H(S), H(S|R) within

I(S, R) = H(S)−H(S|R) is also a source of effort for the speaker. H(S|R) is a measure

of the effort of coding stimuli. Roughly speaking, H(S|R) is a measure of the mean

amount of candidate signals that the speaker has when a stimulus is given (recall Eq.

5). The less candidates there are, the easier the task of choosing a candidate signal.

Besides H(S), H(R|S) within I(S, R) = H(R) − H(R|S) is also a source of effort for

the hearer. H(R|S) is a measure of the effort of decoding signals. Roughly speaking

again, H(R|S) is a measure of amount of the mean amount of candidate stimuli that

the hearer has when a signal is given (recall Eq. 9). The less candidates there are, the

easier the task of interpreting the signal. In sum, there are actually two sources of effort

for the speaker, i.e. H(S) and H(S|R), and two sources of effort for the hearer, i.e.

H(S) and H(R|S) in our general definition of Ω(λ).

Now we focus on λ ∈ [0, 1] and aim to determine the kinds of minima that appear

when Ω(λ) is minimized depending on λ. Here, by minima we mean the set of matrices

of joint probability p(si, rj) such that Ω(λ) is a global minimum. Notice that once

p(si, rj) is known for all signal-stimulus pairs, then we can obtain all the probabilities

involved in the entropies needed for calculating Ω(λ). Recall that

p(si) =
m∑

j=1

p(si, rj), (13)

p(rj) =

n∑

i=1

p(si, rj), (14)

p(si|rj) = p(si, rj)/p(rj) and p(rj|si) = p(si, rj)/p(si). Knowing that I(S, R) =

H(S) − H(S|R), we can write Ω(λ) in a more informative way

Ω(λ) = (1 − 2λ)H(S) + λH(S|R) (15)
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Using the previous equation, three different domains become obvious when minimizing

Ω(λ):

(i) If λ ∈ [0, 1/2), both H(S) and H(S|R) must be minimized. Since H(S) ≥ H(S|R)

(equivalently, I(S, R) ≥ 0 [22, 13]) and the minimum value of H(S) and H(S|R)

is 0, it turns out that minimizing H(S) implies minimizing H(S|R). Thus, the

minima of Ω(λ) when λ ∈ [0, 1/2) are exactly the minima of just H(S).

(ii) If λ = 1/2, only H(S|R) has to be minimized.

(iii) If λ ∈ (1/2, 1), H(S) must be maximized and H(S|R) must be minimized. The

minima of Ω(λ) are the intersection of the minima of H(S) and the minima of

H(S|R), if the intersection between minima is not empty (we will see that this is

the case in the models studied here). It is easy to see that the minima of Ω(λ)

when λ ∈ (1/2, 1) are the maxima of I(S, R) = H(S) − H(S|R).

In sum, the minima of Ω(λ) in the 1st, 2nd and 3rd domains are given by the minima

of H(S), H(S|R) and the maxima of I(S, R), respectively.

3. The family of models

In our general communication framework, links between signals and stimuli are defined

by a binary matrix A = {aij} where aij = 1 if si and rj are linked and aij = 0 otherwise.

A defines the structure of a communication system. i.e. the mapping of signals into

stimuli. A matrix of this kind is the basis of different analytical [23, 24, 25, 5, 26, 27]

and computational approaches [28, 29, 30, 7] to the evolution of language. We define

the degree of si (i.e. the number of connections of si) as

µi =

m∑

j=1

aij . (16)

and the degree of rj (i.e. the number of connections of rj) as

ωj =

n∑

i=1

aij . (17)

Here we focus on a family of probabilistic models that assumes that the probability

that si is used for rj is

p(si|rj) =
aij

ωj

. (18)

From Eq. 18 and the definition of conditional probability, we obtain

p(si, rj) = p(si|rj)p(rj) =
aijp(rj)

ωj

(19)

and thus

p(si) =
m∑

j=1

p(si, rj) =
m∑

j=1

aijp(rj)

ωj

. (20)
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Applying the definition of conditional probability again we obtain

p(rj|si) =
p(si, rj)

p(si)
=

aijp(rj)

ωjp(si)
. (21)

Two models that stem from Eq. 18 are introduced in the next subsections.

3.1. Model A: p(rj) = ωj/M

The models in [7, 16, 26, 31, 27, 5] assume that

p(rj) =
ωj

M
, (22)

where M is the total amount of connections, defined as

M =

m∑

j=1

ωj . (23)

Assuming Eq. 22, Eqs. 19, 20 and 21 give, respectively,

p(si, rj) =
aij

M
, (24)

p(si) =
µi

M
, (25)

and

p(rj|si) =
aij

µi

. (26)

3.2. Model B: p(rj) = 1/m

The model in [14] assumes that p(rj) is independent of A and fixed a priori. Here we

focus on a particular case: p(rj) = 1/m. p(rj) = 1/m is chosen for various reasons: (a)

simplicity (b) it is a sort of worst case for the occurrence of stimuli (the uncertainty

about the stimulus that could appear next is maximum) and (c) as far as we know, this

is the only assumption made by models assuming that p(rj) is fixed a priori (equally

likely stimuli is the assumption explicitly made in the model in [14] and also implicitly

made in the model in [1]; the latter is explained in Appendix D). Assuming p(rj) = 1/m,

Eqs. 19, 20 and 21 give, respectively,

p(si, rj) =
aij

mωj

, (27)

p(si) =
bi

m
, (28)

and

p(rj|si) =
aij

biωj

, (29)

where

bi =
m∑

k=1

aik

ωk

. (30)
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Model A: p(rj) = ωj/M Model B: p(rj) = 1/m (with ωj ≥ 1)

H(S, R) log M 1
m

∑m

j=1
log(mωj)

ωj

H(R|S) 1
M

∑n

i=1 µi log µi
1
m

∑n

i=1 biH(R|si)

H(R|si) log µi log bi + 1
bi

∑m

j=1
aij

ωj
log ωj

H(S|R) 1
M

∑m

j=1 ωj log ωj
1
m

∑m

j=1 log ωj

H(S|rj) log ωj log ωj

H(S) H(S, R) − H(R|S) log M − 1
M

∑n

i=1 µi log µi

H(R) log M − 1
M

∑m

j=1 ωj log ωj log m

Table 1. Summary of results about the definition of various entropies for models A

(p(rj) = ωj/M) and B (p(rj) = 1/m with ωj ≥ 1). S and R are, respectively, the set

of signals and the set of stimuli. H(S, R) is the joint entropy of S and R. H(R|S) is

the conditional entropy of R when S is known and H(S|R) is the conditional entropy

of S when R is known. H(S) and H(R) are, respectively, the entropy of S and R.

bi =
∑m

k=1
aik/ωk

3.3. Remarks about both models

With the probabilities of models A and B and the general definitions of the entropies

(recall the beginning of Section 2) it is easy to calculate all the necessary entropies. See

Table 1 for a summary of the specific form of the entropies that can be easily obtained

after some algebra for each model.

It is important to notice that Eq. 18 is undetermined, i.e. p(si|rj) = 0/0, when

ωj = 0. The consequences of this indetermination depend on the kind of model. In

practice, the indetermination has no consequence for the calculation of I(S, R) and

H(S) when p(rj) ∼ ωj (recall Table 1). In contrast, various technical problems arise

when p(rj) is fixed a priori. For this reason, ωj > 0 was imposed in the model in [14].

4. The global minima of Ω(λ)

Here we show the minima of Ω(λ) for the various domains of λ specified in Section 2.

By minima we mean the set of matrices A for which Ω(λ) is minimum. For the sake of

clarity, this section is essentially an enumeration of the minimum energy configurations

for models A and B and the relevant domains of λ (the reader interested in more details

is referred to Appendices A-C).
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(a) (b) (c)

Figure 1. Some mappings between signals (white circles) and stimuli (black circles)

that are minima of H(S) and H(S|R) with n = 3 signals and m = 9 stimuli. (a-c) are

minima of model A while (c) is the only valid minima of model B.

4.1. The global minima of H(S) (λ ∈ [0, 1/2)) §

The signal-stimulus mappings minimizing H(S) for model A (p(rj) = ωj/M) are those

where

• All signals are unlinked except one.

• The only linked signal can have any degree (between 1 and m).

As for model B (p(rj) = 1/m), the signal-stimulus mappings minimizing H(S) are those

where

• All signals are unlinked except one.

• The only linked signal must be connected to all stimuli.

Some signal-stimuli mappings minimizing H(S) for model A are shown in Figure 1. As

for model B, a minimal mapping is shown in Figure 1 (c). The mappings in Figs. 1

(a) and (b) are not minimal mappings of model B because they violate the constraint

of not having disconnected signals. Notice that a system with the minimum H(S)

(i.e. H(S) = 0) cannot communicate using individual signals because the information

transfer I(S, R) is also zero (recall I(S, R) = H(S) − H(S|R) and I(S, R), H(S|R) ≥ 0

or see Appendix A for further details).

4.2. The global minima of H(S|R) (λ = 1/2) ‖

The signal-stimulus mappings minimizing H(S|R) for model A (p(rj) = ωj/M) are the

mappings in which stimuli can only be disconnected or have a single link. As for model

B (p(rj) = 1/m with ωj ≥ 1), the minimal mappings are those where all stimuli have

only one link. Some signal-stimuli mappings minimizing H(S|R) for model A are shown

§ See Appendix A for the details.
‖ See Appendix B for the details.
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(a) (b) (c)

Figure 2. Some mappings between signals (white circles) and stimuli (black circles)

that achieve maximum I(S, R) with n = 3 signals and m = 9 stimuli. This mappings

also achieve minimum H(S|R).

in Figs. 1 and 2. As for model B, a minimal mapping is shown in Figure 1 (c) (the

mappings in Figs. (a) and (b) are not valid minima of model B because they have

disconnected stimuli).

4.3. The global minima of I(S, R) (λ ∈ (1/2, 1]) ¶

The signal-stimulus mappings maximizing I(S, R) for model A are those in which

• All signals have the same amount of connections but are not disconnected.

• Stimuli have at most one link.

As for model B with n ≥ m, the mappings maximizing I(S, R) are those in which

• Signals have at most one link (there must be at least one link).

• There are no disconnected stimuli.

As for model B with n ≥ m and n/m is rational, the mapping maximizing I(S, R) are

those in which

(i) All signals have the same amount of connections.

(ii) All stimuli have one link.

In particular, the global minima are one-to-one mappings for models A and B when

n = m (Figure 3). Figure 2 shows examples of mappings between signals and stimuli

that maximize I(S, R) for model A (p(rj) = ωj/M). As for model B (p(rj) = 1/m), a

minimal mapping is shown in Figure 2 (c). Notice that I(S, R) can be maximum even

if signals have more than one connection. Examples of mappings between signals and

stimuli maximizing I(S, R) for n ≥ m can be obtained from Figure 2 and changing

signals by stimuli and vice versa (exchanging white circles with black circles and vice

versa).

¶ See Appendix C for the details.
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Figure 3. A one-to-one mapping between n = 6 signals (white circles) and m = 6

stimuli (black circles). This configuration achieves maximum I(S, R).

5. Discussion

We have found that the global minimum of Ω(λ) are degenerate (in the physics sense)

because there is more than one signal-stimulus mapping achieving the minimum energy.

For instance, three different configurations with minimum energy for λ ∈ [0, 1/2] are

shown in Figure 1. Moreover, (c), for instance, can be transformed into a different

mapping by swapping the central signal by the other signals while Ω(λ) remains the

same.

Our formal approach to maximizing I(S, R) has produced results that are against

common intuitions about the effect of maximizing I(S, R). We have seen that maximum

I(S, R) does not exclude the presence of ambiguous signals (signals with non-zero degree)

when n < m (recall Figure 2 B or C). In other words, maximizing the information

transfer does not imply absence of signal ambiguity. Third, we have seen that making

H(S) = 0 (one aspect of the cost of word use) and communication is a contradiction of

terms in our models (recall that I(S, R) = H(S)−H(S|R) and I(S, R), H(S|R) ≥ 0 or

see Appendix A for the details). Thus, it is impossible that word use is costless in our

models.

Our study has implications for previous related work. Zipf’s law for word

frequencies had been obtained by minimizing Ω(λ) for a critical value of λ, λ∗, such that

λ∗ ∈ [0, 1/2) using a Monte Carlo algorithm at zero temperature [14, 7]. The models in

[14] and [7] reproduce Zipf’s law (recall Eq. 2) with α close to 1 (for sufficiently large

m). We have seen that the global minima of Ω(λ) for λ ∈ [0, 1/2) give only one signal

with non-zero probability, i.e. α → ∞. The analytical results of this article indicate

that the finding of Zipf’s law (with α close to 1) using a a Monte Carlo technique

at zero temperature is not a global optimum. The absence of a temperature in these

numerical minimization suggests that Zipf’s law with a non-extremal exponent could be

the consequence of local minima of Ω(λ). The fact that the Monte Carlo algorithm does

not find the global optimum is not against the utility of this technique for understanding

human language. Assuming that Ω(λ) is a psycholinguistically well-motivated function,

reaching the global optimum (H(S) = 0) is problematic: communication is impossible

because H(S) = 0 leads to I(S, R) = 0 as explained in this article. Thus, the need

of communicating (the need of I(S, R) > 0) may be a serious obstacle for human
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language reaching the global optimum. Nonetheless, we do not mean that the reason

why human language cannot apparently reach the global minimum is exactly the need

of communication. For instance, the procedure that humans use for minimizing Ω(λ)

may naturally prevent the system from reaching the global optimum, as suggested by

the emergence of Zipf’s law using the Monte Carlo technique.

Another implication of our study concerns a recent article where Solé and colleagues

argue that the minimum cost of word use “is obtained when a single word refers to

many objects” [21]. Put in our terms, they mean that the minimum signal entropy use

is obtained when a single signal is connected with many stimuli. The problem is that

Solé et al. are not covering all the configurations where the cost of communication is

minimum. We have seen that a single signal connected with a few stimuli also achieves

minimum H(S) (recall Section 4) in model A. Eventually, a single signal with one

connection (and the rest of the signals disconnected) still achieves the minimum cost of

communication. If Solé et al. actually refer to the minimum cost of word use in model

B (where disconnected stimuli are not allowed), we have seen in this case (Appendix A)

that the minimum is not achieved when a single signal is connected with many stimuli

but with exactly all stimuli.

There is another aspect of the model in [14] that needs to be reconsidered: the

statement that animal communication systems (except human language) should behave

according to λ > λ∗, which is equivalent to λ ≥ 1/2 when looking for the global

optima. The are two reasons for thinking this statement does not stand. First, the

pioneering work by McCowan and collaborators [32, 33] showed that the vocalizations

of dolphins and other species exhibit a frequency distribution consistent with Zipf’s for

word frequencies. Although these findings have been the subject of an open debate

[34, 35], at present it cannot be categorically stated that the frequency distribution of

others species is consistent with that of λ ≥ 1/2, where all signals must be equally

likely. Second, it is hard to imagine that the brains of other species do not need to

worry about minimizing H(S) due to cognitive pressures. The only way of getting rid

of this cognitive pressures is, as argued in [14], having a small repertoire of signals. The

point is: how small should it be in order to scape from this cognitive pressures?

In sum, we need to reflect about the models in [14, 7] to the light of the global

minima and other aspects discussed in this article. One of the most important questions

that the findings in this article raise is: assuming that the rationale behind Ω(λ)

minimization is essentially correct, why do natural communications not reach the global

minimum?
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Appendix A. The minima of the entropy of signals

First, we study the consequences of minimum H(S). We will show that systems

that minimize H(S) alone cannot communicate, more precisely, H(S) = 0 implies

I(S, R) = 0. To see it, consider that the minimum value that H(S) can take is 0 [13].

Knowing that I(S, R) = H(S)−H(S|R) and I(S, R), H(S), H(S|R) ≥ 0, it follows that

I(S, R) = 0 when H(S) = 0.

We define n+ as the number of signals such that p(si) 6= 0. We will show that

H(S) is minimum (i.e. H(S) = 0) if and only if n+ = 1, i.e. only one signal sh satisfies

p(sh) = 1 and the remaining signals have probability zero. Knowing

• H(S) ≥ 0 [13],

• Equation 4,

• −x log x ≥ 0 if x ∈ {0, 1},

• x log x = 0 if and only if x ∈ {0, 1},

it follows that the signal probabilities giving H(S) = 0 need p(si) ∈ {0, 1} for each

1 ≤ i ≤ n. Adding the constraint
n∑

i=1

p(si) = 1, (A.1)

the only signal probabilities giving H(S) = 0 turn out to be those where there is a single

signal sh that satisfies p(sh) > 0 and the remaining signals have probability zero (i.e.

p(si) = 0 for i 6= h), i.e. n+ = 1

Second, we present the minima of H(S) for models A and B together. We assume

that M ≥ 1 and both n and m are finite. We will show that A minimizes H(S) if and

only if there is a single linked signal (recall that model B adds a further constraint from

its definition: unlinked stimuli are not allowed). To see it, we proceed in too steps. We

will start by showing that that within this family of models, the only way a signal can

have probability zero is by being disconnected (p(si) = 0 if and only if µi = 0). As for

model A (where p(rj) is no fixed a priori), we have that p(si) = µi/M , hence p(si) = 0

if and only if µi = 0. As for model B (where all stimuli are equally likely), we have that

p(si) =
m∑

j=1

aij

ωj

p(rj) =
1

m

m∑

j=1

aij

ωj

, (A.2)

hence p(si) = 0 if and only if µi = 0 again. Therefore, knowing that H(S) is minimum

(i.e. H(S) = 0) if and only if n+ = 1 (see above), it follows for model A that the minima

of H(S) are achieved only when there is a single connected signal sh (sh can have any

degree within [1, m)). As for model B, the constraint ωj ≥ 1 implies that the minima

of H(S) are those where there is a single connected signal sh, such that µh = m.
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Appendix B. The minima of the conditional entropy of signals

We assume that M ≥ 1 and both n and m are finite. First, we will show that A

minimizes H(S|R) in model A (p(rj) = ωj/M) if and only if stimuli have at most one

link, i.e. ωj ∈ {0, 1} for 1 ≤ j ≤ m. To see it, consider that H(S|R) can be written as

(Table 1)

H(S|R) =
1

M

m∑

j=1

ωj log ωj (B.1)

assuming that p(rj) = ωj/M . Given Eq. B.1, H(S|R) = 0 if and only if ωj ∈ {0, 1} for

1 ≤ j ≤ m, as we wanted to prove.

Second, we will show that A minimizes H(S|R) in model B (p(rj) = 1/m with

ωj ≥ 1) if and only if stimuli have one link, i.e. ωj = 1 for 1 ≤ j ≤ m. To see it,

consider that H(S|R) can be written as (Table 1)

H(S|R) =
1

m

m∑

j=1

log ωj (B.2)

assuming that p(rj) = 1/m. Given Eq. B.2 and the initial assumption ωj ≥ 1,

H(S|R) = 0 if and only if ωj = 1 for 1 ≤ j ≤ m, as we wanted to prove.

Appendix C. The maxima of information transfer

First, we will bound I(S, R) above. It is easy to see that I(S, R) ≤ min(H(S), H(R)).

Knowing that [13]

• I(S, R) = H(S) − H(S|R) = H(R) − H(R|S),

• I(S, R) ≥ 0

• H(S|R), H(R|S) ≥ 0

we obtain

I(S, R) ≤ H(S) (C.1)

from I(S, R) = H(S) − H(S|R) and

I(S, R) ≤ H(R) (C.2)

from I(S, R) = H(R) − H(R|S). Mixing Eq. C.1 and Eq. C.2 we obtain

I(S, R) ≤ min(H(S), H(R)). (C.3)

From the previous inequality it easily follows that I(S, R) ≤ log min(n, m), knowing

that H(S) ≤ n and H(R) ≤ log m [13].

Second, we study the mappings of signals and stimuli maximizing I(S, R) for the

models A and B. We follow the same steps in both cases. We study the cases n ≤ m

and then n ≥ m separately. We assume M ≥ 1 and both n and m are finite.
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Appendix C.1. Model A: stimulus probability proportional to stimulus degree

First, we consider the case n ≤ m. We will show that A maximizes I(S, R) if and only

if

(i) All signals have the same amount of connections within a particular range, more

precisely, µi = Kµ with 1 ≤ Kµ ≤ ⌊m/n⌋ for 1 ≤ i ≤ n.

(ii) Stimuli have at most one link, i.e. ωj ∈ {0, 1} for 1 ≤ j ≤ m.

To see it, consider that n ≤ m implies that I(S, R) cannot exceed log n (recall I(S, R) ≤

log min(n, m)). Hence, I(S, R) is maximized according to I(S, R) = H(S) − H(S|R)

when H(S) = log n and H(S|R) = 0, knowing H(S) ≤ n and H(S|R) ≥ 0. On the one

hand, we have seen in Appendix B that H(S|R) = 0 is achieved if and only if ωj ∈ {0, 1}

for 1 ≤ j ≤ m. Thus, M ≤ m. On the other hand, H(S) = log n if and only if all

signals are equally likely. Knowing that p(si) = µi/M (Eq. 25), all signals are equally

likely if and only if µi = Kµ, where Kµ is a constant such that Kµ ∈ [1, m]. Knowing

that
n∑

i=1

p(si) = 1 (C.4)

and Eq. 20, we obtain

Kµ ≥ 1. (C.5)

ωj ∈ {0, 1} for 1 ≤ j ≤ m gives M ≤ m. Replacing M = nKµ into M ≤ m we obtain

Kµ ≤ m/n. Knowing that µi and therefore Kµ are natural numbers, a tighter upper

bound for Kµ that still preserves H(S) = log n (and compatible with H(S|R) = 0) is

given by ⌊m/n⌋. Therefore, 1 ≤ Kµ ≤ ⌊m/n⌋, as we wanted to prove.

Second, we consider the case n ≥ m. We will show that A maximizes I(S, R) if

and only if

(i) All stimuli have the same amount of connections within a particular range, more

precisely, ωj = Kω with 1 ≤ Kω ≤ ⌊n/m⌋ for 1 ≤ j ≤ m.

(ii) Signals have at most one link, i.e. µi ∈ {0, 1} for 1 ≤ j ≤ n.

The proof is analogous to that of the case n ≤ m. If m ≥ n then the fact that

I(S, R) ≤ log min(n, m) implies that the maximum I(S, R) cannot exceed log m. Hence,

I(S, R) is maximized according to I(S, R) = H(R) − H(R|S) when H(R) = log m and

H(R|S) = 0, knowing H(R) ≤ m and H(R|S) ≥ 0. On the one hand, H(R|S) can be

written as (recall Table 1)

H(R|S) =
1

M

n∑

i=1

µi log µi (C.6)

assuming p(rj) = ωj/M (Eq. 22). Given Eq. C.6, H(R|S) = 0 if and only if µi ∈ {0, 1}

for 1 ≤ i ≤ m. Thus, M ≤ n. On the other hand, H(R) = log m if and only if all
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stimuli are equally likely. Given p(rj) = ωj/M , all stimuli are equally likely if and only

if ωi = Kω, where Kω is a constant. Knowing that
m∑

j=1

p(rj) = 1 (C.7)

and p(rj) = ωj/M , we obtain

Kω ≥ 1. (C.8)

Replacing M = mKω into M ≤ n we obtain Kω ≤ n/m. Knowing that ωi and therefore

Kω are natural numbers, a tighter upper bound for Kω that preserves H(R) = log m

(and compatible with H(R|S) = 0) is given by ⌊n/m⌋. Therefore, 1 ≤ Kω ≤ ⌊n/m⌋, as

we wanted to prove.

Appendix C.2. Model B: stimulus probability fixed a priori

We define x mod y as the remainder of the division of x by y. First, we consider the

case n ≤ m. For simplicity, it is convenient to assume m mod n = 0 in for deriving the

maxima when n ≤ m. In this case, we will show that A maximizes I(S, R) if and only

if

(i) All signals have the same amount of connections, more precisely, µi = m/n for

1 ≤ i ≤ n.

(ii) All stimuli have one link, i.e. ωj = 1 for 1 ≤ j ≤ m.

To see it, remember that the maximum I(S, R) cannot exceed log n when n ≤ m. Hence,

I(S, R) is maximized according to I(S, R) = H(S) − H(S|R) when H(S) = log n and

H(S|R) = 0, knowing H(S) ≤ n and H(S|R) ≥ 0. On the one hand, we have seen

in Appendix B that H(S|R) = 0 if and only if stimuli have one link, i.e. ωj = 1 for

1 ≤ j ≤ m. On the other hand, H(S) = log n if and only if all signals are equally likely.

Knowing Eq. 20 and ωj = 1, all signals are equally likely if and only if
m∑

j=1

aijp(rj)

ωj

= 1/n. (C.9)

Replacing the assumption p(rj) = 1/m and the requirement ωj = 1 (imposed by

H(S|R) = 0) into Eq. C.9, we obtain

µi = m/n. (C.10)

The assumption m mod n = 0 warrants that the quotient m/n provides a degree that

is a natural number, as expected for µi, as we wanted to prove.

Second, we consider the case n ≥ m. We will show that A maximizes I(S, R) if and

only if signals have at most one link, i.e. µi ∈ {0, 1} for 1 ≤ j ≤ n. The proof is similar

to that of the case n ≤ m. If n ≥ m then the fact that I(S, R) ≤ log min(n, m) implies

that the maximum I(S, R) cannot exceed H(R) = log m. Hence, I(S, R) is maximized

according to I(S, R) = H(R)−H(R|S) when H(R) = log m and H(R|S) = 0, knowing
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H(R) ≤ m and H(R|S) ≥ 0. On the one hand, we already have that H(R) = log m

because p(rj) = 1/m. On the other hand, H(R|S) can be written as (recall Table 1)

H(R|S) =
1

M

n∑

i=1

µi log µi (C.11)

assuming Eq. 22. Given Eq. C.11, H(R|S) = 0 if and only if µi ∈ {0, 1} for 1 ≤ i ≤ m,

as we wanted to proof.

Finally, we will show that I(S, R) is maximum if and only if A defines a one-to-one

mapping between signals and stimuli in both model A (p(rj) = ωj/M) and model B

(p(rj) = 1/m) when n = m. To see it, consider that maximum I(S, R) implies that

the degree of each signal and each stimulus must be one when n = m according to the

results obtained within this section. For this reason, the mapping between signals and

stimuli must be one-to-one, as we wanted to prove.

Appendix D. Implicit equally likely stimuli.

Here we show that the evolution of language model in [1] makes assumptions consistent

with p(rj) = 1/m for each stimulus. In this model, each agent is endowed with a

speaking matrix P = {pji} and a listening matrix Q = {qij}. pji is the probability

that the speaker of a conversation uses utterance i for referring to meaning j. qij is

the probability that the hearer of a conversation understands meaning j after hearing

utterance i. pji in this model is equivalent to our p(si|rj) whereas qij is equivalent to our

p(rj|si). Our notation makes explicit that the speaking and hearing matrices contain

conditional probabilities. First, we will show how the speaking and hearing matrices

are coupled through the definition of conditional probability and then we will show that

the coupling used in [1] is a special case of the former coupling assuming p(rj) = 1/m.

If we start from p(si|rj), the definition of conditional probability gives

p(si, rj) = p(si|rj)p(rj). (D.1)

The definition of conditional probability also gives

p(rj|si) =
p(si, rj)

p(si)
. (D.2)

Replacing Eq. D.1 into Eq. D.2, we obtain

p(rj|si) =
p(rj)

p(si)
p(si|rj). (D.3)

and

p(si|rj) =
p(si)

p(rj)
p(rj |si). (D.4)

In [1], the hearing matrix is calculated from the speaking matrix through the

formula (see caption of Figure 2 in [1]):

qij =
pji∑
j pji

, (D.5)
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which can be written as

p(rj|si) =
p(si|rj)∑m

k=1 p(si|rk)
(D.6)

using our notation.

Now we will show that Eq. D.6 is a special case of the coupling in Eq. D.3. We

have seen above that the coupling between speaking and hearing matrices involves an

iterative application of the definition of conditional probability which is reminiscent of

the chain rule for derivatives. Replacing Eq. D.1 into

p(si) =
m∑

j=1

p(si, rj) (D.7)

we obtain

p(si) =

m∑

j=1

p(si|rj)p(rj). (D.8)

Replacing the previous equation into Eq. D.3 we obtain

p(rj|si) =
p(rj)∑m

k=1 p(si|rk)p(rk)
p(si|rj). (D.9)

Eq. D.6 is obtained when p(rj) = 1/m, that is, when all meanings are equally likely.

The assumptions behind Eq. D.6 are not explained in [1].
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